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Abstract We propose an analytically solvable sextic poten-
tial model with non-trivial soliton solutions connecting the
trivial vacua. The model does not respect parity symmetry,
and like φ4 theory has two minima. The soliton solutions
and the consequent results are obtained in terms of the Lam-
bert W function, i.e., the inverse function of f (W ) = WeW .
They have power-law asymptotics at one spatial infinity and
exponential asymptotics at the other. We compare the solu-
tion with the kink of φ4 theory, which preserves the parity
symmetry and has exponential asymptotics at both spatial
infinities. Moreover, we study the full spectrum (bound and
continuum states) of boson and fermion fields in the presence
of the proposed soliton. We consider two types of coupling for
the boson–soliton interaction and Yukawa coupling for the
fermion–soliton interaction. Most results are derived analyt-
ically. This property renders the model a fertile ground for
further study, including parity breaking related phenomena
and long-range soliton–soliton interactions.

1 Introduction

There is a small class of nonlinear differential equations with
soliton solutions. A soliton is a stable solution with localized
energy density. It arises as a consequence of the interaction
between nonlinearity and dispersion when a nonlinear sharp-
ening term counterbalances the dispersive term. The compe-
tition between these two contributions shapes the structure
of the soliton and provides its stability. In the language of
topology, the soliton configuration has an associated con-
served topological charge or winding number, which pro-
tects it against decay into a trivial configuration. Solitons are
fascinating due to their mathematical properties. However,
their usefulness extends far beyond that, touching multiple
areas of science. In particular, they are subject of research in

a e-mail: andre.amado@ufpe.br
b e-mail: azadeh.mohammadi@df.ufpe.br (corresponding author)

diverse areas of physics, including high energy physics, non-
linear optics and condensed matter physics [1–5]. Amongst
the most known solitons are skyrmions and domain walls in
magnetic materials [6–8], vortices in superconductors and
fluids [9–12] as well as magnetic monopoles, Q-balls, cos-
mic strings and instantons in high-energy physics [13–21].
Besides the theoretical applications of solitons, they play an
increasingly important role in technology, e.g., in communi-
cations [22–24].

Since the solitons are not isolated objects in most physical
systems, their interaction with other fields has been subject
to intense research in the literature. Boson and Dirac fields
interacting with a soliton are known to affect or even cre-
ate many intriguing phenomena including vacuum polariza-
tion and Casimir effect [25,26], superconductivity and Bose–
Einstein condensation [27,28], localization of fermions in the
braneworld scenarios [29], charge and fermion number frac-
tionalization [30] as well as conducting polymers [31]. Mass-
less Dirac fermions behave as the quasiparticles in materials
such as graphene and topological insulators [32,33].

Exactly solvable models are considered indispensable
tools to explore the physics of a system and the symme-
tries behind it. In this paper, we introduce a parity break-
ing model with an analytical soliton solution. The potential
includes powers up to sixth order in the scalar field φ, where
odd powers of φ exist alongside the even, causing a par-
ity asymmetry. In [34], the authors considered a massless
Dirac field interacting with a skyrmion-like planar defect in
a system that does not respect the parity symmetry. They
studied the fermion bound spectrum as well as the scatter-
ing of fermions from the localized topological structure and
found a closed form for the scattering cross-section for small
fermion–skyrmion coupling. Parity or inversion symmetry
breaking models with topological solutions are of impor-
tance in many areas of physics, for example in the context
of superconductivity [35–39], fractional quantum Hall effect
[40], mesoscopic electron transport [41], current of abnormal

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-8162-9&domain=pdf
http://orcid.org/0000-0002-9027-5037
http://orcid.org/0000-0001-5720-7086
mailto:andre.amado@ufpe.br
mailto:azadeh.mohammadi@df.ufpe.br


576 Page 2 of 11 Eur. Phys. J. C (2020) 80 :576

parity [42], heavy-ion collisions [43], nonlinear Schrödinger
equations [44] and hydrodynamics [45].

