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Abstract Poincaré gauge theories provide an approach to
gravity based on the gauging of the Poincaré group, whose
homogeneous part generates curvature while the translational
sector gives rise to torsion. In this note we revisit the stability
of the widely studied quadratic theories within this frame-
work. We analyse the presence of ghosts without fixing any
background by obtaining the relevant interactions in an exact
post-Riemannian expansion. We find that the axial sector of
the theory exhibits ghostly couplings to the graviton sector
that render the theory unstable. Remarkably, imposing the
absence of these pathological couplings results in a theory
where either the axial sector or the torsion trace becomes
a ghost. We conclude that imposing ghost-freedom generi-
cally leads to a non-dynamical torsion. We analyse however
two special choices of parameters that allow a dynamical
scalar in the torsion and obtain the corresponding effective
action where the dynamics of the scalar is apparent. These
special cases are shown to be equivalent to a generalised
Brans–Dicke theory and a Holst Lagrangian with a dynam-
ical Barbero–Immirzi pseudoscalar field respectively. The
two sectors can co-exist giving a bi-scalar theory. Finally,
we discuss how the ghost nature of the vector sector can be
avoided by including additional dimension four operators.

1 Introduction

One of the most appealing approaches to gravity is the
use of a gauge guiding principle to construct theories in a
somewhat analogous manner to the celebrated Yang-Mills
theories. As first proposed by Sciama and Kibble [1,2], a
natural group for this task is Poincaré, conformed by the
homogeneous Lorentz group SO(3, 1) supplemented with
spacetime translations. This inhomogeneous piece is then
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responsible for a number of interesting consequences, one
of which is the appearance of torsion as the field strength
of translations, while the Riemann curvature is associated
to the homogeneous part. For an extensive review of these
theories see e.g. [3–5]. Another interesting gauge approach
to gravity is based on the observation that the transla-
tions are non-linearly realised so one can use the standard
coset construction applied to the translations regarded as
the quotient I SO(3, 1)/SO(3, 1). See for instance [6] for
interesting applications of this idea to gravitational sys-
tems.

Since the inception of the Poincaré Gauge Theories
(PGTs), the different attempts to generalise the proper-
ties and theorems of General Relativity (GR) have been
a very active field. Paradigmatic examples include the
study of singularities [7–11], the Birkhoff theorem [12–
14], existence of exact solutions [15–20], cosmology [21–
26], the motion of particles [27,28] and stability analysis
[29–35]. Unveiling the fields content along with their sta-
ble/unstable nature is of course one of the most impor-
tant questions for the viability of the theories with a
crucial impact on the reliability of their phenomenol-
ogy. The main goal of this work will be to provide an
exhaustive analysis of the PGTs from a different approach
to the existing studies in the literature as well as giv-
ing a complementary and comprehensive understanding of
their properties. As opposed to the perhaps more exten-
sively used Lorentz bundle approach resorting to vier-
bein fields, we will work directly in the metric formula-
tion. Thus, the fundamental fields will be the metric ten-
sor gμν , with 10 components in four dimensions, and the
24 components of the torsion that can be decomposed
as

T α
μν = 2

3
T[μδα

ν] + 1

6
εα

μνρ Sρ + qα
μν, (1)
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with Tμ = T α
μα , Sμ = εμαβγ T αβγ and qα

μν the trace, the
axial part1 and the tensor component of the torsion that sat-
isfies qα

αμ = q[αμν] = 0 respectively. These three pieces
are irreducible under the Lorentz group as real representa-
tions and correspond to ( 1

2 , 1
2 ), ( 1

2 , 1
2 ) and ( 3

2 , 1
2 ) ⊕ ( 1

2 , 3
2 )

respectively [36]. The properties and stability of these dif-
ferent fields will depend on the particular action describ-
ing their dynamics. In this respect, it is common to restrict
to the so-called quadratic PGTs whose action is composed
by the most general expression up to quadratic terms in the
field strengths, i.e., the curvature and the torsion. The moti-
vation comes from usual Yang-Mills theories that are also
constructed with quadratic terms in the field strengths of
the gauge fields. Most studies on the stability in this theory
have been performed by analysing the perturbative spectrum
on a Minkowski background [29,30,34,35]. These analy-
ses concluded that the corresponding spectrum contains one
massless spin-2, two massive spin-2, two massive spin-1 and
two spin-0 fields. Already in [29] it was shown that, in a
Minkowski spacetime, all of these components cannot prop-
agate simultaneously without incurring pathologies. In par-
ticular, it was proven that the absence of ghosts and tachyons
restrains the spectrum to contain at most three propagating
components, among other restrictions on the parameters of
the theory. The authors in [32,33] performed a more complete
hamiltonian analysis of PGTs (see also a more recent analy-
sis in [37]) signalling that the introduction of non-linearities
would impose further more stringent constraints. Moreover,
they showed that the only modes that could propagate were
two scalars with different parity. We shall arrive at the same
conclusion from a different path.

Irrespectively of the particular action describing the the-
ory, the general spectrum of PGTs looks worrisome because
of the presence of the two additional massive spin-2 fields that
are presumably going to interact non-trivially among them-
selves and with the graviton. Given the delicate structure
of the allowed unitary interactions for multiple spin-2 fields
[38], one may expect the appearance of Boulware–Deser
ghosts [39] in the full theory, unless much care is taken in
constructing the interactions. Furthermore, the massive spin-
1 fields can also cause some ghost-like instabilities, except
if the derivative interactions guarantee the non-dynamical
nature of the temporal components as to avoid the associated
Ostrogradski instabilities. Although the spin-1 sector is less
prone to pathologies, as well as more flexible regarding the
construction of interacting theories than the spin-2 sector, we
will find that the absence of ghosts in the spin-1 sector in turn
suffices to dramatically reduce the parameter space for stable

1 The axial part is described by an axial vector in 4 dimensions, while
in arbitrary dimensions d it is given in terms of a (d − 3)-form. Since
this is dual to a 3-form in d dimensions, the axial part can always be
described by means of a 3-form.

PGTs. As a matter of fact, we will see how GR stands out once
more as one of the very few non-pathological theories. We
will only find an additional class of non-pathological theo-
ries that secretly describes a generalised Brans–Dicke theory
and the Holst formulation of GR where the Barbero–Immirzi
parameter is promoted to a pseudo-scalar field.

In order to analyse the stability of the quadratic PGTs in
full generality, we will follow a procedure without fixing any
background and without having to perform a detailed hamil-
tonian analysis. More specifically, this approach consists in
performing an exact post-Riemannian expansion that unveils
all the interactions among the different sectors in a recognis-
able form. Knowing the pathological origin of the interac-
tions, mainly the non-minimal couplings, will then permit us
to easily pinpoint the problematic terms in the action that will
jeopardise the stability by introducing Ostrogradski ghosts.
This analysis will show in a very transparent manner the
general pathological character of the quadratic PGTs and the
origin of the instabilities. We will then show how to suitably
choose the parameters to obtain viable theories. Furthermore,
we shall argue how to construct PG Lagrangians that allow
a healthy propagation of the vectors while avoiding ghost
instabilities by including additional dimension 4 operators.

Conventions The metric signature is (− + ++) and the
Riemann tensor is defined as Rμνβ

α = 2∂[ν
α
μ]β +· · · , while

the Ricci tensor is Rμν = Rμαν
α . We will denote objects

associated to the Levi-Civita connection with a bar while
standard notation will be used for objects associated to the
full connection. Symmetrisation and antisymmetrisation are
defined with the customary normalisation factors. The torsion
will then be T α

μν = 2
α [μν] = 
α
μν − 
α

νμ.

