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Abstract The multiplicity distribution of the gluons pro-
duced at the high energy is evaluated in BFKL approach.
The distribution has Poisson form that can explain experi-
mentally observed KNO scaling.

1. The multiple secondary particles production at high
energy hadron-hadron collisions is known to exhibit KNO
scaling [1] confirmed in many experimental papers [2,3].
The scaling means that the ratio Pn(s) = σn(s)/σin(s) of the
cross section to producen secondaries in the collision event to
the total inelastic cross section depends on the energy

√
s only

through the averaged multiplicity n, Pn(s) = 1/n �(n/n).
According to Reggeon calculus the high energy hadron

scattering is mediated by the Pomerons exchange, the
Pomeron being described by the cylinder type diagrams
[4,5]. The inelastic amplitudes come about from the s-
channel cutting of one or several Pomerons [6]. Each cut can
be associated with the creation of two quark-gluon strings
[8] whose subsequent hadronization gives rise to the multi-
ple hadron production.

The observed KNO scaling has been explained [8,10] by
the various number of cut Pomerons (quark-gluon strings)
that may contribute to the interaction amplitude. Assuming
Poisson distribution for the secondaries produced from a sin-
gle Pomeron the net sum over the cuts yields the function
�(n/n). In general it is not of the Poisson type, its form is
much more complicated. It is nevertheless s independent in
the rather wide energy interval although the scaling should
be violated at the very high energies in agreement with the
experimental data [10,12].

There has been much theoretical activity in studying KNO
scaling in multiplicity distribution of QCD parton cascades.
The cascade starts off a primary virtual gluon whose virtuality
Q2 is of the order of the typical hard scale for the process,
say, e+e− annihilation. The primary gluon emits secondary
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gluon jets each of which, in turn, emits another jets and so
on. The cascade development is described by the evolution
equation that collects the leading or subleading powers of
log Q2 (see e.g. [13], or [14] for review).

The task we are going to deal with here is alternative in
that we treat the secondaries arising from the large s scatter-
ing of almost on shell particles rather than from the decay
of an virtual object. That is why the context of Regge the-
ory, collecting the powers of log s or, equivalently, log 1/x
for the deep inelastic scattering, seems to be quite natural.
An important point to be questioned at first is what kind of
distribution could be expected from a single Pomeron, or in
another language, from a single quark-gluon string. Is it evi-
dent that it is Poisson like? Some insight can be gained by
calculating the distribution of perturbative gluons originating
from BFKL Pomeron. It is the issue that is addressed below.
2.The BFKL Pomeron arises as a compound state of two
reggeized gluons in the sum of ladder type diagrams [15,
16,18,20]. The treatment essentially relies on Multi-Regge
form of many-particle amplitudes. It provides an expression
for the amplitude to produce n gluons or, more generally n
jets, in the inelastic scattering, A+ B → A′ + B ′ + n, at the
large invariant energy s = (pA + pB)2 and the kinematics,
when the rapidity intervals between the jets are much larger
those between the jets’ constituents - multi-Regge kinematics
(see [22] and references therein). This amplitude is actually
nothing else as the cut through the Reggeon. Using s-channel
unitarity it gives the imaginary part of the elastic scattering
amplitude, which value at t = 0 is translated into the total
cross section,

σAB(s) = 1

4

1

(2π)2

∫
d 2q

q2

∫
d 2l

l2
�A(q)〈 q|G(Y ) |l 〉�B(l).

(1)

Here �A,B are the color-singlet impact-factors, Y = ln s/s0

(s0 is an appropriate energy scale usually assumed in the
Regge theory to be of the order of 1 GeV2),G(Y ) is the Green
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function of two interacting reggeized gluons. It is given by
the series [23,25]

G(Y ) = e�Y +
∞∑
n=1

Y∫

0

dy1 e
�(Y−y1)Kr

×
y1∫

0

dy2 e
�(y1−y2)Kr · · ·

yn−1∫

0

dyn e
�(yn−1−yn)Kr e

�yn ,

(2)

with the operators � and Kr acting in the transverse momen-
tum space. The operator Kr describes the emission of real
(on-shell) gluons,

〈q| Kr |l〉 = g2Nc

(2π)3

2

(q − l)2 + m2
g
, (3)

the virtual corrections are collected in the gluons’ trajecto-
ries, � = ω1 + ω2. They are equal for the total transferred
momentum q = 0, ω1 = ω2 = ω,

〈q| ω |l〉 = −1

2

g2Nc

(2π)3

∫
d 2k

q2

k2(q − k)2 + m2
g

δ(2)(q − l),

(4)

the gluon mass m2
g being the infrared cutoff.

