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Abstract The doubly charmed �++
cc (ccu) state is the only

listed baryon in PDG, which was discovered in the experi-
ment. The LHCb collaboration gets closer to discovering the
second doubly charmed baryon �+

cc(ccd), hence the inves-
tigation of the doubly charmed/bottom baryons from many
aspects is of great importance that may help us not only get
valuable knowledge on the nature of the newly discovered
states, but also in the search for other members of the doubly
heavy baryons predicted by the quark model. In this con-
text, we investigate the strong coupling constants among the
�

+(+)
cc baryons and π0(±) mesons by means of light cone

QCD sum rule. Using the general forms of the interpolating
currents of the �

+(+)
cc baryons and the distribution amplitudes

(DAs) of the π meson, we extract the values of the coupling
constants g�cc�ccπ . We extend our analyses to calculate the
strong coupling constants among the partner baryons with
π mesons, as well, and extract the values of the strong cou-
plings g�bb�bbπ and g�bc�bcπ . The results of this study may
help experimental groups in the analyses of the data related to
the strong coupling constants among the hadronic multiplets.

1 Introduction

The search for doubly heavy baryons and determination of
their properties constitute one of the main directions of the
research in the experimental and theoretical high energy
physics. There is only one doubly charmed baryon, �++

cc ,
listed in the PDG. The searches for other members of the
doubly heavy baryons in the experiments, as the natural out-
comes of the quark model, are in progress. Theoretical inves-
tigations on properties of the doubly heavy baryons, are nec-
essary as their results can help us better understand their
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structure and the dynamics of the QCD as the theory of the
strong interaction.

The search for doubly heavy baryons is a long-standing
issue. First evidence was reported by the SELEX experi-
ment for �++

cc decaying into �+
c K

−π+ and pD+K− in final
states [1,2]. The mass measured by SELEX, averaged over
the two decay modes, was found to be 3518.7±1.7 MeV/c2.
However, this has not been confirmed by any other experi-
ments so far. The FOCUS [3], BaBar [4], LHCb [5] and
Belle [6] experiments did not find any evidence up to 2017.
In 2017, the doubly charmed baryon �++

cc was observed
by the LHCb collaboration via the decay channel �++

cc →
�+

c K
−π+π [7], and confirmed via measuring another decay

channel �++
cc → �+

c π+ [8]. The weighted average of
its mass for the two decay modes was determined to be
3621.24 ± 0.65(stat.) ± 0.31(syst.) MeV/c2. Recently, with
a data sample corresponding to an integrated luminosity of
9 fb−1 at the centre-of-mass energies of 7, 8 and 13 TeV,
the LHCb Collaboration published the results of a search
for the doubly charmed baryon �+

cc [9]. The upper limit
of the ratio of the production cross-sections between the
�+

cc and �+
c baryons times the branching fraction of the

�++
cc → �+

c K
−π+ decay, was improved by an order of mag-

nitude than the previous search. However, still no significant
signal is observed in the mass range from 3.4 to 3.8 GeV/c2.
Future LHCb searches with further improved trigger condi-
tions, additional �+

cc decay modes, and larger data samples
should significantly increase the �+

cc signal sensitivity.
Theoretical studies on the properties and nature of the dou-

bly heavy baryons can play an important role in searching for
other members and help us get useful knowledge on the inter-
nal structures of the observed resonances. There have been
many theoretical efforts aimed at understanding the proper-
ties of the doubly-heavy baryon states, see e.g. Refs. [10–38].
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However, most researches are focused on the mass and weak
decays of the doubly heavy baryons and the number of stud-
ies dedicated to their strong decays and the strong couplings
of these baryons with other hadrons is very limited. In this
context, we investigate the strong coupling constants among
the doubly heavy �cc/�bb/�bc baryons and π mesons. We
use the well established non-perturbtive method of light cone
QCD sum rule (LCSR) (for more about this method see,
e.g., [39–43] and references therein) as a powerful theoret-
ical tool to calculate the coupling constants under study. In
the calculations, we use the general forms of the interpolat-
ing currents for �cc, �bc and �bb baryons and DAs of the
pions.

The outline of the paper is as follows. In Sect. 2, the light
cone sum rules for the coupling constants of the doubly heavy
baryons with π mesons are obtained. In Sect. 3, we present
the numerical results and discussions, and Sect. 4 is reserved
for our conclusions.

2 Theoretical framework

The starting point is to choose a suitable correlation function
(CF) in terms of hadronic currents sandwiched between the
QCD vacuum and the on-shell pseudoscalar meson (here the
pion). The QCD vacuum interacts via vacuum fluctuations
with the initial and final states and leads to non-perturbative
contributions to the final results via the quark-quark, quark-
gluon and gluon-gluon condensates. The DAs of π meson
also contain non-perturbative information.