2 Quadratic Poincaré gauge theories

2.1 The theory

The parity preserving PGTs under consideration in this work
are described by the Lagrangian

LPG =1

2
M2

Pl

(
R + a1TμνρT μνρ + a2TμνρT νρμ + a3TμT μ

)

+ b1 R2 + b2 Rμνρσ Rμνρσ + b3 Rμνρσ Rρσμν

+ b4 Rμνρσ Rμρνσ + b5 Rμν Rμν + b6 Rμν Rνμ, (2)

with M2
Pl the Planck mass and ai and bi some dimension-

less parameters. Our approach will consist in performing an
exact post-Riemannian expansion where the connection is
decomposed into the Levi-Civita part of the spacetime met-
ric 
̄α

μν(g) plus the contorsion contribution as


α
μν = 
̄α

μν + K α
μν, (3)
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where

K α
μν = 1

2

(
T α

μν + Tμ
α

ν + Tν
α

μ

)
. (4)

This decomposition can be plugged into the Lagrangian (2)
so we can unveil the presence of pathological terms in a back-
ground independent approach just by looking at the interac-
tions of the different torsion components. In order to avoid
ghosts already for the graviton when the torsion is turned off,
we will impose the recovery of the Gauss–Bonnet term in the
limit of vanishing torsion. In four dimensions this amounts
to using the topological nature of the Gauss–Bonnet term to
remove one of the parameters. More explicitly, we have

LPG
∣∣
T =0 = 1

2
M2

Pl R̄ +
(

b2 + b3 + b4

2

)
R̄μνρσ R̄μνρσ

+ (b5 + b6) R̄μν R̄μν + b1 R̄2, (5)

so the Gauss–Bonnet term for the quadratic sector is recov-
ered upon requiring

b5 = −4b1 − b6, b4 = 2(b1 − b2 − b3), (6)

that we will assume from now on unless otherwise stated. The
parameter b1 will play the role of the coupling constant for
this Gauss–Bonnet term. In d = 4 dimensions this parameter
is irrelevant, but it is important for d > 4.

2.2 Ghosts in the vector sector

We will start by looking at the vector sector containing the
trace Tμ and the axial component Sμ of the torsion, whereas
we will neglect the pure tensor piece for now. If we plug (3)
into the Lagrangian (2) we obtain

Lv = −2

9

(
κ − β

)
TμνT μν + 1

72

(
κ − 2β

)
SμνSμν

+1

2
m2

T T 2 + 1

2
m2

S S2 + β

81
S2T 2

+4β − 9b2

81

[
(SμT μ)2 + 3SμSν∇̄μTν

]
+ β

54
S2∇̄μT μ

+β − 3b2

9
SμT ν∇̄μSν + β − 3b2

12
(∇̄μSμ)2

+ β

36

(
2Ḡμν SμSν + R̄S2

)
, (7)

where Tμν = 2∂[μTν] and Sμν = 2∂[μSν] are the field
strengths of the trace and axial vectors respectively and we
have defined

κ = 4b1 + b6 , (8)

β = b1 + b2 − b3 , (9)

m2
T = −1

3

(
2 − 2a1 + a2 − 3a3

)
M2

Pl , (10)

m2
S = 1

24

(
1 − 4a1 − 4a2

)
M2

Pl. (11)

To arrive at the final expression in (7) we have used the
Bianchi identities to eliminate terms containing R̄μνρσ εανρσ

and express R̄μνρσ R̄μρνσ = 1
2 R̄μνρσ R̄μνρσ . We have also

dropped the Gauss–Bonnet invariant of the Levi-Civita con-
nection and the total derivative εμναβSμνT αβ . Furthermore,
we have performed a few integrations by parts and used the
commutator of covariant derivatives. Let us notice that the
parameter b1 does not play any role and can be freely fixed
because it simply corresponds to the irrelevant Gauss–Bonnet
coupling constant.

The Lagrangian (7) features some interesting properties.
Firstly, if we look at the pure trace sector Tμ, we see that it
does not exhibit non-minimal couplings. This is an acciden-
tal property in four and lower dimensions, while in higher
dimensions the trace vector does couple to the curvature. To
show this property more explicitly, the Lagrangian for the
pure trace sector in an arbitrary dimension d is given by

Ld
T = − d − 2

(d − 1)2

(
d − 2

2
κ − β

)
TμνT μν + 1

2
m2

T (d)T 2

+b1
(d − 4)(d − 3)(d − 2)

(d − 1)3

×
[(

T 4 − 4T 2∇̄μT μ
)

+ 4
d − 1

d − 2
ḠμνT μT ν

]
(12)

with

m2
T (d) = 1

1 − d

[
(d − 2)− 2a1 + a2 + (1 − d)a3

]
M2

Pl. (13)

As advertised, all the interactions trivialise2 in d = 4 dimen-
sions. It is remarkable however that the non-gauge-invariant
derivative interaction T 2∇̄μT μ is of the vector-Galileon type
and the non-minimal coupling is only to the Einstein tensor,
which is precisely one of the very few ghost-free couplings to
the curvature for a vector field (see e.g. [40]). The obtained
result agrees with the findings in [41,42] where a general
connection determined by a vector field that generates both
torsion and non-metricity was considered. The decoupled
trace sector of the PGTs coincides with the connection con-
sidered there in the relevant quadratic curvature terms for the
particular case without non-metricity.

Let us now return to the full vector sector. Unlike the tor-
sion trace, the axial component Sμ exhibits very worrisome
terms that appear in three forms:

– The perhaps most evidently pathological term is (∇̄μSμ)2

that introduces a ghostly dof associated to the temporal
component3 S0, so we need to get rid of it by impos-

2 Notice that b1 controls the Gauss–Bonnet term also for arbitrary
dimension d, so the trace interactions only contribute if the Gauss–
Bonnet is also present, which is dynamical for d > 4.
3 Let us remark that, although it looks like a usual gauge-fixing term,
it is fully physical in the present case where there is no U (1) gauge
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ing β = 3b2. This constraint has already been found in
the literature in order to guarantee a stable spectrum on
Minkowski.

– The non-minimal couplings to the curvature, though
less obviously than (∇̄μSμ)2, are also known to lead to
ghostly dof’s [43–46]. The presence of these instabilities
are apparent in the metric field equations where again
the temporal component will enter with second deriva-
tives, thus revealing its problematic dynamical nature.
As mentioned above, an exception is the coupling to the
Einstein tensor that avoids generating second derivatives
of the temporal component thanks to its divergenceless
property. For this reason we have explicitly separated the
non-minimal coupling to the Einstein tensor in (7). It is
therefore clear that we need to impose the additional con-
straint β = 0 to guarantee the absence ghosts, which, in
combination with the above condition β = 3b2, results
in β = b2 = 0.

– In addition to the two previous worrisome terms, there are
other interactions with a generically pathological charac-
ter schematically given by S2∇T and ST ∇S. Although
these may look like safe vector Galileon-like interactions,
the fact that they contain both sectors actually makes
them dangerous. This can be more easily understood by
introducing Stückelberg fields and taking an appropriate
decoupling limit, so we effectively have Tμ → ∂μT and
Sμ → ∂μS with T and S the scalar and pseudo-scalar
Stückelbergs. The interactions in this limit become of
the form (∂S)2∂2T and ∂T ∂S∂2T that, unlike the pure
Galileon interactions, generically give rise to higher order
equations of motion and, therefore, Ostrogradski insta-
bilities.4 We will show the problematic nature of these
interactions in the explicit example given in Sect. 2.4.