In this paper, we consider a parity-breaking model with
two minima where the soliton solutions connect the two
vacua in a nonsymmetric form. Unlike the kink of φ4 theory,
they have a power-law tail at one side and exponential asymp-
totics at the other. This behavior can be found most frequently
in models where the potential has higher than sextic power
in the scalar field [46]. These types of solitons are especially
interesting in the context of the soliton–soliton interactions
(see, e.g., [47–50]). Although this is not the main focus of this
work, we will comment on it when we find it relevant. The
goal here is to find the soliton solutions and stability equation
analytically as well as to study the interaction of the soliton
with boson and fermion fields. We consider two types of
interactions with the boson field and Yukawa interaction for
the fermion field. The boson bound and scattering states, as
well as the fermion zero mode, are expressed in closed ana-
lytical forms. However, the massive fermion bound states
and energy spectrum are solved numerically. Most analytical
results are expressed in terms of the Lambert W function. In
Sect. 2, we introduce the model, find the corresponding topo-
logical solution and analyze the small oscillations of the soli-
ton. In Sect. 3, we study the interaction of boson and fermion
fields with the soliton of our model. Finally, in Sect. 4, we
summarize the results of the current work. The appendices
provide the details of the calculations.

2 Model

We propose the theory described by the following Lagragian
in 1 + 1 dimensions

L = 1

2
∂μφ ∂μφ − V (φ), (1)

where the potential term is given by

V (φ) = λ2

2
(1 − φ2)2(1 − φ)2. (2)

The potential presents two minima, φ0 = ±1, which allows
one to obtain solitonic solutions interpolating between them.
Although the potential is sixth-order, it has no parity sym-
metry since odd powers of φ are also included, unlike the
classical φ6 theory. An equivalent potential could be consid-
ered by mapping φ → −φ, resulting in an interchange of
the roles of the kink and antikink solutions. The coupling λ

has mass dimension one, defining a natural mass scale in the
system, which we use to rescale all the parameters. Neverthe-
less, when deemed relevant, we explicit the mass dimension
as a function of λ.

Although Lagragian (1) yields a second order equation
of motion, thanks to the BPS condition one can obtain an
equivalent first order equation

∂xφ − (1 − φ2)(1 − φ) = 0, (3)

where the field φ is static. Integrating the above equation we
find

1

4

[
log

(
φ + 1

φ − 1

)
− 2

φ − 1

]
= x + C, (4)

where C is the integration constant. We choose the center of
the soliton at φ(0) = 0, implying C = 1

4 (2 − iπ). This can
be solved in terms of Lambert W function.1 The details of
this calculation are provided in Appendix A. The solution is

φs(x) = 1 − 2

1 + W [e1+4x ] . (5)

The corresponding antikink solution can be obtained by map-
ping φ → −φ. Figure 1a shows the kink profiles for φ4 and
our models. Notice that in the kink profile of our model the
parity is explicitly broken. At large x the behavior of the kink
is as follows

{
φs(x) → −1 + 2e1+4x x → −∞,

φs(x) → 1 − 1/(2x) x → ∞.
(6)

The above asymptotic behavior means that the kink at large
x has a long-range power-law fall-off in contrast with the
opposite tail, x → −∞, with exponential asymptotics.

Using the BPS condition, it is straightforward to calculate
the energy of the soliton configuration, the so-called classical
mass of the soliton,

Mcl =
∫ ∞

−∞
E(x)dx

=
∫ ∞

−∞

[
1

2

(
dφ

dx

)2

+ V (x)

]
dx

= (λ)

∫ 1

−1
(1 − φ2)(1 − φ) dφ = 4

3
(λ), (7)

where the energy density E(x) is shown in Fig. 1b for our
model and φ4 kink. Interestingly, despite the difference in
the energy density of the two models, the resulting mass is
the same.

Having the profile of the soliton, it is relevant to analyze
the small fluctuations of the boson field described by the
linear stability equation

1 For the properties of Lambert W function check, e.g., [51].
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Fig. 1 a Soliton profile. b
Energy density. The solid line
(blue) and the dashed line (red)
show the soliton in our model
and the kink of φ4 theory,
respectively

(a) (b)

[
−∂2

x +U [φ(x)]
∣∣∣
φs (x)

]
ηn(x) = ω2

nηn(x) , (8)

with the stability potential

U [φ(x)]
∣∣∣
φs (x)

= d2V

dφ2

∣∣∣∣
φs (x)

=
16

(
1 − 8W

[
e1+4x

] + 6
(
W

[
e1+4x

])2
)

(
1 + W

[
e1+4x

])4 ,

(9)

where ηn’s are the normal modes of the fluctuations around
the static solution. Due to the translational symmetry of the
system there exists a zero mode, ω0 = 0. It is possible to
show that it is as follows

η0 = ∂xφ = 8W
[
e1+4x

]
(
W

[
e1+4x

] + 1
)3 . (10)

Now, let us show that the eigenvalues ω2
n are non-negative.