To calculate the physical observables like strong coupling
constants, we have to calculate the CF in the large timelike
momenta by inserting the full set of hadronic states in the
CF and isolating the ground state from the continuum and
excited states. On the other hand, in QCD or theoretical side,
we need to study the CF in the large space-like momenta
via the operator product expansion (OPE) that separates the
perturbative and non-perturbative contributions in terms of
different operators and distribution amplitudes of the parti-
cles under consideration. Thus, in QCD side, by contracting
the hadronic currents in terms of quark fields we write the
CF in terms of the light and heavy quarks propagators as
well as wavefunctions of the considered meson in x-space.
To proceed, we perform the Fourier transformation to trans-
fer the calculations to the momentum space. To suppress the
unwanted contributions coming from the higher states and
continuum, we apply the Borel transformation as well as
continuum subtraction, supplied by the quark-hadron dual-
ity assumption. The two representations of the same CF are
then connected to each other via dispersion integrals. These
procedures introduce some auxiliary parameters to the cal-
culations, which are then fixed based on the standard pre-
scriptions of the method.

2.1 Correlation function

In order to calculate the strong coupling constants among
doubly heavy baryons and light pseudoscalar π meson, we
start our discussion by considering the following light-cone
correlation function:

�(p, q) = i
∫

d4xeipx 〈P(q)|T {η(x)η̄(0)} |0〉, (1)

where P(q) denotes the pseudoscalar mesons of momen-
tum q, T is the time ordering operator, and η represents the
interpolating currents of the doubly heavy baryons. The gen-
eral expressions of the interpolating currents for the spin-1/2
doubly heavy baryons in their symmetric and antisymmetric
forms can be written as

ηS = 1√
2
εabc

{
(QaTCqb)γ5Q

′c + (Q′aT Cqb)γ5Q
c

+t (QaTCγ5q
b)Q′c + t (Q′aTCγ5q

b)Qc
}
,

ηA = 1√
6
εabc

{
2(QaTCQ′b)γ5q

c + (QaTCqb)γ5Q
′c

−(Q′aT Cqb)γ5Q
c + 2t (QaTCγ5Q

′b)qc

+t (QaTCγ5q
b)Q′c − t (Q′aTCγ5q

b)Qc
}
, (2)

where t is an arbitrary auxiliary parameter and the case,
t = −1 corresponds to the Ioffe current. Here Q(′) and q
stand for the heavy and light quarks respectively; a, b, and
c are the color indices, C stands for the charge conjuga-
tion operator and T denotes the transposition. For the doubly
heavy baryons with two identical heavy quarks, the antisym-
metric form of the interpolating current is zero and we just
need to employ the symmetric form, ηS . In the following, we
calculate the correlation function in Eq. 1 in two different
windows.

2.2 Physical side

To obtain the physical side of correlation function, we insert
complete sets of hadronic states with the same quantum num-
bers as the interpolating currents and isolate the ground state.
After performing the integration over four-x , we get

�Phys.(p, q)

= 〈0|η|B2(p)〉〈B2(p)P(q)|B1(p + q)〉〈B1(p + q)|η̄|0〉
(p2 − m2

1)[(p + q)2 − m2
2]

+ · · · ,

(3)

where dots in the above equation stand for the contribution
of the higher states and continuum. To proceed we introduce
the matrix elements for spin-1/2 baryons as

123



Eur. Phys. J. C (2020) 80 :613 Page 3 of 10 613

〈0|η|B2(p, r)〉 = λB2u(p, r) ,

〈B1(p + q, s)|η̄|0〉 = λB1 ū(p + q, s) ,

〈B2(p, r)P(q)|B1(p + q, s)〉 = gB1B2P ū(p, r)γ5u(p + q, s) ,

(4)

where gB1B2P , representing the strong decay B1 → B2P , is
the strong coupling constant among the baryons B1 and B2

as well as the P meson, λB1 and λB2 are the residues of the
corresponding baryons and u(q, s) is Dirac spinor with spin
s. Putting the above equations all together, and performing
summation over spins, we get the following representation
of the correlator for the phenomenological side:

�Phys.(p, q)= gB1B2PλB1λB2

(p2 − m2
B2

)[(p+q)2 − m2
B1

] [/q/pγ5 + · · · ],
(5)

where dots represent other structures come from spin summa-
tion as well as the contributions of higher states and contin-
uum. We will use the explicitly presented structure to extract
the value of the strong coupling constant, gB1B2P . We apply
the double Borel transformation with respect to the variables
p2

1 = (p + q)2 and p2
2 = p2:

Bp1(M
2
1 )Bp2(M

2
2 )�Phys.(p, q) ≡ �Phys.(M2)

= gB1B2PλB1λB2e
−m2

B1
/M2

1 e
−m2

B2
/M2

2 /q/pγ5 + · · · , (6)

where M2 = M2
1 M

2
2 /(M2

1 + M2
2 ) and the Borel parameters

M2
1 and M2

2 for the problem under consideration are chosen
to be equal as the masses of the initial and final state baryons
are the same. Hence M2

1 = M2
2 = 2M2.

