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Abstract We construct models with the Gauss–Bonnet
term multiplied by a function of the scalar field leading to an
inflationary scenario. The consideration is related to the slow-
roll approximation. The cosmological attractor approach
gives the spectral index of scalar perturbations which is
in a good agreement with modern observation and allows
for variability of the tensor-to-scalar ratio. We reconstruct
models with variability of parameters, which allows one to
reproduce cosmological attractor predictions for inflationary
parameters in an approximation of the leading order of 1/N
in Einstein–Gauss–Bonnet gravity.

1 Introduction

The solution to the problems of horizon, smoothness, flat-
ness and monopoles, which are related with the hot big-bang
model, was proposed by the introduction of inflation [1–10].

The R2 inflationary predictions [11,12] in the leading
approximation in terms of the inverse e-folding number 1/N
for the spectral index ns and the tensor-to-scalar ratio r :

ns � 1 − 2

N
, r � 12

N 2 , (1)

are in good agreement with Planck 2018 data1 [13].

1 There exist two variants for the interpretation of the relation between

the time derivative and the e-folding number derivative: (1)
d

dt
=

H
d

dNe
and (2)

d

dt
= −H

d

dN
.

In the case of the first type formulation, the inflation interval in the e-
folding formulation is −65 < Ne < 0.
In the case of the second type formulation, the inflation interval in the e-
folding formulation is 0 < N < 65. The second formation was applied
in the cosmological attractor approximation [17–19] and we follow the
second formulation with N = − ln(a).
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The inflationary scenario motivated by the Standard
Model of particles physics, Higgs-driven inflation [14–16],
leads to the same prediction. Higgs-driven inflation belongs
to the class of cosmological attractors [17–19], which gen-
eralizes the prediction (1).

The cosmological attractor models predict the same val-
ues of observable parameters ns and r in the leading 1/N
approximation:

ns � 1 − 2

N + N0
, r � 12Cα

(N + N0)2 , (2)

where Cα and N0 � 60 are constants.
The Higgs-driven inflation was generalized to multi-field

inflationary scenarios [20–22], for which the cosmological
attractor approximation is appropriate [23,24].

At present, the interest in inflationary scenarios in the
cosmological models with Gauss–Bonnet term is growing
[25–35]. In the present paper, we construct a gravity model
with the Gauss–Bonnet term multiplied by a function of a
scalar field which allows one to reconstruct expressions for
the spectral index and the tensor-to-scalar ratio from cosmo-
logical attractor models in the slow-roll regime. This model
includes several constants with variable values. Therefore,
we construct a family of models with different values of the
constants. We consider the scalar power spectral amplitude
and estimate possible values of the model parameters using
modern observational data [13]

The paper is organized as follows. In Sect. 2, we reformu-
late the problem of the slow-roll regime in Einstein–Gauss–
Bonnet gravity in terms of e-folding numbers. In Sect. 3,
we apply our reformulation to construct a model with vari-
able values of parameters, which leads to the cosmological
attractor approximation for inflationary parameters. To sat-
isfy observational data we introduce a restriction to the model
parameters. In conclusion, we summarize our results.
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2 Slow-roll regime in Einstein–Gauss–Bonnet gravity

We consider the model with the Gauss–Bonnet term multi-
plied by a function of the scalar field φ:

S =
∫

d4x
√−g

[
R

2
− ∂νφ∂νφ

2
− V (φ) − ξ(φ)

2
G
]

, (3)

where G = Rμνρσ Rμνρσ − 4RμνRμν + R2. The model is
presented in Planckian units: h = c = 8πG = 1. Appli-
cation of the variation principe leads to the following sys-
tem of equations [35] in spatially flat FLRW metric with
ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2):

6H2 = φ̇2 + 2V + 24ξ̇H3, (4)

2Ḣ = − φ̇2 + 4ξ̈H2 + 4ξ̇H
(

2Ḣ − H2
)

, (5)

φ̈ + 3H φ̇ + V,φ + 12ξ,φH
2
(
Ḣ + H2

)
= 0, (6)

where H = ȧ/a, the dot means the derivative of time: Ȧ =
d A/dt . We consider the model (3) in FLRW metric in the
slow-roll regime [35]:

φ̇2 � V, |φ̈| � 3H |φ̇|, 4|ξ̇ |H � 1, |ξ̈ | � |ξ̇ |H , (7)

in which of the equations of motion are

H2 � V

3
, Ḣ � − φ̇2

2
− 2ξ̇H3, φ̇ � −V,φ + 12ξ,φH4

3H
. (8)