The additional constraint β = 0 conforms the crucial
obstruction for stable PGTs. Let us notice first that this new
constraint genuinely originates from the quadratic curvature
interactions in the PGT Lagrangian that induces the non-
minimal couplings between the axial sector and the gravi-
tons, as well as the problematic non-gauge-invariant deriva-
tive interactions. Moreover, it cannot be obtained from a per-
turbative analysis on a Minkowski background because, in
that case, these interactions will only enter at cubic and higher
orders so that the linear analysis is completely oblivious to
it.

Footnote 3 continued
symmetry. Consequently, this term makes the temporal component
propagate and gives rise to a ghost that cannot be removed from the
spectrum by restricting the Hilbert space on the grounds of a gauge
symmetry.
4 It is not difficult to check that an interaction for two scalars φ and ψ

of the form Kμν(∂φ, ∂ψ)∂μ∂νφ only avoids Ostrogradski instabilities
if K00 does not contain time-derivatives of the scalars.

We can see that the two stability conditions not only
remove the obvious pathological interactions aforemen-
tioned, but they actually eliminate all the interactions and
only leave the free quadratic part

Lv
∣∣
b2,β=0 = −2

9
κTμνT μν + 1

2
m2

T T 2 + 1

72
κSμνSμν

+1

2
m2

S S2 (14)

where we see that crucially the kinetic terms for Tμ and Sμ

have the same normalisation but with opposite signs, thus sig-
nalling the unavoidable presence of a ghost. We are then led to
the only stable possibility of exactly cancelling both kinetic
terms and, consequently, the entire vector sector becomes
non-dynamical.

2.3 Including the tensor sector

After showing that the vector sector must trivialise in stable
PGTs, we can return to the full torsion scenario by includ-
ing the pure tensor sector qα

μν . Instead of using the general
decomposition (1), it is more convenient to work with the
torsion directly for our purpose here. We can perform the
post-Riemannian decomposition for the theories with a sta-
ble vector sector to obtain

Lstable = 1

2
M2

Pl R̄ + b1G

+1

2
M2

Pl

(
a1TμνρT μνρ + a2TμνρT νρμ + a3TμT μ

)
.

(15)

The first term is just the usual Einstein–Hilbert Lagrangian,
while the second term corresponds to the topological Gauss–
Bonnet invariant for a connection with torsion, so we can
safely drop it in four dimensions and, consequently, the first
two terms in the above expression simply describe GR. The
rest of the expression clearly shows the non-dynamical nature
of the full torsion so that having a stable vector sector also
eliminates the dynamics for the tensor component, thus mak-
ing the full connection be an auxiliary field. We can straight-
forwardly integrate the connection out and, similarly to the
Einstein–Cartan theories, the resulting effect will be the gen-
eration of interactions for fermions that couple to the axial
part of the connection. From an EFT perspective, the effect
will simply be a shift in the corresponding parameters of those
interactions with no observable physical effect whatsoever.

2.4 Explicit example

The exact post-Riemannian expansion of the quadratic PGTs
has unveiled the generic presence of ghosts and how their
avoidance results in the trivialisation of the whole torsion
sector. We will now show how the ghosts appear and we will
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rederive the same conclusions by working out an explicit
example. This is important to guarantee the absence of hid-
den constraints that could secretly render the theory stable
even if the Lagrangian contains dangerous-looking operators.
In this respect, it is important to bear in mind that worrisome
terms can be generated from perfectly healthy interactions
via field redefinitions (see e.g. the related discussion in [47])
so we must make sure that the terms arising in the quadratic
PGTs do not correspond to some obscure formulation of well-
behaved theories. There is no obvious reason to expect any
such mechanism at work for PGTs and in fact we will demon-
strate that this is not the case in a very simple setup.

In order to prove the dynamical nature of S0 we will con-
sider a homogeneous vector sector on a cosmological back-
ground described by the FLRW metric5

ds2 = a2(t)
(
−dt2 + dx2

)
. (16)

The tensor sector is kept trivial so we only care about the
vector components. It is straightforward to see from (7) that
T0 is always an auxiliary field. Its equation of motion for the
considered configuration is given by

0 =
[
−27m2

T a2 + 2(β − 3b2)S0 + 2

3
βS2

z

]
T0

+2

3
(9b2 − 4β)S0S · T + 6(3b2 − β)H S2

0

−2βHS2 + 3

2
(3b2 − 2β)(S2

0 )′ + β

2
(S2)′, (17)

so we can solve for it and integrate it out from the action. After
performing a few integrations by parts and choosing T and S
aligned with the z−axis, we can compute the corresponding
Hessian from the resulting Lagrangian, whose cumbersome
form is not very illuminating so we omit it here. The expres-
sion for the Hessian is rather simple and reads

Hi j = δSB

δ Ẋiδ Ẋ j
=

⎛
⎝

λ1 λ̃ 0
λ̃ λ2 0
0 0 8

9 (κ − β)

⎞
⎠

with X = (S0, Tz, Sz) and we have defined

λ1 = β − 3b2

6
+ (3b2 − 2β)2S2

0

81m2
T a2 + 6(3b2 − β)S2

0 − 2βS2
z

,

λ2 = 1

18

(
β − κ + 81m2

T a2 + 6(3b2 − β)S2
0

81m2
T a2 + 6(3b2 − β)S2

0 − 2βS2
z

)
,

λ̃ = 1

3

(3b2 − 2β)β

81m2
T a2 + 6(3b2 − β)S2

0 − 2βS2
z

S0Sz . (18)

5 Actually, it would be sufficient to work on a Minkowski background.
We prefer however to use a general cosmological background to not
trivialise any interaction in (7) and to explicitly show the irrelevant role
of the curvature for our analysis.

The presence of constraints can be determined by computing
the determinant of the Hessian. It is easy to see that, in gen-
eral, det Hi j �= 0, thus guaranteeing the absence of any addi-
tional constraints so that S0 indeed represents a fully propa-
gating dof. In order to ensure the presence of constraints we
need to solve the equation det Hi j = 0 for arbitrary values of
the fields. By solving this equation we recover the conditions
β = b2 = 0 and the Hessian reduces to

Hi j =
⎛
⎝

0 0 0
0 − 1

18κ 0
0 0 8

9κ

⎞
⎠

that is trivially degenerate and ensures a non-propagating
S0. Moreover, we also see the ghostly nature of either Tμ or
Sμ since the non-vanishing eigenvalues have opposite signs.
These results confirm the conclusions reached from the exact
post-Riemannian analysis.

3 Stabilising quadratic PGT’s

The precedent section has been devoted to showing the pres-
ence of ghosts in general quadratic PGTs. Although this is
a drawback for generic theories, we will now show how to
avoid the presence of the discussed instabilities by follow-
ing different routes. In particular, we will show specific class
of ghost-free theories and how to stabilise the vector sector
by adding suitable operators of the same dimensionality as
those already present in the quadratic PGTs. Before show-
ing the ghost-free theories, let us discuss the failure of some
approaches that may seem promising at first sight.

3.1 Dead routes

3.1.1 Trivial torsion-free limit

An important requirement in order to recover a known ghost-
free graviton sector at zero torsion was to impose the recovery
of the Gauss–Bonnet term in that regime.6 It is natural to won-
der if the condition of obtaining Gauss–Bonnet in the van-
ishing torsion limit is too restrictive and it could be relaxed.
Thus, we will explore now what happens if we impose a dif-
ferent ghost-free vanishing torsion limit. Perhaps an obvious
approach would be to allow only for objects that identically
vanish for a Levi-Civita connection such as the antisymmetric
Ricci tensor R[μν]. One can however verify that the opposite
parity of Tμ and Sμ precisely prevents ghost-freedom. More
explicitly, we have that R[μν] = 1

3Tμν + 1
12εμναβSαβ so

6 While in d = 4 the Gauss–Bonnet term is a total derivative, we have
seen its non-trivial role in higher dimensions in (12).
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R[μν] R[μν] = 1

9

(
TμνT μν − 1

16
SμνSμν + εμναβT μνSαβ

)
.