2.3 QCD side

In QCD side, the correlation function is calculated in deep
Euclidean region with the help of OPE. To proceed, we need
to determine the correlation function using the quark prop-
agators and distribution amplitudes of the π meson. The
�QCD(p, q) can be written in the following general form:

�QCD(p, q) = �
(
(p + q)2, p2)/q/pγ5 + · · · , (7)

where the �
(
(p+q)2, p2

)
is an invariant function that should

be calculated in terms of QCD degrees of freedom as well as
the parameters inside the DAs.

Inserting, for instance, ηS in the CF and using the Wick
theorem to contract all the heavy quark fields we get the
following expression in terms of the heavy quark propagators
and π meson matrix elements:

�QCD(p, q) = i

2
εabcεa′b′c′

∫
d4x〈π(q)|q̄b′

α (0)qbβ(x)|0〉

×
{

Tr
[
γ5S

aa′
Q′ (x)γ5

](
S̃cc

′
Q (x)

)
αβ

+Tr
[
γ5S

cc′
Q (x)γ5

](
S̃aa

′
Q′ (x)

)
αβ

+ 2
(
S̃ca

′
Q′ (x)S̃ac

′
Q (x)

)
αβ

+2t
[
Tr

[
γ5S

cc′
Q′ (x)

](
γ5 S̃

aa′
Q (x)

)
αβ

+Tr
[
γ5S

cc′
Q (x)

](
γ5 S̃

aa′
Q′ (x)

)
αβ

+2
(
γ5 S̃

ca′
Q′ (x)γ5 S̃

ac′
Q (x)

)
αβ

]

+t2
[
Tr

[
Scc

′
Q′ (x)

](
γ5 S̃

aa′
Q (x)γ5

)
αβ

+Tr
[
Scc

′
Q (x)

](
γ5 S̃

aa′
Q′ (x)γ5

)
αβ

+2
(
γ5 S̃

ca′
Q′ (x)S̃ac

′
Q (x)γ5

)
αβ

]}
, (8)

where S̃ = CSTC , and 〈π(q)|q̄b′
α (0)qbβ(x)|0〉 are the matrix

elements for the light quark contents of the doubly heavy
baryons. To proceed, we need to know the explicit expression
for the heavy quark propagator that is

SQ(x) = m2
Q

4π2

K1(mQ
√−x2)√−x2

− i
m2

Q /x

4π2x2 K2(mQ

√
−x2)

−igs

∫
d4k

(2π)4 e
−ikx

∫ 1

0
du

[
/k + mQ

2(m2
Q − k2)2

Gμν(ux)σμν

+ u

m2
Q − k2

xμG
μνγν

]
+ . . . , (9)

where K1 and K2 are the modified Bessel functions of the
second kind, and Gμν

ab ≡ Gμν
A t Aab with A = 1, 2 . . . 8, and

t A = λA/2, where λA are the Gell-Mann matrices. The first
two terms correspond to perturbative or free part and the rest
belong to the interacting parts.

The next step is to use the heavy quark propagator and the
matrix elements 〈π(q)|q̄b′

α (0)qbβ(x)|0〉 in Eq. 8. This leads
to different kinds of contributions to the CF. Figs. 1 and 2
are the Feynman diagrams correspond to the leading and
next-to-leading order contributions, respectively which are
considered in this work. Only matrix elements corresponding
to these diagrams are available. To calculate the leading order
contribution, the heavy quark propagators are replaced by just
their perturbative parts. This contribution can be computed
using π meson two-particle DAs of twist two and higher.

The next-to-leading order contributions can also be cal-
culated by choosing the gluonic parts in Eq. 9 for one of the
heavy quark propagators and leaving the other with its per-

Fig. 1 The leading order diagram contributing to QCD side
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(a) (b)

Fig. 2 The one-gluon exchange diagrams corresponding to the next-
to-leading contributions

turbative term. They can be expressed in terms of pion three
particles DAs. The terms involving more than one gluon field
that proportional to four-particle DAs or more are neglected
as they are not available.

