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Abstract In this work, the one-loop renormalization of a
theory for fields transforming in the (1, 0)⊕ (0, 1) represen-
tation of the Homogeneous Lorentz Group is studied. The
model includes an arbitrary gyromagnetic factor and self-
interactions of the spin 1 field, which has mass dimension
one. The model is shown to be renormalizable for any value
of the gyromagnetic factor.

1 Introduction

In the Standard Model of particle physics, only fields trans-
forming in the (0, 0), (1/2, 0), (0, 1/2) and (1/2, 1/2) rep-
resentations of the Homogeneous Lorentz Group (HLG) are
needed. There is however no guiding principle restricting the
possible representations, and indeed high spin fields naturally
appear in Hadron physics and in Beyond the Standard Model
(BSM) scenarios like supergravity and superstrings.

In an attempt to better understand the physics of fields
transforming in different representations of the HLG, a series
of works have been carried [1–8] based on the projection onto
subspaces of the Poincaré group. In this formalism, it has
been shown that the gyromagnetic factor of spin 3/2 fields
is connected with their causal propagation in an electromag-
netic background [1], and with the unitarity of the Compton
scattering amplitude in the forward direction [2]. The for-
malism can also be applied to lower spins, for example, in
the spin 1 case, a similar connection between the unitarity
of Compton scattering in the forward direction and the gyro-
magnetic factor of the field exists, which is also related to the
electric quadrupole moment [3].

When the Poincaré projector method is applied to spin 1/2
fields transforming in the (1/2, 0) ⊕ (0, 1/2) representation
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[6,7], the resulting Lagrangian is a generalized version of
the original second order Feynman-Gell-Man formalism [9],
enhanced with an arbitrary gyromagnetic factor and fermion
self interactions. The second order fermions studied in these
works are conceptually different to Dirac ones, as the former
propagate 8 dynamical degrees of freedom instead of 4. As
shown in [6,7], there is a consistent reduction of dynam-
ical degrees of freedom and a direct connection between
the renormalization group equations for the second order
fermions and the Dirac formalism if the gyromagnetic (or
chromomagnetic) factor is set to the fixed value g = 2.

The goal of the present work is to study the renormaliza-
tion properties of spin-1 matter fields1 transforming in the
(1, 0) ⊕ (0, 1) representation of the HLG in a model based
on the Poincaré projector formalism, as a direct generaliza-
tion of the spin 1/2 case [6,7].

The difference between the pure spin 1 representation
(1, 0) ⊕ (0, 1), described by an antisymmetric tensor field
of second rank, and the more familiar (1/2, 1/2) vector
field is more dramatic in the massless case, as the Kalb–
Ramond antisymmetric gauge field contains only one phys-
ical longitudinal degree of freedom [10], whereas the mass-
less vector gauge field is characterized by 2 transverse ones.
Switching to massive spin-1 particles, one must distinguish
between gauge invariant and non-gauge invariant theories. It
can be shown that a massive Stueckelberg compensated Kalb-
Ramond gauge field is dual to a compensated massive gauge
vector field [11]. However, for non-gauge invariant massive
spin-1 theories, the properties of four-vector and antisym-
metric tensor particles can differ significantly. In [12] the
difference between spin-1 antisymmetric tensor mesons and
the four-vector mesons has been studied in detail for compos-
ite hadrons. In the present work, we focus instead on pointlike

1 Here we understand matter fields as massive non-gauge fields.
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massive spin-1 bosons, with emphasis on their electromag-
netic properties and their possible self-interactions.