The slow-roll parameters are

ε1 = − Ḣ

H2 , εi+1 = d ln |εi |
d ln a

, i ≥ 1, (9)

δ1 = 4ξ̇H, δi+1 = d ln |δi |
d ln a

, i ≥ 1. (10)

To get a cosmological attractor generalization we consider
the model in the slow-roll regime using the e-folding number
representation and the designation A′ = dA/dN :

(φ′)2 � V ′

V
+ 4

3
ξ ′V =

(
H2

)′

H2 + 4H2ξ ′. (11)

We present the slow-roll parameters in terms of H2 and ξ :

ε1 = 1

2

(H2)′

H2 , (12)

ε2 = (H2)′

H2 − (H2)′′

(H2)′
= 2ε1 − (H2)′′

(H2)′
, (13)

δ1 = −4H2ξ ′, (14)

δ2 = − (H2)′

H2 − ξ ′′

ξ ′ = −2ε1 − ξ ′′

ξ ′ . (15)

The slow-roll approximation requires |εi | � 1, |δi | � 1.

The question of the restrictions to inflation scenarios
related with the speed of sound in Einstein–Gauss–Bonnet

gravity was considered in [36]. There are wonderful prop-
erties of the slow-roll regime: the speed of sound is real.
According to [37] the speed of sound square can be repre-
sented in the form c2

A = 1 + �c2
A, where

�c2
A = − 2δ2

1ε1

3δ2
1 + 2(2ε1 − δ1)(1 + δ1)

. (16)

In the general case of the slow-roll regime

�c2
A � −(δ2

1ε1)/(2ε1 − δ1) � 1.

If 2ε1 ≈ δ1, then �c2
A � −2ε1/3 � 1. Thus, we can con-

clude that c2
A > 0 in the slow-roll regime.

In [35] the spectral index of scalar perturbations and the
tensor-to-scalar ratio are represented in terms of the slow-roll
parameters:

ns = 1 − 2ε1 − 2ε1ε2 − δ1δ2

2ε1 − δ1
, (17)

r = 8|2ε1 − δ1|, (18)

and the expression for the amplitude [34] in terms of infla-
tionary parameters is as follows:

As � 2H2

π2r
. (19)

We simplify the expression for the spectral index of scalar
perturbations (17) remembering that ε2 = −ε′

1/ε1, δ2 =
−δ′

1/δ1 and tensor-to-scalar ratio (18) using (11). So, the
inflationary parameters can be represented in the following
form:

ns = 1 − 2ε1 + r ′

r
, (20)

r = 8|2ε1 − δ1| = 8

(
(H2)′

H2 + 4H2ξ ′
)

= 8(φ′)2 . (21)

3 Generalization of the cosmological attractor method

According to the inflationary parameters of cosmological–
attractor models without the Gauss–Bonnet term (2) the spec-
tral index includes only a logarithmic derivative of the tensor-
to-scalar ratio

r ′

r
= − 2

N + N0
, and ns ≈ 1 + r ′

r
(22)

in the leading order of 1/N approximation. The model with-
out the Gauss–Bonnet term and the exponential potential
leading to (2) was considered in [38]. In the next subsection
we generalize this model to Einstein–Gauss–Bonnet gravity.

3.1 Exponential form

To generalize the cosmological attractor approximation to
inflationary models with Gauss–Bonnet term we compare
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(21) with (2):

r

8
= (H2)′

H2 + 4H2ξ ′ = 3Cα

2(N + N0)2 . (23)

For simplicity we suppose that all terms in this equation are
proportional to 1/(N+N0)

2 and get the same approximation
of the slow-roll parameter ε1 in leading order in 1/N :

H2 = H2
0 exp

(
− 3Cβ

2(N + N0)

)
, (24)

ξ = ξ0 exp

(
3Cβ

2(N + N0)

)
, (25)

where Cβ is a constant. We substitute (24), (25) into (23) and
get

r

8
= 3Cβ

2(N + N0)2

(
1 − 4ξ0H

2
0

)
, (26)

fixing a relation between Cα and Cβ :

Cβ = Cα

1 − 4ξ0H2
0

, H2
0 �= 1

4ξ0
. (27)

Accordingly (21) the derivative of the field is related with the
e-folding number:

(φ′)2 = 3Cα

2(N + N0)2 ; φ′ =
ωφ

√
3Cα

2

N + N0
, ωφ = ±1, (28)

and thus

φ = ωφ

√
3Cα

2
ln

(
N + N0

Nφ

)
, (29)

N + N0 = Nφ exp

(
ωφ

√
2

3Cα

φ

)
. (30)

Using (8), (24) and (30) we construct the family of models
with the Gauss–Bonnet interaction and potential with vari-
able parameter Cα:

V = 3H2
0 exp

(
−3

2

Cβ

Nφ

exp

(
−ωφ

√
2

3Cα

φ

))
, (31)

ξ = ξ0 exp

(
3

2

Cβ

Nφ

exp

(
−ωφ

√
2

3Cα

φ

))
, (32)

leading to appropriate inflationary scenarios. This model is
a generalization of the general relativity model obtained in
[38].