Now, we concentrate on the strong decay �++
cc → �++

cc π0

with the aim of calculating the corresponding strong coupling
constant g�++

cc �++
cc π0 . The other channels have similar proce-

dures. To proceed, we replace the heavy quark propagators
in 8 by their explicit expression and perform the summation
over the color indices by applying the replacement

uaα(x)ua
′

β (0) → 1

3
δaa′uα(x)uβ(0). (10)

Now, using the expression

uα(u)uβ(0) ≡ 1

4
� J

βαu(x)� J u(0), (11)

one can relate the CF to the DAs of the pion with different
twists. Here the summation over J runs as

� J = 1, γ5, γμ, iγ5γμ, σμν/
√

2. (12)

Following the similar way one can calculate the contributions
involving the gluon field.

As a result, the CF is found in terms of the QCD parameters
as well as the matrix elements

〈π0(q)|u(x)� J u(0)|0〉,
〈π0(q)|u(x)� J Gμν(vx)u(0)|0〉, (13)

whose expressions in terms of the wave functions of the pion
with different twists are given in the Appendix.

Inserting the expression of the above-mentioned matrix
elements in term of wave functions of different twists we
get the CF in x space. This is followed by the Fourier and
Borel transformations as well as continuum subtraction. To
proceed we need to perform the Fourier transformation of
the following kind:

T[ ,α,αβ](p, q) = i
∫

d4x
∫ 1

0
dv

∫
Dαeip.x

(
x2)n

×[ei(αq̄+vαg)q.xG(αi ), e
iq.x f (u)]

×[1, xα, xαxβ ]Kμ(mQ

√
−x2)Kν(mQ

√
−x2),

(14)

where the expressions in the brackets denote different pos-
sibilities arise in the calculations, the blank subscript in the
left hand side indicates no indices regarding no xα in the con-
figuration, G(αi ) and f (u) represent wave functions coming
from the three and two-particle matrix elements and n is a
positive integer. The measure

∫
Dα =

∫ 1

0
dαq

∫ 1

0
dαq̄

∫ 1

0
dαgδ(1 − αq − αq̄ − αg),

is used in the calculations. To start the Fourier transformation,
we use

(x2)n = (−1)n
dn

dβn

(
e−βx2)|β=0. (15)

for positive integer n and

xαe
i P.x = (−i)

d

dPα
ei P.x . (16)

We also use the following representation of the Bessel func-
tions Kν (see also Ref. [44]):

Kν(mQ

√
−x2) = �(ν + 1/2) 2ν

√
πmν

Q

×
∫ ∞

0
dt cos(mQt)

(
√−x2)ν

(t2 − x2)ν+1/2 .

(17)

As an example let us consider the following generic form:

Zαβ(p, q) = i
∫

d4x
∫ 1

0
dv

×
∫

Dαei[p+(αq̄+vαg)q].xG(αi )
(
x2)n

×xαxβKμ(mQ

√
−x2)Kν(mQ

√
−x2). (18)

We substitute Eqs. 15, 16 and 17 into 18. Then to perform the
x-integration we go to the Euclidean space by Wick rotation
and get

Zαβ(p, q) = iπ22μ+ν−2

m2μ
Q1
m2ν

Q2

∫
Dα

∫ 1

0
dv

∫ 1

0

×dy1

∫ 1

0
dy2

∂

∂Pα

∂

∂Pβ

∂n

∂βn

× yμ−1
1 yν−1

2

(y1 + y2 + β)2 e
− 1

4

(m2
Q1
y1

+
m2
Q2
y2

− P2
y1+y2+β

)
,

(19)
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where P = p + q(vαg + αq) . Changing variables from y1

and y2 to ρ and z as

ρ = y1 + y2, z = y1

y1 + y2
, (20)

and taking derivative with respect to Pα and Pβ , we get

Zαβ(p, q) = iπ22μ+ν−4

m2μ
Q1

m2ν
Q2

∫
Dα

∫ 1

0
dv

∫ ∞

0

×dρ
∫ 1

0
dz

∂n

∂βn
zμ−1 z̄ν−1 ρν+μ−1

(ρ + β)4 e
− 1

4

( m2
Q1

z̄+m2
Q2

z

zz̄ρ + P2
β+ρ

)

×
[
pα pβ + (vαg + αq )(pαqβ + qα pβ)

+(vαg + αq )
2qαqβ + 2(ρ + β)gαβ

]
. (21)