The model studied here is based on [4], where the complex
antisymmetric tensor field has 6 complex degrees of freedom,
making the (1, 0)⊕(0, 1) theory explicitly different to any of
a massive gauge vector field. In [4] the Compton scattering
of spin-1 particles described by both a massive four-vector
and an antisymmetric tensor was analyzed for arbitrary val-
ues of the gyromagnetic factor, finding that the Compton
scattering cross section off the parity degrees of freedom in
(1, 0) ⊕ (0, 1) is finite in the forward direction, though it is
still divergent elsewhere. Interestingly, for the antisymmetric
tensor this result is independent of the gyromagnetic factor,
while Compton scattering off the four-vector is only well
behaved in all directions provided the gyromagnetic ratio is
set to g = 2. Given the non-finiteness of Compton scatter-
ing in this theory, it is unclear if the renormalizable theory
described here corresponds to a perturbation theory about a
sensible zeroth-order Hamiltonian. However, it constitutes a
unique theoretical laboratory from the point of view of the
renormalization group, in the same spirit as scalar λφ3 theory.

The structure of the paper is the following: In Sect. 2 we
describe the model and the Feynman rules. The renormal-
ization procedure is presented in Sect. 3 together with the
cancellation of all the potentially divergent contributions to
the one-loop vertices of the theory. Finally, the conclusions
of the work are discussed in Sect. 4.

2 The model

Our model comprises a massive complex spin-1 antisymmet-
ric tensor field Bαβ in the (1, 0) ⊕ (0, 1) representation of
the HLG, minimally coupled to U (1)EM with arbitrary gyro-
magnetic factor and mass dimension one, allowing for self
interaction terms. The Lagrangian of the model is given by

L = −1

4
FμνFμν + (DμBαβ)† (

Tμν

)
αβγ δ

(DνBγ δ)

−m2(Bαβ)
†
Bαβ

+λ1

2
(Bαβ †1αβγ δB

γ δ)(Bμν †1μνρσ B
ρσ )

+λ2

2
(Bαβ †χαβγ δB

γ δ)(Bμν †χμνρσ B
ρσ )

+λ3

2
(Bα1β1 †(Mμν)α1β1γ1δ1 B

γ1δ1)

×(Bα2β2 †(Mμν)α2β2γ2δ2 B
γ2δ2)

+λ4

2
(Bα1β1 †(Sμν)α1β1γ1δ1 B

γ1δ1)

×(Bα2β2 †(Sμν)α2β2γ2δ2 B
γ2δ2), (2.1)

where Dμ = ∂μ + ieAμ is the covariant derivative, and the
tensors used are given by

Fμν = ∂μAν−∂ν Aμ, Tμν=gμν1αβγ δ − ig(Mμν)αβγ δ,

1αβγ δ=1

2
(gαγ gβδ−gαδgβγ ), χαβγ δ= i

2
εαβγ δ,

(Mμν)αβγ δ = −i(gμγ 1αβνδ + gμδ1αβγ ν

gγ ν1αβμδ − gδν1αβγμ),

(Sμν)αβγ δ=gμν1αβγ δ − gμγ 1αβνδ−gμδ1αβγ ν

gγ ν1αβμδ − gδν1αβγμ. (2.2)

The kinetic part of the Lagrangian is of Klein-Gordon type
and spin-1 information is encoded by a Pauli-like term mod-
ulated by an arbitrary gyromagnetic factor g and the four
independent quartic self-interactions that can be built from
the covariant basis for the (1, 0)⊕(0, 1) representation space,
given by the complete set of tensors presented in [8], namely
{1, χ, Mμν, Sμν, χ Sμν,Cμναβ} with

Cμναβ = 4{Mμν, Mαβ} + 2{Mμα, Mνβ}
−2{Mμβ, Mνα} − 16(1μναβ). (2.3)

In our analysis, the gauge freedom is fixed by the Rξ con-
tribution

LG.F. = − 1

2ξ
(∂μAμ)2 (2.4)

with arbitrary gauge fixing parameter ξ , rendering the com-
plete Lagrangian of the model as

L = −1

4
FμνFμν − 1

2ξ
(∂μAμ)2 + ∂μBαβ†∂μBαβ

−m2(Bαβ)†Bαβ

−ieAμ[Bαβ†(Tμν)αβγ δ∂
νBγ δ − (∂νBαβ†)

×(Tνμ)αβγ δB
γ δ] + e2AμAμB

αβ†Bαβ

+λ1

2
(Bαβ †1αβγ δB

γ δ)(Bμν †1μνρσ B
ρσ )