The formulae (3), (4) are relevant in the Leading Loga-
rithm Approximation (LLA) collecting the leading powers of
αS ln s/s0, where αS = g2/4π , g is QCD coupling constant.
The dominant contribution to cross sections of hard processes
comes in LLA from multi-Regge kinematics, when the emit-
ted particles are single gluons. The situation allowing for the
emission of the jets made up of two or more particles corre-
sponds to the next to the leading order corrections [23,26].

There is an equivalent form of the operators (3), (4), valid
for the small mg [25],

Kr = α
[− lnm2

gx
2 + 2 ln 2 + 2ψ(1)

]
, ω

= −1

2
α ln

q2

m2
g
, (5)

α ≡ Nc
g2

4π2 , ψ(z) = d
dz ln �(z). The variables xk are the

transverse space coordinates conjugated to the momenta qk
(the indices k = 1, 2 label the vectors’ component in the
transverse space), q2 = q2

1 + q2
2 , x2 = x2

1 + x2
2 . These vari-

ables are treated in the formula (5) as operators q̂k , x̂k = i ∂
∂qk

acting in the transverse space, |l〉 being the operator q̂k eigen-
states, q̂k |l〉 = lk |l〉, 〈q|l〉 = δ(2)(q − l). The operator
ω = ω(q̂1, q̂2) is diagonal in this basis, its matrix elements
are given in (4), the expression (3) presents the matrix ele-
ments of the non diagonal operator Kr = Kr (x̂1, x̂2). Here-
after we omits hats above the operators’ symbols.

The series (2) is summed up as

G(Y ) = eKY , K = Kr + ω1 + ω2, (6)

which is the operator form of the BFKL equation [25]. The
mass mg cancels out in the operator K for the color singlet
Pomeron channel (as is evident from (5)).

The N -th order term in the expansion (2) describes the
emission of N real gluons. To pick up its relative weight in
G(Y ) we multiply it by an auxiliary variable uN , or in other
words replace Kr → u Kr . Then the probability to emit n
real gluons reads

PN = 1

P(1)

1

N !
∂ N

∂uN
|u=0P(u), (7)

with the generating function P(u) obtained by modifying the
formula (1),

P(u) =
∫

d 2q

q2

∫
d 2l

l 2 �A(q)〈 q| eY (uKr+2ω) |l 〉�B(l).

(8)

To work out this expression we firstly rearrange the oper-
ator appearing in P(u) as

K (u) = uKr + 2 ω = α
[
u (− ln x2 − ln q2)

−u ln q2 + u lnm2
g + 2u

(
ln 2 + ψ(1)

)]
, (9)

u ≡ 1 − u, and pass to the complex variables,

q = q1 + iq2, q∗ = q1 − iq2, q2 = q q∗, x2

= −4
∂

∂q

∂

∂q∗ ,

the hermitian conjugate being
[

∂
∂q

]+ = − ∂
∂q∗ . Using the

identity [24,25]

ln q + ln
∂

∂q
= 1

2

[
ψ

(
1 + q

∂

∂q

)
+ ψ

(
−q

∂

∂q

)]

and its hermitian conjugate we arrive at the form that falls
into the holomorphic and antiholomorphic pieces,

K (u) = α
1

2
u

[
ψ(1 + D) + ψ(−D) + ψ(1 + D∗) + ψ(−D∗)

]
+α L(u),

D ≡ q
∂

∂q
, D∗ ≡ q∗ ∂

∂q∗ ,

+ 2 uψ(1).

Given the commutator
[
ln q , D

] = −1, it is easy to check
another operator identity,

e
u
u Q

[−u ln q
]
e− u

u Q = −u ln q − 1

2
u

[
ψ(1 + D) + ψ(−D)

]

with the operator

Q = 1

2
ln

�(1 + D)

�(−D)
, Q∗ = 1

2
ln

�(1 + D∗)
�(−D∗)

.