Now we perform the double Borel transformation using

Bp1(M
2
1 )Bp2(M

2
2 )eb(p+uq)2

= M2δ(b + 1

M2 )δ(u0 − u)e
−q2

M2
1 +M2

2 , (22)

where u0 = M2
1 /(M2

1 + M2
2 ). After integrating over ρ we

have

Zαβ(M2) = iπ224−μ−νe
−q2

M2
1 +M2

2

M2m2μ
Q1

m2ν
Q2

∫
Dα

∫ 1

0
dv

∫ 1

0

×dz
∂n

∂βn e
−

m2
Q1

z̄+m2
Q2

z

zz̄(M2−4β) zμ−1 z̄ν−1(M2 − 4β)μ+ν−1

×δ[u0 − (αq + vαg)]
[
pα pβ

+(vαg + αq )(pαqβ + qα pβ) + (vαg + αq )2qαqβ

+M2

2
gαβ

]
. (23)

The next step is to perform the continuum subtraction in
order to more suppress the contribution of the higher states
and continuum. The subtraction procedures for different sys-
tems are described in Ref. [44] in details. When the masses
of the initial and final baryonic states are equal, as we stated
previously, we set M2

1 = M2
2 = 2M2. In this case, the double

spectral density is concentrated near the diagonal s1 = s2 and
reduces to a single representation s (see also Ref. [45] and
references therein) and for the continuum subtraction more
simple expressions are derived, which are not sensitive to the
shape of the duality region. In the case, M2

1 = M2
2 = 2M2

and u0 = 1/2, for example in the present study, the subtrac-
tion is done by using the replacement,

(M2)ne
− f (m2

Q1
,m2

Q2
)

M2 → 1

�[n]
∫ s0

f (m2
Q1

,m2
Q2

)

dse−s/M2

×[s − f (m2
Q1

,m2
Q2

)]n−1, (24)

for n > 0. Finally, using some variable changing we set the
lower limit of integration over s as (mQ1 + mQ2)

2.
By calculation of all the Fourier integrals and applying the

Borel transformation and continuum subtraction, for QCD
side of the calculations in Borel Scheme, we get,

�QCD(M2, s0, t) = [
�(0)(M2, s0, t)

+�(GG)(M2, s0, t)
]
/q/ pγ5 + · · · ,

(25)

where the functions �(0)(M2, s0, t) and �(GG)(M2, s0, t)
are obtained as

�(0)(M2, s0, t)

= e− q2

4M2

96π2
√

2

∫ 1

0
dz

1

z
e

−m2
c

M2zz̄

{
3 fπm

2
πm

3
c(t

2 − 1)A(u0)

+2e− 4m2
c

M2

∫ s0

4m2
c

dse− s
M2 z

[
3 fπm

2
πmc(t

2 − 1)z̄A(u0)

−6 fπmc(s − 4m2
c)(t

2 − 1)z̄ϕπ(u0)

−μπ(μ̃2
π − 1)

[ − 4m2
c t + 3(s − 4m2

c)

×(t − 1)2zz̄
]
ϕσ (u0)

]

+6e− 4m2
c

M2 (t2 − 1)

∫ s0

4m2
c

dse− s
M2

∫ 1

0
dv

∫
Dα

×
[
fπm

2
πmcδ[u0 − (αq + vαg)]

×
(

− 2z(v − 1/2)A‖(αi ) + 2z̄V⊥(αi )

+(2z − 3)V‖(αi )

)
+ 2μπδ′[u0 − (αq + vαg)]

×(s − 4m2
c)zz̄(v − 1/2)T (αi )

]}
, (26)

and

�(GG)(M2, s0, t)

= 〈g2
s G

2〉e−
q2

4M2

6912
√

2π2mcM6

∫ 1

0
dz

1

z2 z̄4 e
− m2

c
M2zz̄

×
{
z̄2

[
− 3 fπm

2
π (1 − t2)

(
6M6z2 z̄4 + 6M4m2

c zz̄
3

+3M2m4
c z̄

2 − 2m6
c

)
A(u0)

+4M2mcz̄

(
− 3 fπ M2mc(1 − t2)z

×[
2m2

c + M2 z̄(5z − 3)
]
ϕπ (u0)

+(μ̃2
π − 1)μπ

[
2m4

c

(
t2 + 1

)

+[(1 + t2)(1 − 4z) − 6t](M2m2
c z + M4z2 z̄)

]
ϕσ (u0)

)

123
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+72 fπ M8(1 − t2)z2 z̄4
(

1 − e
− (s0−4m2

c )

M2
)
ϕπ (u0)

]

+6M2(1 − t)
∫ 1

0
dv

∫
Dα

[
fπm

2
π (1 + t)z̄3δ

×[u0 − (αq + vαg)]
(

2m4
cV⊥(αi )