+λ2

2
(Bαβ †χαβγ δB

γ δ)(Bμν †χμνρσ B
ρσ )

+λ3

2
(Bα1β1 †(Mμν)α1β1γ1δ1 B

γ1δ1)

×(Bα2β2 †(Mμν)α2β2γ2δ2 B
γ2δ2)

+λ4

2
(Bα1β1 †(Sμν)α1β1γ1δ1 B

γ1δ1)

×(Bα2β2 †(Sμν)α2β2γ2δ2 B
γ2δ2). (2.5)

The Feynman rules corresponding to the above Lagrangian
are presented in Fig. 1, where all momenta are incoming.

The gauge invariance of the theory imposes two important
Ward-Takahashi identities (see [5] for their derivation in the
analogous spin 1/2 case). The first one relates the tensor–
tensor–photon (TTγ ) vertex function −ie�μ(q, p,−p−q),
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Fig. 1 Feynman rules of the model

where q is the momentum of the photon, with the tensor self-
energy −i�(p) according to

�μ(0, p,−p) = −∂�(p)

∂pμ

. (2.6)

The second one involves the tensor–tensor–photon–photon
(TTγ γ ) vertex ie2�μν(q, q ′, p, p′), with photon momenta
q and q ′, and the TTγ vertex, and reads

�μν(0, q ′, p, p′) = ∂�ν(q ′, p, p′)
∂pμ

+ ∂�ν(q ′, p, p′)
∂p′

μ

.

(2.7)

3 Renormalization

In this section, we analyze the renormalization properties of
the model at one-loop level, studying the UV divergent parts
of all the potentially divergent vertex functions. In this work,
we use dimensional regularization with d = 4 − 2ε and the

naive prescription for the chirality operator χ

[χ, Mμν] = 0, {χ, Sμν} = 0. (3.1)

This approach does not lead to inconsistencies as χ appears in
pairs for all the processes involved. The subtraction scheme
used in the study is the minimal subtraction (MS) one.

3.1 Counterterms

Taking Eq. (2.5) as the bare Lagrangian, with all bare quan-
tities denoted by a 0 subscript, its parameters are the tensor
mass m0, the tensor charge e0 and the gyromagnetic factor
g0. The renormalized fields are defined in terms of the bare
ones through

Aμ
r = Z

− 1
2

1 Aμ
0 , Bαβ

r = Z
− 1

2
2 Bαβ

0 . (3.2)

It is convenient to split the Lagrangian as the sum of two
terms

L0 = Lr + Lct , (3.3)
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where the first piece is the renormalized Lagrangian, and has
the same structure as Eq. (2.5)

Lr = −1

4
Fμν
r Fr μν − 1

2ξr
(∂μA

μ
r )2 + ∂μBαβ†

r ∂μBr αβ

−m2
r (B

αβ
r )†Br αβ

−ier A
μ
r [Bαβ†

r (Tr μν)αβγ δ∂
νBγ δ

r

−(∂νBαβ†
r )(Tr νμ)αβγ δ)B

γ δ
r ]

+e2
r A

μ
r Ar μB

αβ†
r Br αβ

+λr1

2
(Bαβ †

r 1αβγ δB
γ δ
r )(Bμν †

r 1μνρσ B
ρσ
r )

+λr2

2
(Bαβ †

r χαβγ δB
γ δ
r )(Bμν †

r χμνρσ B
ρσ
r )

+λr3

2
(Bα1β1 †

r (Mμν)α1β1γ1δ1 B
γ1δ1
r )

×(Bα2β2 †
r (Mμν)α2β2γ2δ2 B

γ2δ2
r )

+λr4

2
(Bα1β1 †

r (Sμν)α1β1γ1δ1 B
γ1δ1
r )

×(Bα2β2 †
r (Sμν)α2β2γ2δ2 B

γ2δ2
r ), (3.4)

and the second one contains the relevant counterterms

Lct = −1

4
δ1F

μν
r Fr μν + δ2[∂μBαβ†

r ∂μBr αβ

−m2
r (B

αβ
r )†Br αβ ] − δmm

2
r (B

αβ
r )†Br αβ

−ierδe A
μ
r [Bαβ†

r (Tr μν)αβγ δ∂
νBγ δ

r

−(∂νBαβ†
r )(Tr νμ)αβγ δB

γ δ
r ]