We can decompose the small fluctuations hamiltonian as

H =
[
−∂2

x +U [φ(x)]
∣∣∣
φs (x)

]
≡ A†A, (11)

where

A = −∂x + (3φs(x) + 1) (φs(x) − 1)

= −∂x + 4 − 8W
[
e1+4x

]
(
W

[
e1+4x

] + 1
)2 . (12)

This shows that the above operator H is hermitian and as a
result with non-negative eigenvalues [52]. Equivalently, one
can multiply both sides of the Eq. (8) by η† from the left and
integrate over the whole space which gives

ω2 =
∫ ∞
−∞ |Aη|2dx∫ ∞
−∞ |η|2dx (13)

proving the same, ω2
n ≥ 0, which makes sense knowing that

d2V

dφ2

∣∣∣∣
φ=1

= 0,
d2V

dφ2

∣∣∣∣
φ=−1

= 16 (λ2). (14)

Figure 2 shows the stability potential U (x) (panel a) as well
as the zero mode η0 (panel b). As one can see, the potential
presents different limits at x → ±∞, going to zero at x →
∞. What matters for the bound states is the value of the
potential at infinities. When the potential goes to zero from
one side (being long-range in this side) makes it impossible
to have a gap between the zero mode and the continuum [53].
In contrast, the models with exponentially decaying tails, of
which the φ4 kink is an example, have non-zero potential on
both sides and therefore a gap. Since the continuum starts
at zero and there are no negative ω2 states, the soliton has
no more bound oscillation modes other than the zero mode,
which is associated with the translational symmetry.

Knowing that the potential has different limits at x →
±∞, only waves whose energy exceeds U (−∞) are per-
mitted when travelling from the left. In contrast, incoming
waves from the right are allowed for lower energies starting
from 0, the value of U (+∞). In this case, oscillations with
an energy smaller than U (−∞) are totally reflected by the
potential barrier.

Until now, we have been concerned with the soliton solu-
tions in isolation. In what follows, we consider the interaction
of the soliton of our model with other fields, including boson
and fermion fields. We analyze two different types of cou-
plings responsible for the soliton–boson interaction, and a
Yukawa coupling between the soliton and the Dirac field. In
all three cases, we consider the soliton a background field.

3 Interaction with a scalar field

3.1 Model I

First, let us consider the interaction of a real massive scalar
field χ with the soliton of our model in the following form
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Fig. 2 a Stability potential. b
Zero mode. In both cases, the
solid line (blue) and the dashed
line (red) show the graphs for
our model and the kink of φ4

theory, respectively

(a) (b)

L = 1

2
∂μφ ∂μφ − V (φ) + 1

2
∂μχ ∂μχ + 1

2
m2χ2 − g φ χ,

(15)

where m is the mass of the field χ and g is the scalar-
soliton coupling constant. This interaction yields a non-
homogeneous Klein-Gordon equation

(� − m2)χ = −g φ. (16)

Separating the time dependence as χ = χse−i Et , we find the
equation

(∂2
x + k2)χs = g φ, (17)

where we define k2 ≡ E2 − m2. First consider the bound
states, for which we have k2 < 0. The solution to the equation
of motion, Eq. (17), is

χs(x) = Aeκx + Be−κx + g

κ

∫ x

sinh [κ(x − y)] φ (y) dy,

(18)

introducing k2 ≡ −κ2. The first two terms come from the
solution of the homogeneous equation and the last one is
a particular solution. Focusing only on the integral term in
the above solution and performing the change of variables
u = x − y results in

− g

κ

∫
sinh (κu)

(
1 − 2

W
[
e1+4(x−u)

] + 1

)
du

= − g

κ2 + 2g

κ

∫
sinh (κu)

1 + W
[
e1+4(x−u)

] du. (19)

Two more changes of variables, v = e1+4(x−u) followed by
w = W [v], allow us to rewrite the integral in a form that can
be directly solved

− g

κ2 − g

2κ

∫
sinh

[
−κ

4
(ln(w) + w − 1 − 4x)

] 1

w
dw

= − g

κ2

− g

4κ

[(
−κ

4

)−κ/4
e− κ

4 (1+4x) 