(19)

The last term is topological and can be safely dropped since
it will not contribute to the equations of motion. We thus
see that the quadratic PGT only containing the antisymmet-
ric Ricci tensor necessarily produces a ghost because the
kinetic terms of the trace and axial vectors enter with oppo-
site signs.7. This can also be checked by making b1 = b2 =
b3 = b4 = 0 and b5 = −b6 in (7).

3.1.2 Parity-violating terms

It has been shown in the literature that including parity-
violating terms may help with the stability properties of these
theories [37]. Hence, it is natural to study the effects of such
terms in relation with our no-go result. Since only curva-
ture parity violating terms can contribute kinetic terms for
the vector sector, we will restrict to them here. In particu-
lar, the following parity-violating terms can be added to the
Lagrangian

Lodd = εμνρσ
(
d1 R Rμνρσ + d2 Rαβμν Rαβ

ρσ

+d3 Rμναβ Rαβ
ρσ

)
. (20)

We have not included εμνρσ Rμναβ Rρσ
αβ because it corre-

sponds to the Pontryagin topological invariant. Moreover,
adding the above terms still respects the required Gauss–
Bonnet limit for vanishing torsion because they either trivi-
alise or reduce to the Pontryagin invariant for the Levi-Civita
connection. By performing a post-Riemannian expansion for
these parity breaking terms we obtain, up to integrations by
parts, the following contributions for the vector sector:

Lodd,v = 2

9
κ�SμνT μν − 2

9
γ R̄SμT μ − 1

108
γ S2SμT μ

+ 4

27
γ T 2SμT μ + 1

3
γ R̄∇̄μSμ

+ 1

72
γ S2∇̄μSμ − 2

9
γ T 2∇̄μSμ − 4

9
γ SμT μ∇̄νT ν

+2

3
γ ∇̄μSμ∇̄νT ν, (21)

where κ� = 2d2 − d3 and γ = 3d1 + 2d2 + d3. We can
see that all the potentially dangerous terms involving non-
gauge invariant derivatives of the vectors and non-minimal
couplings can be eliminated by setting γ = 0. For parameters
satisfying this condition, the parity breaking Lagrangian for
the vector sector reduces to

7 This result is contradiction with the findings in [35]. The disagreement
is due to a missing −1 factor in [35] Once this factor is corrected the
results are in perfect agreement. We thank the authors of [35] for their
help in clarifying the disagreement.

Lodd,v
∣∣
γ=0 = 2

9
κ�SμνT μν. (22)

This mixing between the field strengths of the trace and axial
components cannot stabilise the ghost-like instability of the
parity preserving theory for any choice of κ�. The kinetic
matrix adding the parity violating term to (14) is

K̂ = 1

9

(−2κ κ�

κ� κ/8

)
.

If we compute the determinant we obtain

det K̂ = −κ2 + 4κ2
�

324
(23)

which is negative for any choice of the parameters.8 This
clearly signals that the two eigenvalues have opposite signs
and, as a consequence, the ghost will always be present so the
addition of parity breaking terms does not help rendering the
theory ghost-free. This could have been anticipated because
dimension 4 and parity violating operators can only generate
a term like (22) which, as we have shown, cannot fix the
ghostly nature of the parity-preserving sector.

3.1.3 Alternative ghost-free vanishing torsion regime

Among all the quadratic gravity theories in the metric formal-
ism, which generically contain ghosts, it is well-known that
the particular case of a correction R̄2 to the Einstein–Hilbert
action is a safe quadratic modification that introduces an extra
healthy scalar. Let us then explore the theories that reduce to
this ghost-free action at vanishing torsion so we now impose

b5 = −b6, and b4 = −2(b2 + b3), (24)

that only leaves b1 R̄2 in (5). One can quickly be convinced
that the R̄2−limit does not help much for the ghost-freedom
requirement in the vector sector. In fact, rather the opposite,
i.e., it leads to an even more pathological Lagrangian than
the theory with the Gauss–Bonnet limit because now also the
trace sector Tμ features ghostly interactions. In particular, we
find

L ⊃ 4b1

[
1

3
R̄T 2 + R∇μT μ + (∇μT μ)2

]
(25)

which requires b1 = 0 to avoid ghosts. However, this pre-
cisely corresponds to removing the R̄2− term so that we in
turn recover the theory with a GR limit analysed above. There

8 This is just an example of how adding non-diagonal terms in the
kinetic matrix cannot turn a ghost into a healthy mode. Rather, the
opposite, very large off-diagonal contributions could turn a healthy field
into a ghost.
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is nevertheless a special choice of parameters that avoids this
negative result and that we explore in detail in the next sec-
tion.

3.2 R2 theories

The specific parameters choice that leads to a stable class
of theories corresponds to further restricting the quadratic
curvature sector to be exactly the Ricci scalar square of
the full connection R2. This theory will evidently have the
R̄2−limit at vanishing torsion, but it avoids the ghostly inter-
actions that originate from the other Riemann contractions
as we show in the following. We thus set the parameters to
b2 = b3 = b4 = b5 = b6 = 0 and b1 �= 0 so we will
consider the particular PG Lagrangian

L = 1

2
M2

Pl

(
R + a1TμνρT μνρ + a2TμνρT νρμ + a3TμT μ

)

+ b1 R2. (26)

This specific Lagrangian and its non-pathological character
was already found in [32,48] by analysing its well-posedness
and Hamiltonian structure. Our approach here will confirm
these results by a different procedure and will give further
insights. The idea is to rewrite the Lagrangian in a form where
the additional scalar is made explicit. As usual, we start by
performing a Legendre transformation in order to recast the
Lagrangian in the more convenient form

L = 1

2
M2

Plϕ +b1ϕ
2 +χ(R −ϕ)+ 1

2
m2

T T 2 + 1

2
m2

S S2, (27)

where we have introduced the non-dynamical fields χ and
ϕ and we have left the pure tensor sector qα

μν out for the
moment, although we will come back to its relevance later.
Upon use of the field equation for χ we recover the original
Lagrangian, while the equation for ϕ yields

ϕ = 2χ − M2
Pl

4b1
(28)

that gives ϕ as a function of χ . We can now use the post-
Riemannian expansion of the Ricci scalar

R = R̄ + 1

24
S2 − 2

3
T 2 + 2∇̄μT μ (29)

to express the Lagrangian in the following suitable form

L = χ

(
R̄ + 1

24
S2 − 2

3
T 2 + 2∇̄μT μ

)
−

(
2χ − M2

Pl

)2

16b1

+1

2
m2

T T 2 + 1

2
m2

S S2. (30)

The equation for the axial part imposes Sμ = 0, while the
trace part yields

Tμ = 2∂μχ

m2
T − 4

3χ
(31)

which shows that Tμ can only propagate a scalar9 since it can
be expressed as Tμ = ∂μχ̃ with

χ̃ = −3

2
log

∣∣∣3m2
T − 4χ

∣∣∣. (32)

The theory is then equivalently described by the action10

S =
∫

d4x
√−g

[
χ R̄ − 2(∂χ)2

m2
T − 4

3χ
−

(
2χ − M2

Pl

)2

16b1

]

(33)

which reduces to a simple scalar-tensor theory of a gener-
alised Brans-Dicke type with a field dependent Brans-Dicke
parameter:

ωBD(χ) = 2χ

m2
T − 4

3χ
. (34)

This result actually extends to arbitrary f (R) extensions of
PGTs, the only difference with respect to (33) being the spe-
cific form of the potential for χ . A noteworthy feature of the
resulting Lagrangian is the singular character of the massless
limit m2