−ierδeg A
μ
r [Bαβ†

r (−igr )(Mμν)αβγ δ∂
νBγ δ

r

−(∂νBαβ†
r )(igr )(Mμν)αβγ δB

γ δ
r ]

+δe2e
2
r A

μ
r Ar μB

αβ†
r Br αβ + λr1

2
δλ1(B

αβ †
r 1αβγ δB

γ δ
r )

×(Bμν †
r 1μνρσ B

ρσ
r )

+λr2

2
δλ2(B

αβ †
r χαβγ δB

γ δ
r )(Bμν †

r χμνρσ B
ρσ
r )

+λr3

2
δλ3(B

α1β1 †
r (Mμν)α1β1γ1δ1 B

γ1δ1
r )

×(Bα2β2 †
r (Mμν)α2β2γ2δ2 B

γ2δ2
r )

+λr4

2
δλ4(B

α1β1 †
r (Sμν)α1β1γ1δ1 B

γ1δ1
r )

×(Bα2β2 †
r (Sμν)α2β2γ2δ2 B

γ2δ2
r ), (3.5)

with the following definitions

δ1 ≡ Z1 − 1, δ2 ≡ Z2 − 1, δm ≡ Zm − Z2, δe ≡ Ze − 1,

δeg ≡ Zeg − Ze, δe2 ≡ Ze2 − 1, δλ j ≡ Zλ j − 1, ξr ≡ Z−1
1 ξ0,

(3.6)

and

Zm ≡ m2
0

m2
r
Z2, Ze ≡ e0

er
Z

1
2
1 Z2, Zeg ≡ g0

gr
Ze,

Ze2 ≡ e2
0

e2
r
Z1Z2 Zλ j ≡ λ0 j

λr j
Z2

2. (3.7)

In d = 4−2ε dimensions, the renormalized parameters must
be scaled according to

er → μεer , gr → gr , λr i → μ2ελr i , mr → mr ,

(3.8)

where μ is the arbitrary scale introduced by dimensional reg-
ularization. In what follows, we will omit the r subscript for
the renormalized parameters. In this notation, the Feynman
rules for counterterms are given in Fig. 2.

In the following subsections, we will compile the results
obtained for the calculation of all the divergent processes
showing that all the divergencies can be absorbed success-
fully into the given set of counterterms provided by the the-
ory.

3.2 Vacuum polarization

There are two diagrams contributing to the vacuum polar-
ization, depicted in Fig. 3. The divergent piece, denoted by
−i�μν(q)∗ is given by

− i�μν(q)∗ = i
e2(2g2 − 1)

8π2ε
(q2gμν − qμqν), (3.9)

and can be removed in the MS scheme by fixing the coun-
terterm δ1 as

δ1 = e2(2g2 − 1)

8π2ε
. (3.10)

3.3 Tensor self-energy

In Fig. 4 are shown the three diagrams contributing to the
Tensor self-energy. The divergent part of this amplitude is

−i�∗
αβγ δ(p) = −i

32π2ε

{
m2

(
2e2g2 + e2ξ + 7λ1 + λ2

+8λ3 + 12λ4) − e2(ξ − 3)p2
}

1αβγ δ, (3.11)

and the counterterms that cancel the UV divergence are then
given by

δ2 = −e2(ξ − 3)

16π2ε
, (3.12)

δm = −e2
(
2g2 + 3

) + 7λ1 + λ2 + 8λ3 + 12λ4

16π2ε
. (3.13)
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Fig. 2 Feynman rules for the counterterms

Fig. 3 Feynman diagrams for
the vacuum polarization at
one-loop

Fig. 4 Feynman diagrams for
the Tensor self-energy at
one-loop

123
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Fig. 5 Feynman diagrams for
the γ γ γ vertex at one-loop

3.4 γ γ γ vertex

As expected, the contribution to the γ γ γ vertex from the
diagrams in Fig. 5 vanishes identically from the charge con-
jugation invariance of the theory.