Putting it together with the same identity for the antiholo-
morphic ln q∗ results into the relation

e
u
u (Q+Q∗)αL(u)e− u

u (Q+Q∗) = K (u),
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that in turn amounts to

eY K (u) = e
u
u (Q+Q∗)eαY L(u)e− u

u (Q+Q∗). (10)

Now one has to plug the identity (10) into the matrix ele-
ment occurring in the function P(u) (8). We do it in the
following way

〈q| e u
u (Q+Q∗)eαY L(u)e− u

u (Q+Q∗)| l 〉
= 〈q| e 1

2 αY L(u) e− 1
2 αY L(u)︸ ︷︷ ︸

1

e
u
u (Q+Q∗)e

1
2 αY L(u)e

1
2 αY L(u)e− u

u (Q+Q∗)

× e− 1
2 αY L(u)e

1
2 αY L(u)︸ ︷︷ ︸

1

| l 〉

By elaborating on the identities

e± 1
2 αY L(u)De∓ 1

2 αY L(u) = D ± 1

2
αYu

along with the same for D∗ and

〈 q |e 1
2 αY L(u) = 〈 q |e− 1

2 αYu ln q2

m2
g
+αYuψ(1)

,

e
1
2 αY L(u)| l 〉 = e

− 1
2 αYu ln l2

m2
g
+αYuψ(1)| l 〉

the function P(u) is brought to the form

P(u) = e 2αYuψ(1)

∫
d 2q

q2

∫
d 2l

l2

×�A(q)

(
q2

m2
g

)− 1
2 αYu

�B(l)

(
l 2

m2
g

)− 1
2 αYu

×〈 q |H(u, D, D∗)| l 〉,
(11)

H(u, D, D∗) = exp

{
1

2

u

u

[
ln

�
(
1 − 1

2 L u + D
)

�
( 1

2 L u − D
)

+ ln
�

(
1 − 1

2 L u + D∗)
�

( 1
2 L u − D∗)

− ln
�

(
1 + 1

2 L u + D
)

�
(− 1

2 L u − D
)

− ln
�

(
1 + 1

2 L u + D∗)
�

(− 1
2 L u − D∗)

]}
, L ≡ αY.

(12)

This form has a merit of the infrared cutoff explicitly fac-
torized out. Besides, the operator in the matrix element is
diagonal in the basis, where D and D∗ are diagonal,

〈 q| ν, n 〉 = 1

2π

(
q2)− 1

2 +i 1
2 ν+inφ

, (13)

−∞ < ν < ∞, n is integer, 0 < φ < 2π is the polar angle
in the transverse q-space,

〈ν, n | H(u, D, D∗) | ν′, n′〉 = H(u, ν, n) δ(ν − ν′) δn,n′ ,

H(u, ν, n) = H

(
u, D → 1

2
(−1 + iν + n), D∗

→ 1

2
(−1 + iν − n)

)
.

From now on we suppose the impact factors to be angular
independent in the transverse space. Then after inserting the
complete set,

∑
n

∫ ∞

−∞
dν〈 q2| ν, n 〉〈 ν, n| q1 〉 = δ(2)(q2 − q1),

into the matrix element (11) only the terms with n = 0 sur-
vive in P(u). Suppose also qR is a typical momentum scale
for the both impact factors, �A,B = �A,B(q2/q2

R) and intro-
duce the functions CA,B(n) according to the relation

∫
d2q

q2 �A,B(
q2

q2
R

)
(
q2)n = (

q2
R

)n
CA,B(n). (14)

With these notations one gets

P(u) = e 2Luψ(1)

(
q2
R

m2
g

)−Lu ∫
dν CA

(
− 1

2
Lu + 1

2
iν

)

×CB

(
−1

2
Lu − 1

2
iν

)
H(u, ν, 0). (15)

The function H(u, ν, 0) embodies the scattering dynamics.
Taking the limit u → 0 we see that,

P(1) = e 2Lψ(1)

∫
d 2q

q2

∫
d 2l

l2
�A(q)〈 q| eK (1)L | l 〉�B(l)

with

K (1) = −1

2

[
ψ(1 + D) + ψ(−D) + ψ(1 + D∗) + ψ(−D∗)

]
(16)

and consequently e 2Lψ(1)H(1, ν, 0) = eω(ν)L , where BFKL
eigenvalue,

ω(ν) = α

[
2ψ(1) − ψ

(
1

2
+ 1

2
iν

)
− ψ

(
1

2
− 1

2
iν

)]
,

(17)

yields for ν = 0 the Pomeron mediated elastic cross section.
The main contribution for L � 1 comes to the integral from
the region near ν = 0, P(1) ∼ CA(0)CB(0) exp

(
ωPY

)
,

where ωP = ω(0) = 4α ln 2 is the LLA Pomeron intercept.
The function P(u) (15) turns out, however, to be strongly

suppressed when mg → 0 at least for u < 1. On the other
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hand, the mean gluon number