T = 0 that gives ωBD(m2
T = 0) = −3/2, precisely

the value that makes the scalar field non-dynamical. This is
also the case for the Palatini formulation of f (R) theories
where the scalar is non-dynamical (see e.g. [50] and refer-
ences therein). For any other value of the mass, the scalar
field is fully dynamical. We can see this more explicitly by
performing the conformal transformation g̃μν = 2χ

M2
Pl

gμν that

brings the action into the Einstein frame

S =
∫

d4x
√−g̃

[
1

2
M2

Pl R̃ − 3m2
T M2

Pl

4χ2(m2
T − 4

3χ)
(∂χ)2

− M2
Pl

8b1

(
1 − M2

Pl

2χ

)2
⎤
⎦ . (35)

9 An analogous result was obtained in [49] by considering f (R) the-
ories where the Ricci scalar is replaced by R → R + A2 + β∇̄μ Aμ

with Aμ a vector field and in [41] within the context of geometries with
vector distortion. Interestingly, these scenarios provide a realisation of
the α-attractor model of inflation.
10 We prefer to give the action to make explicit the conformal factors
coming from the volume element.
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In this frame it becomes apparent that the scalar χ loses
its kinetic term for m2

T = 0. Of course, this feature can be
related to the breaking of a certain conformal symmetry by
the mass term. If we perform a conformal transformation of
the metric together with a projective transformation of the
torsion11 given by

gμν → e2�gμν, Tμ → Tμ + 3∂μ� (36)

with � and arbitrary function, we have that the Ricci
scalar transforms as R → e−2� R. Thus, we have that the
Lagrangian (30) is invariant under the above transformations
supplemented with χ → e−2�χ except for the mass term.12

Thus, for m2
T = 0, the fact that the torsion is given in terms

of the gradient of χ together with the discussed symmetry
allows to completely remove the kinetic terms for χ by means
of a conformal transformation. The mass however breaks
this symmetry and, consequently, we recover the dynami-
cal scalar described by (35). Furthermore, the mass m2

T also
determines the region of ghost freedom for the theory. If
m2

T > 0 we have an upper bound for the scalar field that
must satisfy χ < 3

4 m2
T in order to avoid the region where it

becomes a ghost. On the other hand, if m2
T < 0, the scalar

field is confined to the region χ > 3
4 m2

T . For the potential to
be bounded from below we only need to have b1 > 0. These
conditions have been summarised in Table 1.

It may be worth noticing that the absence of ghosts in
the R2-theories is due to the removal of the Maxwell kinetic
terms for the vector sector. By inspection of the Ricci scalar
(29) we see that only the trace Tμ enters with derivatives and
only through the divergence ∇̄μT μ. As it is well-known this
is precisely the dual of the usual Maxwell-like kinetic term
for the dual 3-form field so the theory can be associated to
a massive 3-form which propagates one dof.13 This dof can
be identified with the scalar that we have found. Just like
the U (1) gauge symmetry of the Maxwell terms is crucial
for the stability of vector theories, the derivative term ∇̄μT μ

has the symmetry T μ → T μ + εμνρσ ∂νθρσ for an arbitrary
θρσ that plays a crucial role for guaranteeing the stability of
the theories. Of course, this symmetry is inherited from the
gauge symmetry of the dual 3-form.

Let us finally notice that including the tensor sector qα
μν

does not change the final result because one can check that,
similarly to the axial part, it only enters as an auxiliary field
whose equation of motion imposes qα

μν = 0. To see this

11 The torsion transformation is T α
μν → T α

μν − 2δα[μ∂ν]� that gives
the transformation for the vector trace quoted in the main text, while
the axial and pure tensor pieces remain invariant. See e.g. [51–53] for
interesting discussions on conformal transformations involving torsion.
12 Actually, the potential for χ also breaks the conformal invariance,
but since it does not affect the dynamical nature of χ we can neglect it
for our discussion here.
13 See e.g. [54–56] for some cosmological applications of 3-forms.

more clearly, we can give the full post-Riemannian expansion
of the Ricci scalar including the tensor piece

R = R̄ + 1

24
S2 − 2

3
T 2 + 2∇̄μT μ + 1

2
qμνρqμνρ, (37)

so it is clear that its contribution to the Lagrangian (30) gives
rise to the equation of motion χqμνρ = 0 which, for χ �=
0, trivialises the tensor component. The same will apply to
theories described by an arbitrary function f (R) so one can
safely neglect the tensor sector for those theories as well.

3.3 Holst square theories

In the precedent section we have seen how to obtain a non-
trivial quadratic PGT that propagates an extra-scalar and this
can be ultimately related to the absence of Maxwell-like
terms for the vector sector. We can then ask whether there is
some non-trivial healthy theory described by (7) where the
scalar is associated to the axial vector rather than to the trace.
The answer is affirmative and in order to obtain it we simply
need to impose the vanishing of the Maxwell kinetic terms
that results in the conditions:

κ = 0 and β = 0. (38)

Under these conditions, after performing a few integrations
by parts and dropping a Gauss–Bonnet term, the Lagrangian
reads

LHolst = 1

2
M2

Pl R̄ + 1

2
m2

T T 2 + 1

2
m2

S S2

+α

[
(∇̄μSμ)2 − 4

3
SμT μ∇̄ν Sν + 4

9
(SμT μ)2

]

(39)

with α ≡ − b2
4 . It is apparent that we obtain the same struc-

ture as in the R2 case but now for the axial part. This is not
an accident and it can be understood from the relation of
the resulting Lagrangian with the Holst term14 [57,58] that
is given by H ≡ εμνρσ Rμνρσ and whose post-Riemannian
expansion is

H = 2

3
SμT μ − ∇̄μSμ (40)

where we have used that εμνρσ R̄μνρσ = 0 by virtue of the
Bianchi identities. It is then obvious that the Lagrangian can
be written as

LHolst = 1

2
M2

Pl R̄ + 1

2
m2

T T 2 + 1

2
m2

S S2 + αH2. (41)

14 Although this term is commonly known as the Holst term, due to the
research article of Soren Holst in 1995 [57], in the context of torsion
gravity it was first introduced by Hojman et. al. [58].
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This particular PGT was identified in [48] as an example of
a theory with dynamical torsion described by a scalar with a
well-posed initial value problem. We will unveil the nature
of this scalar by proceeding in an analogous manner to the
R2 theories. For that we first introduce an auxiliary field φ

to rewrite (41) as

LHolst = 1

2
M2

Pl R̄ + 1

2
m2

T T 2 + 1

2
m2

S S2 − αφ2

+2αφεμνρσ Rμνρσ . (42)

We see that the resulting equivalent Lagrangian corresponds
to the addition of a Holst term where the Barbero-Immirzi
parameter has been promoted to be a pseudo-scalar field.
As we will show now, this pseudo-scalar is dynamical and
corresponds to the 0− mode identified in [48]. The massless
theory with m2

T = m2
S = 0 and without the φ2 potential

has been considered as extensions of GR inspired by Loop
Quantum Gravity [59,60]. We can now introduce the post-
Riemannian expansion (40) into the Lagrangian, so we have

LHolst = 1

2
M2

Pl R̄ + 1

2
m2

T T 2 + 1

2
m2

S S2 − αφ2

+2αφ

(
2

3
SμT μ − ∇̄μSμ

)
. (43)

The equations for Sμ and T μ are

m2
S Sμ + 4αφ

3
Tμ + 2α∂μφ = 0, (44)

m2
T Tμ + 4αφ

3
Sμ = 0, (45)

respectively. For m2
T �= 015 we can algebraically solve these

equations as

Tμ = − 4αφ

3m2
T

Sμ, (46)