We would like to compare inflationary parameters of the
obtained model (32) with inflationary parameters of the fol-
lowing model:

V = 3H2
0

(
1 − 3Cβ

4Nφ

exp

(
−ωφ

√
2

3Cα

φ

))2

, (33)

ξ = ξ0

(
1 − 3Cβ

4Nφ

exp

(
−ωφ

√
2

3Cα

φ

))−2

. (34)

In this model the relation between e-folding numbers and
field values is different from (30) and can be presented in the
form

N + N0

Nφ

= exp

(
ωφ

√
2

3Cα

φ

)
− 3

4

Cβ

Nφ

ωφ

√
2

3Cα

φ, (35)

φ = −ωφ

√
3Cα

2

(
LambertW

(
− 4Nφ

3Cβ
exp

(
− 4N

3Cβ

))
+ 4N

3Cβ

)
.

Here we should note that, if ωφ = +1, then

exp

(
ωφ

√
2

3Cα

φ

)
− 3

4

Cβ

Nφ

ωφ

√
2

3Cα

φ�exp

(
ωφ

√
2

3Cα

φ

)

in the large field expansion and Eq. (35) can be roughly
approximated by (30).

3.2 Inflationary parameters

In this subsection, we get the expressions for the inflationary
parameters in terms of the fields. The tensor-to-scalar ratio
and the spectral index of scalar perturbations can be presented
in the following form [35]:

r = 8Q2, ns = 1 − Q
Vφ

V
+ 2Q,φ, (36)

where Q = V,φ/V + 4ξ,φV /3. We consider (32) and (34)
to check the correspondence of the expression for the infla-
tionary parameters. In the comparative analysis we suppose
Nφ = 3Cβ/4 and ωφ = 1 for simplicity and consider the
models

1. V = 3H2
0 exp

(
−2 exp

(
−

√
2

3Cα

φ

))
,

ξ = ξ0 exp

(
2 exp

(
−

√
2

3Cα

φ

))
, (37)

and

2. Ṽ = 3H2
0

(
1 − exp

(
−

√
2

3Cα

φ

))2

,

ξ̃ = ξ0

(
1 − exp

(
−

√
2

3Cα

φ

))−2

. (38)

We use (36) to calculate the inflationary parameters for the
model (37),

1. ns − 1 =
8
(
4H2

0 ξ0 − 1
)

exp
(
−

√
2

3Cα
φ
) (

1 + exp
(
−

√
2

3Cα
φ
))

3Cα

,
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r = 64
(
4 H0

2ξ0 − 1
)2

3Cα

exp

(
−2

√
2

3Cα

φ

)
,

and for the model(38) (39)

2. ñs − 1 =
8
(
4H0

2ξ0 − 1
)

exp
(
−

√
2

3Cα
φ
) (

1 + exp
(
−

√
2

3Cα
φ
))

3Cα

(
1 − exp

(
−

√
2

3Cα
φ
))2 ,

r̃ =
64

(
4 H0

2ξ0 − 1
)2

exp
(
−2

√
2

3Cα
φ
)

3Cα

(
1 − exp

(
−

√
2

3Cα
φ
))2 . (40)

In the case of a large field φ the expressions for r and r̃
coincide up to second order, the expressions for ns and ñs
coincide up to first order of exp

(
−

√
2

3Cα
φ
)

. The precision

coincides with the sensibility of the cosmological attractor
approximation (2). To satisfy the proposal’s sensibility we
can write

ns � 1 + 8
(
4H2

0 ξ0 − 1
)

3Cα

exp

(
−

√
2

3Cα

φ

)
,

r � 64
(
4H2

0 ξ0 − 1
)2

3Cα

exp

(
−2

√
2

3Cα

φ

)
.