+
[

− 2m4
c + M2m2

c(1 + 2z)z + M4(1 + 2z)z2 z̄
]

×V‖(αi )

−(2v − 1)
[
m4
c + M2m2

c(1 + 2z)z + M4(1 + 2z)z2 z̄
]
A‖(αi )

)

+μπ(1 − t)(1 + 2v)zz̄3δ′[u0 − (αq + vαg)]
×(M2m3

c + M4mczz̄)T (αi )

]}
. (27)

The sum rule for the coupling constant under study is
found by matching the coefficients of the structure /q/ pγ5

from both the physical and QCD sides. As a result, we get:

gB1B2P (M2, s0, t) = 1

λ�ccλ�cc

e

m2
B1

2M2 e

m2
B2

2M2

×[
�(0)(M2, s0, t) + �(GG)(M2, s0, t)

]
.

(28)

As is seen, the sum rules for coupling constants contain the
residues of doubly heavy baryons, which are borrowed from
Ref. [10]. Similarly, we obtain the sum rules for other strong
coupling constants under consideration.

3 Numerical analysis

In this section, we numerically analyze the sum rules for the
strong coupling constants of the π mesons with �cc, �bc

and �bb baryons and discuss the results. The sum rules for
the couplings g�cc�ccπ , g�bc�bcπ and g�bb�bbπ contain some
input parameters like, quark masses the mass and decay con-
stant of the π meson and the masses and residues of doubly
heavy baryons. They were extracted from experimental data
or calculated from nonperturbative methods. The values of
some of these parameters together with quark masses are
given in Table 1. As we previously mentioned the values of
the residues of baryons are used from Ref. [10].

Another set of important input parameters are the π meson
wavefunctions of different twists, entering the DAs. These
wavefunctions are given as [47,48]:

φπ (u) = 6uū
(

1 + aπ
1 C1(2u − 1) + aπ

2 C
3
2
2 (2u − 1)

)
,

T (αi ) = 360η3αq̄αqα2
g

(
1 + w3

1

2
(7αg − 3)

)
,

φP (u) = 1 +
(

30η3 − 5

2

1

μ2
π

)
C

1
2
2 (2u − 1)

Table 1 Some input values used in the calculations. They are mainly
taken from [46], except the ones that the references are given next to
the numbers

Parameters Values

mc 1.27 ± 0.02 GeV

mb 4.18+0.03
−0.02 GeV

mπ0 134.98 MeV

mπ± 139.57 MeV

�cc 3621.2 ± 0.7 MeV

�bc 6.72 ± 0.20 GeV [10]

�bb 9.96 ± 0.90 GeV [10]

fπ 130.2 ± 1.2 MeV

+
(

− 3η3w3 − 27

20

1

μ2
π

− 81

10

1

μ2
π

aπ
2

)
C

1
2
4 (2u − 1),

φσ (u) = 6uū
[
1 +

(
5η3 − 1

2
η3w3 − 7

20
μ2

π − 3

5
μ2

πa
π
2

)

×C
3
2
2 (2u − 1)

]
,

V‖(αi ) = 120αqαq̄αg

(
v00 + v10(3αg − 1)

)
,

A‖(αi ) = 120αqαq̄αg

(
0 + a10(αq − αq̄ )

)
,

V⊥(αi ) = −30α2
g

[
h00(1 − αg) + h01(αg(1 − αg)

−6αqαq̄ ) + h10(αg(1 − αg) − 3

2
(α2

q̄ + α2
q ))

]
,

A⊥(αi ) = 30α2
g(αq̄ − αq )

[
h00 + h01αg + 1

2
h10(5αg − 3)

]
,

B(u) = gπ (u) − φπ (u),

gπ (u) = g0C
1
2
0 (2u − 1) + g2C

1
2
2 (2u − 1) + g4C

1
2
4 (2u − 1),

A(u) = 6uū

[
16

15
+ 24

35
aπ

2 + 20η3 + 20

9
η4

+
(

− 1

15
+ 1

16
− 7

27
η3w3 − 10

27
η4

)
C

3
2
2 (2u − 1)

+
(

− 11

210
aπ

2 − 4

135
η3w3

)
C

3
2
4 (2u − 1)

]