Sμ = − 2α∂μφ

m2
S −

(
4αφ
3mT

)2 , (47)

that we can plug into the Lagrangian to finally obtain

LHolst = 1

2
M2

Pl R̄ − 2α2

m2
S −

(
4αφ
3mT

)2 (∂φ)2 − αφ2. (48)

This equivalent formulation of the theory with all the aux-
iliary fields integrated out manifestly exposes the presence
of a propagating pseudo-scalar field. The parity invariance
of the original Lagrangian translates into a Z2 symmetry in
the pseudo-scalar sector. The obtained result is also valid for
theories described by an arbitrary function of the Holst term

15 The singular value m2
T = 0 leads to uninteresting theories where all

the dynamics is lost so we will not consider it any further here. The
same conclusion was reached in [48].

and considering different functions leads to different poten-
tials for the pseudo-scalar φ. Furthermore, although we have
only considered the vector sector of the torsion, including
the pure tensor part qα

μν into the picture does not change
the conclusions because the latter contributes as

H = 2

3
SμT μ − ∇̄μSμ + 1

2
εαβμνqλ

αβqλμν. (49)

This shows that qαμν only enters as an auxiliary field whose
equation of motion trivialises it, very much as it occurs for
the R2 theories.

Let us also point out how the appearance of a (pseudo-
)scalar could have been expected by recalling the relation of
the Holst term with the Nieh-Yan topological invariant given
by

N ≡ εμνρσ
(

Rμνρσ − 1

2
T α

μνTαρσ

)
. (50)

In a Riemann–Cartan spacetime it is easy to show that this
term is nothing but the total derivative N = −∇̄μSμ. The
remarkable property of this invariant is that it is linear in the
curvature so its square must belong to the class of parity pre-
serving quadratic PGTs, even though N itself breaks parity.
Then, as it happens with other invariants like the Gauss–
Bonnet one, including a general non-linear dependence on
the invariant is expected to give rise to dynamical scalar
modes. In standard Riemannian geometries, the inclusion of
an arbitrary function of the Gauss–Bonnet invariant results in
a highly non-trivial scalar field with Horndeski interactions
(see e.g. [61]).

The stability requirements for the parameters can now be
obtained very easily. From (48) we can readily conclude that
α must be positive to avoid having an unbounded potential
from below. On the other hand, the condition to prevent φ

from being a ghost depends on the signs of m2
S and m2

T , which
are not defined by any stability condition so far. Accordingly,
we can distinguish the following different possibilities:

– m2
S > 0: We then need to have 1 −

(
4αφ

3mT mS

)2
> 0.

For m2
T < 0 this is always satisfied, while for m2

T > 0
there is an upper bound for the value of the field given by
|φ| < | 3mSmT

4α
|.

– m2
S < 0: The ghost-freedom condition is now 1 −(

4αφ
3mT mS

)2
< 0, which can never be fulfilled if m2

T > 0. If

m2
T < 0 we instead have the lower bound |φ| > | 3mSmT

4α
|.

For a better visualisation we have outlined these ghost-free
conditions in Table 1.

We can gain a better intuition on the dynamics of the
pseudo-scalar by canonically normalising it. For that pur-
pose we introduce a field φ̂ defined by
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Table 1 This table summarises the conditions to avoid ghosts for the
scalar and the pseudo-scalar fields

Scalar χ Pseudo-scalar φ

b1 > 0 m2
S > 0 m2

S < 0

m2
T > 0 χ < 3

4 m2
T |φ| <

∣∣∣ 3mSmT
4α

∣∣∣ Ghost

m2
T < 0 χ > 3

4 m2
T Healthy |φ| >

∣∣∣ 3mSmT
4α

∣∣∣

φ̂ = 2α√
m2

S

∫
dφ√

1 −
(

4αφ
3mT mS

)2
. (51)

For m2
S > 0 we obtain

φ(φ̂) = 3mT mS

4α
sin

(
2φ̂

3mT

)
, (52)

in terms of which the Lagrangian for the pseudo-scalar reads

L
φ̂
|m2

S>0 = −1

2
(∂φ̂)2 − V (φ̂), (53)

with V (φ̂) = αφ2(φ̂). The shape of the potential will cru-
cially depend on the sign of m2

T . Thus, if m2
T > 0 we have

the oscillatory potential

V (φ̂) = 9m2
T m2

S

16α
sin2

(
2φ̂

3mT

)
, m2

S > 0, m2
T > 0, (54)

with a discrete symmetry φ̂ → φ̂ + 3
2 nmT π with n ∈ Z

arising from the original upper bound of φ. Notice that the
field redefinition (52) guarantees the ghost-free condition
|φ| ≤ | 3mT mS

4α
|. For m2

T < 0 the potential takes instead the
form

V (φ̂) = 9|m2
T |m2

S

16α
sinh2

(
2φ̂

3|mT |

)
, m2

S > 0, m2
T < 0.

(55)

On the other hand, for m2
S < 0, we need to have m2

T < 0
to avoid ghosts and the integral (51) gives

φ = ±3|mT mS|
4α

cosh

(
4φ̂

3|mT |

)
, (56)

where we have fixed the integration constant so that the origin
of φ̂ corresponds to the lower bound for |φ|. The Lagrangian
for the canonically normalised field is given by

L
φ̂
|m2

S<0 =−1

2
(∂φ̂)2− 9m2

T m2
S

16α
cosh2

(
2φ̂

3|mT |

)
, m2

S < 0, m2
T <0.

(57)

In all cases, it is straightforward to analyse the corresponding
solutions by simply looking at the shape of the corresponding
potential. In particular, we see that the small field regime
gives an approximate quadratic potential so, provided the
mass is sufficiently large,16 the coherent oscillations of the
pseudo-scalar can give rise to dark matter [62–65] as the
misalignment mechanism for axions [66] or the Fuzzy Dark
Matter models [67]. A similar mechanism was explored in
[68] within pure R2 gravity. On the other hand, it is also
possible to generate large field inflationary scenarios or dark
energy models if the field slowly rolls down the potential at
field values sufficiently far from the minimum.

An important qualitative difference with respect to the R2

theories discussed in the precedent section is that here we
have obtained the Lagrangian for the pseudo-scalar already
in the Einstein frame, while this was only achieved after
performing a conformal transformation to disentangle the
scalar field from the Einstein–Hilbert term for the R2 theo-
ries. Therefore, while the scalar couples directly to matter in
the Einstein frame through a conformal metric for the R2 the-
ories, the pseudo-scalar field of the Holst square theories does
not. This could be useful for dark matter and/or dark energy
models because they could easily evade local gravity con-
straints. As a matter of fact, it is noteworthy that the obtained
effective potential for the pseudo-scalar field allows for both
accelerating cosmologies (that could be used for dark energy
or inflation) and dark matter dominated universes. The tech-
nical naturalness of the models would of course remain an
open challenging issue. A cautionary comment is in order
here however because Dirac fermions do couple to the axial
part of the connection (see e.g. [53,69]). An immediate con-
sequence of this coupling is that actually we would expect to
have the dual of the hypermomentum �μ = δS/δSμ enter-
ing on the rhs of (44). This means that the solutions for Sμ

and Tμ in (47) should include �μ so the final Lagrangian
(48) will feature couplings between the pseudo-scalar φ and
Dirac fermions. Since �μ in the equations can be simply
generated by the replacement 2α∂μφ → 2α∂μφ + �μ in
(44), the explicit computation of the interactions including

16 By large we of course mean relative to the Hubble parameter in the
late time universe so that the field can undergo multiple oscillations
around the minimum in a Hubble time. This typically requires masses
around m ∼ 10−22 eV so they actually represent ultra-light particles
from a particle physics perspective.
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the axial coupling to the fermions can be easily obtained by
making the corresponding replacement in (48) that yields

LHolst = 1

2
M2

Pl R̄ − (2α∂μφ + �μ)2

m2
S −

(
4αφ
3mT

)2 − αφ2. (58)

We then obtain the usual four-point fermion interactions
given by �2 that are also generated in e.g. Einstein–Cartan
gravity plus a derivative coupling of the pseudo-scalar to
the axial current �μ carried by the fermions. Interestingly,
this derivative coupling can yield an effective mass for the
fermion17 that depends on the evolution of the pseudo-scalar.
A detailed analysis of the phenomenology of these interac-
tions is beyond the scope of this communication, but it is
worth noting the possibility that offers this scenario for a
natural framework to have dark energy and/or dark matter
interacting with neutrinos that could result in some interest-
ing phenomenologies for their cosmological evolution. On
the other hand, these couplings could also give rise to natural
reheating mechanisms within inflationary models.