3.5 TTγ vertex

The one-loop contribution to the TTγ vertex comes from the
four diagrams in Fig. 6. Its divergent piece can be written as

−ie�∗μ
αβγ δ(−p1 − p2, p1, p2)

= −i

[
e3(ξ − 3)

16π2ε

]
[Tμρ p

ρ
2 − Tρμ p

ρ
1 ]αβγ δ

−eg

[
e2

(
g2 + 2

) + λ1 + λ2 + 12λ3

16π2ε

]

×(pρ
1 + pρ

2 )(Mμρ)αβγ δ, (3.14)

and is canceled by the corresponding counterterm with

δe = −e2(ξ − 3)

16π2ε
, (3.15)

δeg = −e2
(
g2 + 2

) + λ1 + λ2 + 12λ3

16π2ε
. (3.16)

Notice that this result is consistent with the Ward identity

�∗μ(0, p,−p) = −∂�∗(p)
∂pμ

. (3.17)

as δe = δ2. Gauge invariance also fixes the counterterm
involved in the finiteness of the TTγ γ vertex, as Eq. (2.7)
dictates that

δe2 = δe = −e2(ξ − 3)

16π2ε
. (3.18)

3.6 TTγ γ vertex

There are 12 diagrams contributing to the TTγ γ vertex at
one-loop, as shown in Fig. 7. The corresponding divergent
piece is

ie2�
∗μν
αβγ δ = ie2

[
e2(ξ − 3)

8π2ε

]
1αβγ δg

μν, (3.19)

and, as anticipated from the Ward identities, the full TTγ γ

vertex becomes finite with δe2 given by Eq. (3.18).

3.7 γ γ γ γ vertex

The one-loop correction to the γ γ γ γ vertex involves 21 dia-
grams, shown in Fig. 8, and there is no counterterm available
to cancel a potential divergence in this case. By an explicit
calculation, we have found that the divergent piece of the
total amplitude vanishes exactly.

3.8 TTTT vertex

The last potentially divergent function is the TTTT vertex and
there are 19 diagrams contributing to the total amplitude, as
shown in Fig. 9. The divergent part of the TTTT vertex is

i�αβγ δμνρσ = 1

16π2ε

{
e4(3g4 − 8g2 + 6) + 2λ1

× (
e2(2g2 + ξ) + λ2 + 8λ3 + 12λ4

)

+11λ2
1 + 3λ2

2 − 8λ2λ4

}
(1αβγ δ1μνρσ + 1αβρσ 1μνγ δ)

+ 1

8π2ε

{
λ2

(
e2 (

2g2 + ξ
) + 4λ1 + 8λ3 − 8λ4

)

+8 (λ3 − λ4)
(
e2g2 + 3λ3 − 3λ4

)

+4λ2
2

}
(χαβγ δχμνρσ + χαβρσ χμνγ δ)

− 1

16π2ε

{
e2g2 (λ1 + λ2) + 2λ3

(
e2ξ + 4λ1 + 4λ2

)

+8λ2
3 − 24λ2

4

}
[Mκλ

αβγ δ(Mκλ)μνρσ + Mκλ
αβρσ (Mκλ)μνγ δ]

− 1

64π2ε

{
e4g4 + 8λ4

(
e2 (

2g2 − ξ
) − 4λ1 + 16λ3 − 8λ4

) }

×[Sκλ
αβγ δ(Sκλ)μνρσ + Sκλ

αβρσ (Sκλ)μνγ δ], (3.20)

and the corresponding counterterms that render the total
amplitude finite are given in the MS scheme by

δλ1 = − 1

16π2λ1ε

{
e4(3g4 − 8g2 + 6)

+2λ1
(
e2(2g2 + ξ) + λ2 + 8λ3 + 12λ4

)

+16
(
λ4(e

2g2 + 6λ3) + λ3(e
2g2 + 3λ3) + 6λ2

4

)