+
(

− 18

5
aπ

2 + 21η4w4

)[
2u3(10 − 15u + 6u2) ln u

+2ū3(10 − 15ū + 6ū2) ln ū + uū(2 + 13uū)
]
,

(29)

where Ck
n (x) are the Gegenbauer polynomials and

h00 = v00 = −1

3
η4,

a10 = 21

8
η4w4 − 9

20
aπ

2 ,

v10 = 21

8
η4w4,

h01 = 7

4
η4w4 − 3

20
aπ

2 ,

123
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h10 = 7

4
η4w4 + 3

20
aπ

2 ,

g0 = 1,

g2 = 1 + 18

7
aπ

2 + 60η3 + 20

3
η4,

g4 = − 9

28
aπ

2 − 6η3w3. (30)

The constants inside the wavefunctions are calculated at the
renormalization scale of μ = 1 GeV2 and they are given as
aπ

1 = 0, aπ
2 = 0.44, η3 = 0.015, η4 = 10, w3 = −3 and

w4 = 0.2 [47,48].
Finally, the sum rules for the coupling constants contain

three auxiliary parameters: Borel mass parameter M2, con-
tinuum threshold s0 and the general parameter t entered the
general spin-1/2 currents. We should find working regions of
these parameters, at which the results of coupling constants
have relatively small variations with respect to the changes
of these parameters. To restrict these parameters, we employ
the standard prescriptions of the method such as the pole
dominance, convergence of the OPE and mild variations of
the physical quantities with respect to the auxiliary param-
eters. The upper limit of M2 is determined from the pole
dominance condition, i.e.,

�QCD(M2, s0, t)

�QCD(M2,∞, t)
>

1

2
. (31)

The lower limit of M2 is fixed by the condition of OPE con-
vergence: in our case, �(0)(M2, s0, t) > �(GG)(M2, s0, t).
The continuum threshold s0 is not totally arbitrary and it
depends on the mass of the first excited state in the same
channel. One has to choose the range of s0 such that it does
not contain the energy for producing the first excited state.
Unfortunately, there is no experimental information on the
masses of the first excited states in the case of doubly heavy
baryons. Based on our analyses and considering the experi-
mental information on the single heavy baryons, we consider
the interval mQQ + E1 ≤ √

s0 ≤ mQQ + E2 for
√
s0, where

a energy from E1 to E2 is needed to excite the baryons, and
impose that the Borel curves are flat and the requirements of
the pole dominance and the OPE convergence are satisfied.
With these criteria, we choose the s0 to lie in the interval
(m�QQ + 0.3)2 ≤ s0 ≤ (m�QQ + 0.7)2(GeV2).

As a result of the above requirements, we obtain the work-
ing region of the Borel parameter for the �cc channel as,

3 GeV2 ≤ M2 ≤ 6 GeV2. (32)

The continuum threshold for this channel is obtained as,

16 GeV2 ≤ s0 ≤ 18 GeV2. (33)

For �bc baryon, we get

8 GeV2 ≤ M2 ≤ 12 GeV2 , 49 GeV2 ≤ s0 ≤ 55 GeV2 .

(34)

Finally, for �bb baryon, these parameters lie in the intervals:

18 GeV2 ≤ M2 ≤ 24 GeV2, 106 GeV2 ≤ s0 ≤ 114 GeV2 .

(35)

The working window for the parameter t is obtained by the
consideration of the minimum variations of the results with
respect to this parameter. By imposing this condition together
with the conditions of the pole dominance and convergence
of the mass sum rules the working window for t is obtained
in Ref. [10] as |t | ≤ 2, which we also use in our analyses. As
examples, we display the dependence of the strong coupling
constant g�++

cc �++
cc π0 , which is obtained from the sum rule

for the strong coupling form factor at q2 = m2
π , with respect

to M2 and s0 in Figs. 3 and 4 at t = −2.
From these figures we see mild variations of g�cc�ccπ0

with respect to the M2 and s0, which appear as the main
uncertainty in the numerical values of the strong coupling
constants. We extract the numerical values of the strong cou-
plings g�cc�ccπ0 , g�bc�bcπ

0 and g�bb�bbπ
0 as displayed in

Table 2. The presented errors are due to the changes with
respect to the auxiliary parameters in their working regions
as well as those which propagate from other input parameters
as well as π meson DAs. The values of coupling constants
to the charged mesons π+ and π−, which are exactly the
same from the isospin symmetry, are found by the multipli-
cations of the strong coupling constants in π0 channel by

Fig. 3 The strong coupling g�++
cc �++

cc π0 as a function of the Borel

parameter M2 at t = −2 for different values of s0

123
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Fig. 4 The strong coupling g�++
cc �++

cc π0 as a function of s0 at t = −2

for different values of M2

Table 2 The numerical values for the strong coupling constants
extracted from the analyses

Channel Strong coupling constant

�cc → �ccπ
0 5.52 +0.64

−0.53

�bc → �bcπ
0 4.75 +0.42

−0.50

�bb → �bbπ
0 21.60 +1.77

−2.09

√
2. This coefficient is the only difference in the couplings

to the quark contents of the π± and π0 mesons when the
isospin symmetry is used. As it is also clear from Table 2,
the values of the strong coupling constants in double-b chan-
nel are roughly four times greater than those of the other
channels. The big difference between the strong couplings
to pseudoscalar mesons in b and c channels is evident in the
case of single heavy baryons, as well [49]. As it can be seen
from this reference, the difference factor in the case of single
heavy baryons is two-three times.