3.4 The general healthy bi-scalar theory

For completeness, we will analyse now the theory that prop-
agates simultaneously the scalar and pseudo-scalar fields
obtained above. It should be clear that the corresponding
theory will be described by the Lagrangian

L = 1

2
M2

Pl R + 1

2
m2

T T 2 + 1

2
m2

S S2 + b1 R2 + αH2. (59)

We will proceed analogously by introducing auxiliary fields,
but we will omit unnecessary details here, which exactly fol-
low the developments of the previous sections. The trans-
formed Lagrangian in the post-Riemannian expansion can
be written as

L = U(χ, φ) + χ R̄ + 1

2
M2

T (χ)T 2 + 1

2
M2

S(χ)S2

+ 4

3
αφSμT μ − 2T μ∂μχ + 2αSμ∂μφ , (60)

where we have defined

U = −
(
2χ − M2

Pl

)2

16b1
− αφ2, M2

T = m2
T − 4

3
χ and

M2
S = m2

S + 1

12
χ. (61)

17 Let us recall that the axial current for a fermion ψ has the form
�μ ∝ ψ̄γ5γμψ so the derivative coupling indeed generates an effective
mass.

A more useful and compact way of writing the Lagrangian
is

L = U(χ, φ) + χ R̄ + 1

2
Zt M̂Z + Zt · � (62)

with Zt = (Tμ, Sμ), �t = (−2∂μχ, 2α∂μφ) and

M̂ =
(

M2
T (χ) 4

3αφ
4
3αφ M2

S(χ)

)
. (63)

The equations for Sμ and T μ can then be written as

M̂Z = −� ⇒ Z = −M̂−1�, (64)

with the inverse of M̂ given by

M̂−1 = 1

M2
S(χ)M2

T (χ) − ( 4
3αφ

)2

(
M2

S(χ) − 4
3αφ

− 4
3αφ M2

T (χ)

)
.

(65)

By inserting this solution into the Lagrangian we finally
obtain

L = U(χ, φ) + χ R̄ − 1

2
�t M̂−1�. (66)

It is then very clear that the theory indeed describes two
propagating scalars. We can write out the above compact
form of the Lagrangian to make everything more explicit

L = χ R̄ + 6
3M2

S(χ)(∂χ)2 + 3α2 M2
T (χ)(∂φ)2 − 8α2φ∂μφ∂μχ

(4αφ)2 − 9M2
S(χ)M2

T (χ)

+ U(χ, φ). (67)

It is easy to see that this Lagrangian reduces to (33) for φ =
0 and to (48) for χ = 0 (except for the Einstein–Hilbert
term that should be added), as one would expect. The general
discussions for the R2 and Holst square theories then also
apply to the present case. We see that the scalar χ features
a non-minimal coupling that can be removed by means of
the same conformal transformation as before g̃μν = 2χ

M2
Pl

gμν .

After performing this transformation to the Einstein frame
the Lagrangian reads

L = 1

2
M2

Pl R̃ −
[

1 − 12M2
S(χ)

(4αφ)2 − 9M2
S(χ)M2

T (χ)

]
(∂χ)2

+3M2
Pl

χ

3α2 M2
T (χ)(∂φ)2 − 8α2φ∂μφ∂μχ

(4αφ)2 − 9M2
S(χ)M2

T (χ)

+
(

M2
Pl

2χ

)2

U(χ, φ). (68)

Again, the conformal transformation will couple χ directly to
matter through the conformal metric, while the pseudo-scalar
φ only couples to the axial fermionic current given by the
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dual of the corresponding hypermomentum. The same rea-
soning used to obtain (58) applies here so this axial coupling
eventually generates couplings achievable via the replace-
ment 2α∂μφ → 2α∂μφ + �μ in (68). Notice that additional
couplings between χ and fermions will be generated by this
mechanism. The resulting Lagrangian (68) resembles a two
dimensional non-linear sigma model with the following tar-
get space metric:

hab(χ, φ) = 2M2
Pl

χ

(
3
4 + 1

χ
(M̂−1)11 α(M̂−1)12

α(M̂−1)12 α2(M̂−1)22

)
. (69)

The resemblance is only formal at this point due to the
pseudo-scalar nature of φ that obstructs its interpretation as
a coordinate of the would-be target manifold. The ghost-
free conditions are obtained by imposing the positivity of
the eigenvalues of this metric, whose expressions are more
involved in this case because of the couplings between both
scalars. A much simpler condition can be obtained by com-
puting the determinant

det hab = M4
Plα

2

χ3

3M2
T (χ) + 4χ

M2
S(χ)M2

T (χ) − ( 4
3αφ

)2 (70)

which must be positive to guarantee ghost-freedom, although
this is not a sufficient condition. Moreover, having det hab =
0 will determine the degenerate cases where the phase space
is reduced. This happens trivially for α = 0, that corre-
sponds to the pure R2 theory. The pure Holst square limit
is more delicate to obtain because the conformal transforma-
tion becomes singular for χ = 0. We will not explore further
the general bi-scalar theory here, but it should be clear that
such theories will contain a much richer structure owed to its
enlarged phase space.

We will end our discussion of the bi-scalar theories by
explicitly showing how our results can be straightforwardly
extended to theories described by a general function of R and
H. Let us then consider the following Lagrangian:

L = F(R,H, T, S, q), (71)

where F is some arbitrary scalar function. Also, for the sake
of generality, we have allowed an arbitrary dependence on the
torsion components as well. The Lagrangian can be recasted
in the form

L = F(χ̃, φ̃, T, S, q) + χ
(
R − χ̃

) + φ
(
H − φ̃

)
(72)

where we have introduced a set of auxiliary fields. The equa-
tions for χ̃ and φ̃ allow to express these fields in terms of the
rest of fields. We can then write

L = U(χ, φ, T, S, q)

+χ

(
R̄ + 1

24
S2 − 2

3
T 2 + 2∇̄μT μ + 1

2
qμνρqμνρ

)

+φ

(
2

3
SμT μ − ∇̄μSμ + 1

2
εαβμνqλ

αβqλμν

)
, (73)

where the potentialU already includes the effects of integrat-
ing out χ̃ and φ̃. Again, we see that the pure tensor sector
only enters as an auxiliary field so we can also integrate it
out to finally write the Lagrangian as

L = Ũ(χ, φ, T, S) + χ R̄ − 2T μ∂μχ + Sμ∂μφ (74)

with Ũ containing all the terms without derivatives. This
Lagrangian resembles (60) with the only difference that the
non-derivative terms are different. We can thus proceed anal-
ogously by integrating out the vector sector Tμ and Sμ by
solving their equations of motion

∂Ũ
∂T μ

− 2∂μχ = 0 , (75)

∂Ũ
∂Sμ

+ ∂μφ = 0 , (76)

that will give Tμ = Tμ(χ, φ, ∂χ, ∂φ) and Sμ = Sμ(χ, φ, ∂χ,

∂φ). By plugging these solutions back in the Lagrangian we
finally arrive at the explicit bi-scalar theory, but now with
more involved interactions that will depend on the specific
function describing the Lagrangian. If we include couplings
to fermions, the same trick as before can be used to take it
into account.