(κ

4
,−κ

4
W

[
e1+4x

])

−
(κ

4

)κ/4
e

κ
4 (1+4x) 


(
−κ

4
,
κ

4
W

[
e1+4x

])]
. (20)

Therefore, the general solution takes the form

χs(x) = Aeκx + Be−κx − g

κ2 − g

4κ

×
[(

−κ

4

)−κ/4
e−κx e−κ/4 


(κ

4
,−κ

4
W

[
e1+4x

])

−
(κ

4

)κ/4
eκx eκ/4 


(
−κ

4
,
κ

4
W

[
e1+4x

])]
. (21)

To obtain a real χs one has to impose the restriction κ = 4n
where n is an integer number. This means that E2 = m2 −
16n2 and also n < m/4(λ) following the fact that E2 is
non-negative. Looking at the limit of χs when x → +∞ it is
easy to see that, for the solution to be finite, A should be zero.
At this limit, the last term in the above expression vanishes
and therefore the solution converges to −g/κ2. It remains to
determine the value of B which can be found by requiring
the solution to be finite when x → −∞. Doing so, it can be
shown that

B = g

16n
(−n)−n e−n 
 (n) . (22)

The detailed calculations are provided in Appendix B. Fig-
ure 3 shows the bound states for three values of n, 1, 2 and
3. As it can be seen, at the limits x → ±∞ the solution con-
verges to ∓ g

κ2 = ∓ g
16n2 . This result is expected considering

Eq. (17) when φ(x → ±∞) = ± 1. Notice that, interstingly,
bound states are also solitons which means that the original
soliton can trap another boson field in the form of a soliton
configuration.

Now, let us look at the case k2 > 0 which corresponds to
the scattering states. The general solution for this equation is
in the form
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Fig. 3 Bound states for three values n = 1, 2, 3

χs(x) = Aeikx + Be−ikx + g

k

∫ x

sin[k(x − y)] φ(y) dy,

(23)

where again the first two terms come from the solution of
the homogeneous equation and the last one is a particular
solution. Following the same series of change of variables
the integral in the above expression changes to

− g

2k

∫
sin

[
−k

4
(ln(w) + w − 1 − 4x)

]
1

w
dw

= −ig

4k

[

(−ik/4, ikw/4)(ik/4)ik/4 ei(1+4x)k/4 − c.c.

]
,

(24)

where c.c. stands for the complex conjugate. After some sim-
plifications, the solution (23) takes the form

χs(x) = Aeikx + Be−ikx + g

k2 + g

2k
Im

×
[

(−ik/4, ik W [e1+4x ]/4) ei[1+4x+ln(k/4)+iπ/2]k/4

]
.

(25)

To verify the result, one can look at the limits x → ±∞. At
the limit x → +∞, the last term in the above solution tends
to zero and we recover the expected result using Eq. (17)
when φ → 1

χs(x → +∞) = Aeikx + Be−ikx + g

k2 . (26)

The same goes for the limit x → −∞ where the Eq. (25)
tends to

χs(x → −∞) = Aeikx + Be−ikx − g

k2 + g

2k
Im

×
[(

k

4

)ik/4

e(π+i)k/4 


(
−i

k

4

)
eikx

]
.

(27)

The last term can be removed through a redefinition of the
coefficients A and B, which gives the expected result using
Eq. (17) when φ → −1.

3.2 Model II

Now we introduce a different type of coupling between the
soliton field φ and the scalar field χ . Consider the following
Lagragian

L = 1

2
∂μφ ∂μφ − V (φ) + 1

2
∂μχ ∂μχ + 1

2
m2χ2 + g φ χ2,

(28)

where the coupling between the fields is analogous to a
Yukawa interaction. This interaction yields the equation of
motion

(
� − m2

)
χ − 2g φχ = 0. (29)

Considering χ = χse−i Et and rearranging the terms we
arrive at

(
−∂2

x − 2g φ
)

χs = k2χs . (30)

Replacing the solitonic solution of our model in the above
equation leads to

(
−∂2

x + 4g

1 + W [e1+4x ]
)

χs = (k2 + 2g)χs, (31)

which has the formal structure of the Schrödinger equation
with energy equal to (k2 + 2g). Figure 4 shows the form of
the potential term in the above Schrödinger-like equation. In
[54], the author solved a similar equation. To map our system
to the quantum mechanical system solved in the aforemen-
tioned paper, we need first to consider the change of variables
1 + 4x → −y which results in