4 Summary and conclusions

The doubly charmed �++
cc (ccu) baryon is the only listed dou-

bly heavy baryon in PDG discovered in the experiment so
far. The LHCb collaboration gets closer to observing other
member �+

cc(ccd), as well. Therefore, the investigation of
the doubly charmed/bottom baryons from many aspects is
of great importance that may help us in the course of search
for new members of the doubly heavy baryons predicted by
the quark model. The strong coupling constants among the
hadronic multiplets are fundamental objects that can help us
to explore the nature and structure of the participating parti-

cles as well as the properties of QCD as the theory of strong
interaction.

We calculated the strong coupling constants g�ccq�ccqπ0,± ,
g�bcq�bcqπ0,± and g�bbq�bbqπ0,± , with q being either u or d
quark, in the framework of the light cone QCD sum rule and
using the general form of the interpolating currents for the
doubly heavy baryons and the π meson’s DAs. Based on the
standard prescriptions of the method, we fixed the auxiliary
parameters entering the calculations. We extracted the val-
ues of the strong coupling constants at different channels. Our
results may be checked via different theoretical models and
approaches. The obtained results may help us in construct-
ing the strong interaction potential among the doubly heavy
baryons and the pseudoscalar mesons. Our results may also
help experimental groups in analyses of the obtained related
data in hadron colliders.
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5 Appendix: The pion distribution amplitudes

In this appendix, we present explicit expressions for the DAs
of the π meson. For more information see Refs. [47,48].

〈π(p)|q̄(x)γμγ5q(0)|0〉
= −i fπ pμ

∫ 1

0
dueiū px

(
ϕπ(u) + 1

16
m2

π x
2
A(u)

)

− i

2
fπm

2
π

xμ

px

∫ 1

0
dueiū pxB(u),

〈π(p)|q̄(x)iγ5q(0)|0〉
= μπ

∫ 1

0
dueiū pxϕP (u),

〈π(p)|q̄(x)σαβγ5q(0)|0〉
= i

6
μπ

(
1 − μ̃2

π

) (
pαxβ − pβxα

) ∫ 1

0
dueiū pxϕσ (u),

〈π(p)|q̄(x)σμνγ5gsGαβ(vx)q(0)|0〉

123
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= iμπ

[
pα pμ

(
gνβ − 1

px
(pνxβ + pβxν)

)

−pα pν

(
gμβ − 1

px
(pμxβ + pβxμ)

)

−pβ pμ

(
gνα − 1

px
(pνxα + pαxν)

)

+pβ pν

(
gμα − 1

px
(pμxα + pαxμ)

)]

×
∫

Dαei(αq̄+vαg)pxT (αi ),

〈π(p)|q̄(x)γμγ5gsGαβ(vx)q(0)|0〉
= pμ(pαxβ − pβxα)

1

px
fπm

2
π

∫
Dαei(αq̄+vαg)pxA‖(αi )

+
[
pβ

(
gμα − 1

px
(pμxα + pαxμ)

)

−pα

(
gμβ − 1

px
(pμxβ + pβxμ)

)]
fπm

2
π

×
∫

Dαei(αq̄+vαg)pxA⊥(αi ),

〈π(p)|q̄(x)γμigsGαβ(vx)q(0)|0〉
= pμ(pαxβ − pβxα)

1

px
fπm

2
π

∫
Dαei(αq̄+vαg)pxV‖(αi )

+
[
pβ

(
gμα − 1

px
(pμxα + pαxμ)

)

−pα

(
gμβ − 1

px
(pμxβ + pβxμ)

)]
fπm

2
π

×
∫

Dαei(αq̄+vαg)pxV⊥(αi ), (36)

where

μπ = fπ
m2

π

mu + md
, μ̃π = mu + md

mπ

. (37)

Here, ϕπ(u), A(u), B(u), ϕP (u), ϕσ (u), T (αi ), A⊥(αi ),

A‖(αi ), V⊥(αi ) and V‖(αi ) are wave functions of definite
twists.
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