+11λ2
1 + 3λ2

2 − 8λ2λ4

}
, (3.21)

×δλ2 = − 1

8π2λ2ε

{
λ2

(
e2 (

2g2 + ξ
) + 4λ1 + 8λ3 − 8λ4

)

+8 (λ3 − λ4)
(
e2g2 + 3λ3 − 3λ4

) + 4λ2
2

}
, (3.22)

δλ3 = − 1

16π2λ3ε

{
e2g2 (λ1 + λ2)

+2λ3
(
e2ξ + 4λ1 + 4λ2

)

123
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Fig. 6 Feynman diagrams for
the TTγ vertex at one-loop

Fig. 7 Feynman diagrams for the TTγ γ vertex at one-loop

123
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Fig. 8 Feynman diagrams for the γ γ γ γ vertex at one-loop. There are 9 additional diagrams obtained from diagrams 1 − 9 reversing the arrow
direction in the loop

+8λ2
3 − 24λ2

4

}
, (3.23)

δλ4 = 1

64π2λ4ε

{
e4g4 + 8λ4

(
e2 (

2g2 − ξ
) − 4λ1

+16λ3 − 8λ4)
}
. (3.24)

3.9 Beta functions

From the results obtained in Eqs. (3.10,3.13,3.12,3.15,3.16,3.18,
3.21,3.22,3.23,3.24) and the definitions in Eqs. (3.6,3.7), the
relation between the bare and renormalized parameters of the

model is

e0 = Z
− 1

2
1 Z−1

2 Zeμ
εe, e2

0 = Z−1
1 Z−1

2 Ze2μ
2εe2,

λ0 j = Z−2
2 Zλ j μ

2ελ j ,

g0 = Z−1
e Zegg, m2

0 = Z−1
2 Zmm

2, (3.25)

The renormalization constants in the MS subtraction scheme
are

Z1 = 1 + e2(2g2 − 1)

8π2ε
, (3.26)

123
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Fig. 9 Feynman diagrams for the TTTT vertex at one-loop
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Z2 = Ze2 = Ze = 1 − e2(ξ − 3)

16π2ε
, (3.27)

Zλ1 = 1 − 1

16π2λ1ε

{
e4(3g4 − 8g2 + 6)

+2λ1

(
e2(2g2 + ξ) + λ2 + 8λ3 + 12λ4

)

+16
(
λ4(e

2g2 + 6λ3) + λ3(e
2g2 + 3λ3) + 6λ2

4

)

+11λ2
1 + 3λ2

2 − 8λ2λ4

}
, (3.28)

Zλ2 = 1 − 1

8π2λ2ε

×
{
λ2

(
e2

(
2g2 + ξ

)
+ 4λ1 + 8λ3 − 8λ4

)

+8 (λ3 − λ4)
(
e2g2 + 3λ3 − 3λ4

)
+ 4λ2

2

}
, (3.29)

Zλ3 = 1 − 1

16π2λ3ε

{
e2g2 (λ1 + λ2)

+2λ3

(
e2ξ + 4λ1 + 4λ2

)

+8λ2
3 − 24λ2

4

}
, (3.30)

Zλ4 = 1 + 1

64π2λ4ε

{
e4g4 + 8λ4

(
e2

(
2g2 − ξ

)

−4λ1 + 16λ3 − 8λ4)
}
, (3.31)

Zeg = Ze + δg = 1 − 1

16π2ε

{
e2(g2 + ξ − 1) + λ1

+λ2 + 12λ3

}
, (3.32)

Zm = Z2 + δm = 1 − 1

16π2ε

{
e2

(
2g2 + ξ

)
+ 7λ1

+λ2 + 8λ3 + 12λ4

}
. (3.33)

With the above results, the two different relations between
e0 and e in Eq. (3.25) become

e0 = Z−1/2
1 μεe. (3.34)

From Eqs. (3.25–3.33) one can derive the relevant beta
functions βη ≡ μ

∂η
∂μ

and anomalous dimensions γm ≡ μ
m

∂m
∂μ

of the theory in the ε → 0 limit:

βe =
e3

(
1 − 2g2

)

8π2 , (3.35)

βg = −
g

[
e2

(
g2 + 2

)
+ λ1 + λ2 + 12λ3

]

8π2 , (3.36)

βλ1 = 1

8π2

{
e4

(
−3g4 + 8g2 − 6

)
− 2λ1

(
e2

(
2g2 + 3

)

+λ2 + 8λ3 + 12λ4)

−16
(
λ4

(
e2g2 + 6λ3

)
+ λ3

(
e2g2 + 3λ3

)
+ 6λ2

4

)

−11λ2
1 − 3λ2

2 + 8λ2λ4

}
, (3.37)

βλ2 = − 1

4π2

{
λ2

(
e2

(
2g2 + 3

)
+ 4λ1 + 8λ3 − 8λ4

)

+8 (λ3 − λ4)
(
e2g2 + 3λ3 − 3λ4

)
+ 4λ2

2

}
, (3.38)

βλ3 = − 1

8π2

{
e2g2 (λ1 + λ2) + 2λ3

(
3e2 + 4λ1 + 4λ2

)

+8λ2
3 − 24λ2

4

}
, (3.39)

βλ4 = 1

32π2

{
e4g4 + 8λ4

(
e2

(
2g2 − 3

)

−4λ1 + 16λ3 − 8λ4)
}
, (3.40)

γm = − 1

16π2

{
e2

(
2g2 + 3

)
+ 7λ1 + λ2 + 8λ3 + 12λ4

}
.

(3.41)

We conclude this section with a short discussion of some
of the possible scenarios of the theory. There is a trivial fixed
point for the beta functions of the theory when g = 0, λ2 = 0,
λ3 = 0 and λ4 = 0. This fixed point corresponds to the limit
in which each component of the tensor Bμν behaves as a
complex scalar field in a λφ4 theory with λ1 = −λ/2. On the
other hand, the βλi are all nonzero for any non-vanishing real
value of the gyromagnetic factor g, even if all self interactions
are set to λi = 0, i = 1, . . . , 4. This means that, oppositely
to the spin 1/2 case studied in [6], pure electrodynamics
for matter fields of spin 1 is not viable for g �= 0, as self
interactions are necessary to make the theory renormalizable.
Finally, turning off the electromagnetic interactions by taking
e = 0 and g = 0, the theory reduces to a renormalizable
model of pure self-interacting terms for the tensor fields,
with

βλ1 = − 1

8π2

{
11λ2

1 + 2λ1 (λ2 + 8λ3 + 12λ4)

+3λ2
2 + 48λ2

3

−8λ2λ4 + 96λ4 (λ3 + λ4)
}
, (3.42)

βλ2 = − 1

π2

{
λ2

2 + λ1λ2 + 2λ2 (λ3 − λ4)

+6 (λ3 − λ4)
2
}
, (3.43)

βλ3 = 1

π2

{
3λ2

4 − λ3 (λ1 + λ2 + λ3)
}
, (3.44)

βλ4 = − 1

π2

{
λ4 (λ1 − 4λ3 + 2λ4)

}
, (3.45)

γm = − 1

16π2

{
7λ1 + λ2 + 8λ3 + 12λ4

}
. (3.46)

4 Summary and conclusions

In this work, we have studied the one-loop renormaliza-
tion of the electrodynamics of fields transforming under the
(1, 0) ⊕ (1, 0) representation of the HLG in the Poincaré
projector formalism. The analysis has been done in an arbi-
trary covariant gauge, with arbitrary gyromagnetic factor
and including all the independent parity conserving self-
interactions. The main conclusion of the work is that the

123



Eur. Phys. J. C (2020) 80 :618 Page 11 of 11 618

theory is renormalizable for any value of the gyromagnetic
factor, displaying a rich set of renormalization group equa-
tions. In contrast to the analogous spin 1/2 case studied in [6],
there is no non-trivial finite value for the gyromagnetic factor
that allows the existence of a pure electrodynamics without
the inclusion of self interactions.
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