According to (27) these relations can be represented in the
forms

ns � 1 − 2

Nφ

exp

(
−

√
2

3Cα

φ

)
,

r � 12Cα

N 2
φ

exp

(
−2

√
2

3Cα

φ

)
,

which are fully in correspondence to (2).

3.3 Restriction to the model parameters

According to the Planck data [13] the values of the scalar
spectral index and the restriction to the tensor-to-scalar ratio
are ns ≈ 0.965 ± 0.004 and r < 0.056. The value of the
scalar power spectrum amplitude is As ≈ 2 · 10−9.

The considered inflationary models with the Gauss–
Bonnet interaction can be represented more precisely, namely,
to satisfy condition ε1(N � 0) ≈ 1 we should suppose
N0 = √

3Cβ/4. To follow the notations of [38] we should
suppose N0 = 1 and Cβ = 4/3.

According to (2) the highest value of the constant Cα is
related with modern observations’ restriction to the tensor-
to-scalar ratio r and the value of e-folding number at the
beginning of inflation. At the same time the start point of
inflation defines the value of the spectral index of scalar per-
turbations. We numerically estimate the value of the model
parameters using (2) and suppose that the inflation begins:

1. at N ≈ 55 − N0 before the end of inflation: ns ≈ 0.964
and 0 ≤ Cα < 14.1;

2. at N ≈ 60 − N0 before the end of inflation: ns ≈ 0.967
and 0 ≤ Cα < 16.7;

3. at N ≈ 65 − N0 before the end of inflation: ns ≈ 0.969
and 0 ≤ Cα < 19.6.

To get an expression for the scalar power spectrum amplitude
we substitute (23) and (24) into (19):

As � H2
0 (N + N0)

2

6π2Cα

exp

(
− 3Cβ

2(N + N0)

)
(41)

= H2
0 (N + N0)

2

6π2Cα

exp

(
− 2N 2

0

N + N0

)
, (42)

from which we have

H2
0

Cα

= 6π2As

(N + N0)2 exp

(
2N 2

0

N + N0

)
. (43)

To estimate H2
0 /Cα we suppose N0 ≈ 1 in three cases:

1. if the start point of inflation N ≈ 54, then H2
0 /Cα ≈

4.09 · 10−11;
2. if the start point of inflation N ≈ 59, then H2

0 /Cα ≈
3.40 · 10−11;

3. if the start point of inflation N ≈ 64, then H2
0 /Cα ≈

2.90 · 10−11.

To estimate the relation between the model parameters ξ0 and
Cα we use Eq. (27)

ξ0 = 1

4

(
1

Cα

− 1

Cβ

) (
H2

0

Cα

)−1

= 1

4

(
1

Cα

− 3

4

) (
H2

0

Cα

)−1

in three cases:

1. if the start point of inflation N ≈ 54, then ξ0 ≈(
C−1

α − 3/4
)

6.10 · 109;
2. if the start point of inflation N ≈ 59, then ξ0 ≈(

C−1
α − 3/4

)
7.35 · 109;

3. if the start point of inflation N ≈ 64, then ξ0 ≈(
C−1

α − 3/4
)

8.62 · 109.

The value of the parameter ξ0 is positive if Cα > 4/3; is 0 if
Cα = 4/3; is negative if Cα < 4/3.

4 Conclusion

We use the equations of Einstein–Gauss–Bonnet gravity in
the Friedmann universe and inflationary parameters in terms
of the e-folding number for the slow-roll regime. With the
help of this formulation, we obtain gravity models with the
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Gauss–Bonnet term leading to analytical expressions of the
inflationary parameters coinciding with inflationary param-
eters of cosmological attractor models in the leading order
approximation. The model is a generalization to the cosmo-
logical attractor of exponential form initially proposed for
general relativity [38]. We consider the possible expansion
of our models for a large field. We calculate and compare the
inflationary parameters for the two models’ estimated order
of accuracies for the large field expansion.

Within the framework of the model we obtain an analyti-
cal expression for the scalar power spectrum amplitude. We
estimate the model constants using observation data for the
value of scalar power spectrum amplitude, the spectral index
of scalar perturbations and the tensor-to-scalar ratio. We plan
to apply our approach to a consideration of more complicated
models with Gauss–Bonnet term and use the effective poten-
tial proposed in [39]. For future refinement, it should be noted
that the representation of ns up to second order in 1/N may
lead to better agreement with modern observations [13]. Also
the consideration can be expand to another types of relation
between of tensor-to-scalar ratio and e-folding number, for
example r ∼ (N + N0)

−1 [40].
The paper is partly supported by RFBR Grant 18-52-

45016.
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