(
−∂2

y + g/4

1 + W [e−y]
)

χs = 1

16
(k2 + 2g)χs (32)

Now, the map between their system and ours is given by
2m/h̄2 → 1, V0 → g/4, E → (k2 +2g)/16 and σ → 1. As
a result, the solution to our system is in the following form
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Fig. 4 Potential energy of the Schrödinger-like equation

χs = ziδ
−/2e−iδ+z/2

(
du(z)

dz
− i

(
δ+ + δ−)

2
u(z)

)
(33)

with z = W
[
e1+4x

]
, δ± = 1

2

√
k2 ± 2g, a = (

δ+ + δ−)2

/(4δ+),

u = C1 (iδ+z)1−iδ−
1F1(1 + i(a − δ−); 2 − iδ−; iδ+z)

+ C2 U (ia; iδ−; iδ+z),

where C1 and C2 are constants and 1F1 and U are the Kum-
mer and Tricomi confluent hypergeometric functions, respec-
tively. The system does not have any bound state, which is
easy to recognize from the form of the potential (see Fig. 4).
The scattering states from the right and the left are shown in
Fig. 5a. Besides that, in the same figure, one can see the scat-
tering from the right where the energy is beneath the thresh-
old required to surpass the barrier. In this case, the wave is
totally reflected. Figure 5b shows the reflection coefficient
as a function of the momentum for the waves from the right
and left. In the case of incoming waves from the right, the
reflection coefficient is 1 for momenta associated with ener-
gies below the barrier, as expected. Also, for waves coming
from both directions, the reflection coefficient drops to zero
at high energies since the wave does not see the barrier.

4 Interaction with a fermion field

Fermions can be coupled to the soliton in various ways. We
introduce a fermion field ψ coupled to the soliton through a
Yukawa coupling in the following form

L = 1

2
∂μφ ∂μφ − V (φ) + ψ̄iγ μ∂μψ − g φ ψ̄ψ, (34)

where g is a coupling constant. The resulting equation of
motion in the background of the soliton reads

iγ μ∂μψ − g φ ψ = 0. (35)

Opening the spinor field ψ in components as ψ = e−i Et(
ψ1

ψ2

)
one can find the pair of equations

E ψ1 + ψ ′
2 − g φ ψ2 = 0,

E ψ2 − ψ ′
1 − g φ ψ1 = 0, (36)

where the representation for the Dirac matrices is taken as
γ 0 = σ1, γ 1 = iσ3 and γ 5 = σ2. For the case of φ4 model,
a zero energy bound state or zero mode is known to exist,
which is also the case for our model. The zero mode is given
by

ψ(x) = N
(
e−g

∫ x
φ(x ′)dx ′

0

)
, (37)

whereN is the normalization constant. Since one of the com-
ponents is null the soliton never receives backreaction from
this state and the solution is exact [55]. Performing the above
integration we can obtain an explicit solution to the state

ψ1 = N exp

{
−g

∫ x
[

1 − 2

1 + W
[
e1+4x ′]

]
dx ′

}
. (38)

Performing the change of variables y = exp(1 + 4x) this
becomes

ψ1 = N exp

{
−g x + g

2

∫ e1+4x
W ′[y]
W [y] dy

}
, (39)

using the property of Lambert W function

W ′[y] = W [y]
y (1 + W [y]) . (40)

Therefore, the wavefunction becomes

ψ = N
(

exp
{−g x + g

2 ln
[
W

[
e1+4x

]]}
0

)
(41)

= N
((

W
[
e1+4x

]) g
2 e−g x

0

)
, (42)

with the normalization constant

N =
√(g

2

)g/2 2 e−g/2


 [g/2]
. (43)
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Fig. 5 a Boson field continuum
states. b Reflection coefficient.
In both cases, the solid line
(blue) and the dashed line (red)
show the graphs for scattering
from the right and scattering
from the left considering
g = 0.1, respectively. The
dot-dashed curve (green) shows
the scattering from the right for
the case where the energy is
below the threshold required to
surpass the barrier

(a) (b)