3.5 Adding dimension 4 operators

We have seen how to restrict the parameters in order to
remove the ghosts of the quadratic PGTs while having an
additional dynamical scalar. We will now discuss how to tame
the ghosts by extending the Lagrangian in a suitable man-
ner. For that, it is worthwhile to notice that the constructed
quadratic theories contain up to dimension 4 operators corre-
sponding to the curvature squared terms. It would then seem
natural to include all the operators up to that dimensional-
ity. For instance, since the Riemann squared terms generate
quartic interactions for the torsion, there seems not to be
a reason why they should not be included from the onset
of the construction of the theory. If we do allow for all the
operators up to dimension four, there is a whole bunch of
additional torsion terms that we could add. In particular, we
can include the operators TμνT μν andSμνSμν with arbitrary
coefficients. In the presence of these additional terms, it is
trivial to see that the unavoidable ghostly nature of the vector
sector concluded above by removing dangerous non-minimal
couplings is resolved. Furthermore, since these are just stan-
dard Maxwell terms, they will tackle the ghosts issue without
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introducing new potentially pathological interactions for the
vector sector and affecting the pure tensor sector.

Once the presence of arbitrary dimension 4 operators is
allowed, we can also include other phenomenologically inter-
esting interactions. In particular, we can add non-minimal
couplings that do not spoil the stabilisation achieved by
including the aforementioned Maxwell terms. For instance,
we can introduce interactions that mix the curvature and the
torsion. Generically, these interactions will be pathological.
There is however a class of operators that gives rise to non-
pathological non-minimal couplings for the vector sector.
That is the case of GμνT μT ν that generates the following
couplings in the post-Riemannian expansion

L ⊃ ḠμνT μT ν−T 2∇̄μT μ+1

3
T 4− 1

144
S2T 2− 1

72
(SμT μ)2

(77)

that includes the non-minimal coupling to the Einstein tensor
and a vector-Galileon term for the vector trace. When turning
on the tensor piece however some other worrisome terms will
also enter which could potentially jeopardise the stability of
the vector sector.

4 Discussion

In this note we have shown that imposing ghost-freedom in
the quadratic Poincaré gauge theory around an arbitrary back-
ground generically leads to a non-dynamical torsion sector
so that, after integrating it out, we have nothing but GR, with
perhaps some effects in the fermion interactions. This result
illustrates once more the delicate nature of gravity and the dif-
ficulty to construct consistent modifications of GR. The ori-
gin of the instabilities has been clearly traced to the presence
of quadratic curvature invariants in the Lagrangian that gener-
ate ghostly non-minimal couplings and non-gauge-invariant
derivative interactions for the vector sector. The pathological
nature of higher order curvature terms in the Lagrangian is in
fact a common problem within general metric-affine theories
[70]. Even if we restrict to curvature free geometries, gen-
eral teleparallel theories are generically plagued by the same
pathologies [71–76]. In most of these theories, the shortcom-
ings for their stability ultimately resides in the presence of
additional fields which generically exhibit non-minimal cou-
plings that are at the heart of the harmful ghostly modes. It
frequently occurs that these pathologies do not show up in
perturbative analysis around highly symmetric backgrounds
where some modes may even disappear, thus giving a false
impression of stability. However, these latent modes are even
more virulent because the lack of dynamics around the con-
sidered backgrounds typically signals an additional pathol-
ogy in the form of strong couplings.

For the quadratic PGTs analysed in this work, we have
seen that the torsion trace does not introduce any patholo-
gies and this has been proven to be the case also in higher
dimensions, where healthy non-minimal couplings arise. The
source of the problems has been identified to reside in the
axial sector. We have seen that getting rid of its ghostly inter-
actions requires a condition on the parameters that forces
either Tμ or Sμ to be a ghost so we are eventually forced to
impose them to be non-dynamical to avoid ghosts. It is impor-
tant to emphasise that this strong result cannot be obtained
from a perturbative analysis around Minkowski because the
ghost actually originates from problematic interactions of the
axial sector that trivialise at linear order around Minkowski.

After demonstrating the pathological nature of general
quadratic PGTs, we have discussed how to construct healthy
theories. We have explicitly worked out the theory whose
quadratic sector in curvatures reduces to R2. In this particu-
lar theory, the only non-trivial part of the torsion is the vector
trace which in turn reduces to a scalar field and the resulting
Lagrangian is nothing but a generalised Brans-Dicke theory.
Also, by going to the Einstein frame we have revealed the
dynamical nature of the scalar as a consequence of the break-
ing of a conformal symmetry induced by the mass terms of
the torsion. Furthermore, the Einstein frame description of
the theory makes the dynamics of the scalar apparent and
permits a more direct comparison with known studies such
as those dealing with cosmologies or black hole solutions
with scalar fields. For instance, the conformal coupling of the
scalar to matter makes the case for the presence of screening
mechanism of the chameleon [77] or symmetron [78] type.

On the other hand, we have shown that under a specific
choice of the parameters, it is also possible to have a pseudo-
scalar propagating in a stable manner. This particular theory
has been shown to be related to the Holst formulation of
GR where the Barbero-Immirzi parameter is promoted to a
pseudo-scalar field which is precisely the propagating 0−
already identified in e.g. [32,48]. After integrating out all
the auxiliary fields in the theory, we have obtained a final
expression for the Lagrangian with the explicit form of the
potential and from which the stability conditions are easily
obtained. As we have discussed, these theories offer com-
pelling scenarios for dark matter as coherent oscillations of
the pseudo-scalar field and accelerated cosmological solu-
tions with relevance for dark energy and inflation. Moreover,
although the pseudo-scalar does not couple through a con-
formal factor to matter, we have seen how the coupling of the
axial vector to fermions predicts a natural derivative coupling
between the pseudo-scalar and fermions, which could lead to
interesting cosmological phenomenology worth exploring.

Finally, we have obtained the explicit bi-scalar formula-
tion of the theory containing both R2 and Holst square terms
and we have also argued how the addition of other dimen-
sion 4 operators allow to trivially stabilise the vector sector
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of the quadratic PGTs. This is a natural possibility because
the theories already contain operators of this dimensionality.
Moreover, we have also discussed how allowing for arbitrary
dimension 4 operators opens the prospects for constructing
ghost-free non-minimal couplings and Galileon-like interac-
tions within the framework of PGTs.

In summary, we have confirmed existing results in the
literature concerning the stability of PGTs by following an
alternative, perhaps more direct, approach that gives a com-
plementary understanding of these theories. Furthermore, we
have provided a more insightful description of the known sta-
ble theories featuring scalar modes by explicitly constructing
their effective Lagrangians and showing their relation with
standard scalar-tensor theories and the Holst formulation of
GR. In view of our findings, the solutions of these theories
(cosmological, black holes, wormholes, etc.) can be better
contextualised and easier to interpret in terms of the scalar
interactions. By reverse engineering, the alternative descrip-
tions presented in this work also allow to find new solutions
for PGTs. Hopefully, these equivalent formulations pave the
way for a more systematic, exhaustive and physically appeal-
ing exploration of the solutions and phenomenological appli-
cations of PGTs.
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