Details of the calculation above are supplied in Appendix C.
In Fig. 6, we show the fermionic zero mode for two differ-
ent values of the coupling. The resulting parity asymmetry
in the zero mode of our model is visible, especially when
the fermion–soliton coupling g increases. Besides that, we
solve the equations of motion in (36) for nonzero bound states
numerically where the result for the upper and lower com-
ponents of the first and second fermionic bound states is
presented in Fig. 7. A close inspection of the figure reveals
that the states do not respect parity. Moreover, we plot the
bound and threshold energies as a function of the bound state
number as well as the fermion–soliton coupling g in Fig. 8,
where the system is solved numerically. It is not difficult to
show that the system has energy-reflection symmetry, which
is given by γ 1 in our model. In Fig. 8 the symmetry manifests
itself by the symmetric form of the spectrum around E = 0
line. For very small values of g, the only discrete mode is
the zero mode. However, gradually increasing g from zero
supports more and more bound states. Besides the bound
states, one can explore the scattering ones considering ener-
gies above the threshold in the equation of motion (36). We
show the upper and lower components of the fermionic scat-
tering states for the scattering from both directions in Fig. 9.
Again, it is easy to observe that the states do not respect parity
symmetry.

5 Conclusion

In this work, we have designed a parity-breaking solitonic
model where the potential is up to sixth order in the scalar
field φ, with two minima. The soliton solutions connecting
the two minima in a nonsymmetric form, with one long-range
power-law tail and one exponential asymptotics, has been
solved in terms of the Lambert W function. Although the sys-
tem lacks Z2 symmetry, changing φ → −φ only swaps the
role of the soliton and antisoliton solutions. We have found
the soliton mass, which is equal to the one for the kink of φ4

theory, despite a very different energy density. Studying the

Fig. 6 Fermionic zero mode for g = 0.5 (solid curve in blue) and
g = 0.9 (dashed curve in red)

linear stability equation for the small perturbations around
the static soliton solutions, we have concluded that the only
discrete mode is the zero mode associated with the transla-
tional invariance, in contrast with the parity-symmetric φ4

model. Besides that, we have studied the interaction of the
boson and fermion fields with the soliton considering two dif-
ferent types of interaction terms for the bosonic one and the
Yukawa interaction for the fermionic one. The first interac-
tion we have examined has led to a non-homogeneous Klein–
Gordon equation with interesting results. For example, we
have shown that the boson bound state also acquires the form
of a defect, which means that the soliton in our model traps
the bosonic field in a kink configuration. Considering the
second interaction term, a Yukawa-like interaction, we have
shown that one can write the equation of motion in the form
of a Schrödinger equation. With a change of variables and
mapping the parameters with the results obtained in [54], we
have found the bound and continuum states analytically. We
have also studied the scattering of the waves from the left and
right as well as the reflection coefficient, knowing the barrier
shape potential term. We have shown that the reflection coef-
ficient is unity for waves with energies beneath the barrier
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Fig. 7 a First fermionic bound
state for g = 0.9. b Second
fermionic bound state for
g = 0.9. The solid (blue) and
dashed (red) curves show the
upper and lower components,
ψ1 and ψ2, respectively

(a) (b)

Fig. 8 a Fermionic bound
energy spectrum for g = 2. The
dashed lines (red) show the
threshold energies. b Fermionic
bound energy spectrum for the
first three bound states as a
function of the coupling g. The
dashed lines (red) show the
threshold energies

(a) (b)

Fig. 9 a Fermionic continuum
states in the case of the
scattering from the right. b
Fermionic continuum states in
the case of the scattering from
the left. In both graphs g = 0.9
and k = 0.5 and also the solid
curve (blue) and dashed (red)
curve show the upper and lower
components, ψ1 and ψ2,
respectively

(a) (b)

and goes to zero at high-energy, as expected. We have solved
the system analytically for both types of interactions. It is
not common to find systems that can be fully solved analyti-
cally, and this makes the model more valuable for follow-up
studies and applications. Moreover, in both cases, we have
verified that the results match the expectations in the limiting
cases where φ(x → ±∞) → ±1. Finally, the interaction of
the fermion field with the soliton has been considered. In this
case, we have been able to find the normalized fermion zero
mode analytically. We have also obtained the nonzero bound
energy spectrum as a function of bound state number as well
as the fermion–soliton coupling g numerically. The system
has energy reflection symmetry given by γ 1 resulting in a
symmetric bound energy spectrum. We have shown that, for
very small values of the coupling, the only discrete mode

is the zero mode, with a growing number of bound states
appearing as we gradually increase the coupling. Finally, the
scattering oscillating modes for the waves coming from the
left and the right have been analyzed.

In future work, we plan to apply the model proposed here
to address the soliton–soliton long-range interactions, taking
advantage of the analytical properties of the model. Besides
that, one can explore how the parity violation affects the
charge fractionalization, as first explored in [30].
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Appendix A: Calculation of the soliton solution

Performing the change of variables χ = φ − 1 in Eq. 4 we
obtain

log

[
1 + 2/χ

e2/χ

]
= 4x − iπ + 2, (44)

which leads to

(−1 − 2/χ) e−1−2/χ = e4x+1. (45)

Recalling that the Lambert W function is defined as the
inverse function of

f (W ) = WeW , (46)

the previous equation can be written as

−1 − 2/χ = W [e4x+1]. (47)

Now solving for χ and reintroducing φ we have the final
result

φ = 1 − 2

1 + W
[
e4x+1

] . (48)

Appendix B: Integration constants of the bound states in
model I

We start with the general form of the solution for model I,
Eq. (21),

χs(x) = Ae4nx + Be−4nx + g

16n

[
fn(x) − f−n(x) − 1

n

]
,

(49)

where

fn(x) ≡ nnen(1+4x) 

(
−n, n W

[
e1+4x

])
. (50)

Let us first look at the limit x → +∞. At this limit, fn(x)
becomes

fn(x → +∞)

≈ nnen(1+4x) 
 (−n, n [1 + 4x − ln(1 + 4x)])

≈ nnen(1+4x)
[

1

4x
e−n(1+4x)n−1−n

]
= 1

4nx
. (51)

Therefore,

lim
x→+∞ fn(x) = 0, (52)

and similarly

lim
x→+∞ f−n(x) = 0. (53)

Since the A term diverges in this limit and there is no other
term to compensate it, the constant A should be set to zero.

Now considering the limit x → −∞ we can determine the
remaining constant B. Using the expansion of the Lambert
function for small arguments we have

fn(x → −∞)

≈ nnen(1+4x) 

(
−n, n e1+4x

)

≈ nnen(1+4x) 1

n!
×

[
en e

1+4x

(
n e1+4x

)n (n − 1)! + (−1)n

(

0, n e1+4x
)]

≈ nnen(1+4x)

×
{

en e
1+4x

n
(
n e1+4x

)n + (−1)n

n!
[
−γ − ln

(
n e1+4x

)
+ n e1+4x

]}
.

In the limit x → −∞, we can ignore the second term and
replace en e

1+4x
with 1, which gives

lim
x→−∞ fn(x) = 1

n
. (54)

We need to deal with f−n(x) differently. For this function,
we have

f−n(x → −∞)

≈ (−n)−ne−n(1+4x) 

(
n,−n e1+4x

)

= (−n)−ne−n(1+4x)
[

 (n) − γ

(
n,−n e1+4x

)]
, (55)
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where γ (s, z) is the lower incomplete gamma function.
Therefore, we obtain

f−n(x → −∞)

≈ (−n)−ne−n(1+4x)

[

 (n) −

(−n e1+4x
)n

n

]
(56)

= (−n)−ne−n 
 (n) e−4nx − 1

n
. (57)

The first term diverges at x → −∞ and should be can-
celled by the B term in the full solution. As a result, Eq. (49)
becomes

χs(x) = g

16n

×
[
fn(x) − f−n(x) − 1

n
− (−n)−ne−n 
 (n) e−4nx

]
.

(58)

Appendix C: Normalization of the fermionic zero mode

In Eq. (41), we can find the normalization factor in the fol-
lowing way

N 2 = 1

/∫ ∞

−∞
ψ∗

1 ψ1 dx

= 1

/∫ ∞

−∞
e−2g x

(
W

[
e1+4x

])g
dx . (59)

Choosing the transformation y = e1+4x , it results in

N 2 = 1

/∫ ∞

0

e− g
2 [ln(y)−1]

4 y
(W [y])g dy (60)

= e−g/2
/∫ ∞

0

1

4 y1+g/2 (W [y])g dy . (61)

Now let’s consider the change of variables w = W (y) (notice
that y = wew, by the very definition of the Lambert W
function). Therefore,

N 2 = 4e−g/2
/∫ ∞

0

wg

(wew)1+g/2 (1 + w) ew dw , (62)

which leads to

N 2 =
(g

2

)g/2 2 e−g/2


 [g/2]
. (63)
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