N = 1

P(1)

∂

∂u
P(u)

∣∣∣∣
u=1

∼ ln
q2
R

m2
g
,

indicates the infinite growth of the emitted gluons with
decreasing infrared cut off mg . The reason behind this is in
the virtual gluons. The function P(u) is constructed in (15)
to fix the number of the real gluons whereas the virtual ones
associated with the gluon trajectory ω remain unrestricted.
As a consequence we are dealing with the amplitudes of the
given perturbation order for the real emission allowing at the
same time for the virtual corrections of an arbitrary order.
Different number of the real and virtual gluons, the latter
number being unbounded while the first one is finite, breaks
down the infrared cancelation. A possible way to improve it
is to modify the operator K (u) → K (u, v) = uKr + 2v ω

by adding a new variable v that “counts” the virtual gluons.
It simply results into redefinition u → v − u in the all above
expressions, so that u and u become independent. Putting
mg → 0 enforces u = v, that leaves us with u → 0 limit,

P(u) = CA(0)CB(0) eωPYu .

written here for the dominant, ν = 0, part. Thus we arrive at
the Poisson distribution,

PN = 1

N ! (ωPY )N e−ωPY . (18)

This formula however is hardly directly applied to the
observable emission. The infrared cancelation of real and
virtual parts occurs in each perturbation order that is why
we actually get here the distribution over the evolution steps
rather than the emitted gluons. Put somewhat differently, it
is the distribution of the ladder cells number in the Pomeron
diagram for the exclusive cross section, which is finite for
mg → 0. Dealing with inclusive processes one has to appre-
ciate that there is always a physical infrared cut-off provided
either by a sort of minimal experimentally resolved momen-
tum or some kinematical restrictions imposed to select the
proper observables. Thus we have to modify our treatment
to accomodate the additional constraints.

3. First, we modify the expression (11) to get the distribution
of the gluons produced with a given total transverse momen-
tum Q. On this purpose the probability to emit N gluons with
transverse momenta ki has to be multiplied by the factor

δ(2)

(
Q −

N∑
i=1

ki

)
=

∫
d2z

(2π)2 eizQ
N∏
i=1

e−i zki

that results into modification of the real emission operator (3),

〈q| Kr |q ′〉 → e−i z(q−q ′)〈q| Kr |q ′〉.

It leads to the replacement lnm2
gx

2 → lnm2
g(x − z)2 in the

formula (5). Then the equalities

ln(x − z)2 = 2 ln 2 + ln

(
∂

∂q
+ i

2
z∗

)

+
[

ln

(
∂

∂q
+ i

2
z∗

)]+
, z = z1 + i z2,

and the chain of relations

ln q + ln

(
∂

∂q
+ i

2
z∗

)

= e− 1
2 i z

∗q
[

ln q + ln
∂

∂q

]
e

1
2 i z

∗q

= e− 1
2 i z

∗q
[

1

2
ψ

(
1 + q

∂

∂q

)

+1

2
ψ

(
−q

∂

∂q

) ]
e

1
2 i z

∗q = 1

2

[
ψ(1 + Dz) + ψ(−Dz)

]
,

Dz = q

(
∂

∂q
+ i

2
z

)
,

[
ln q , Dz

] = −1

together with its Hermitian conjugate and the equality

〈 q |H(u, Dz, D
∗
z )| l 〉 = 〈 q |e−iqz H(u, D, D∗)eiqz | l 〉

= eiz(−q+l)〈 q |H(u, D, D∗)| l 〉
yield (11) with the replacement

〈 q |H(u, D, D∗)| l 〉 →
∫

d 2z

(2π)2 eiz(Q−q+l)〈 q |H(u, D, D∗)| l 〉.
(19)

The second modification is the gap assumed in the out-
going gluons momentum spectrum. We pick up the pro-
cesses, where all the gluons are produced with the trans-
verse momentum qi larger than a certain value q0. To fulfil
the latter requirement one has to modify the real emission
part in (3), 〈q| Kr |q ′〉 → θ

(
(q − q ′)2 − q2

0

)〈q| Kr |q ′〉, or,
within logarithmic accuracy, lnm2

gx
2 → ln q2

0 x
2 in the for-

mula (5). The logarithmic accuracy implies the value q0 to be
small compared to the typical momentum scale, q2

0  q2
R .

The power-like corrections beyond this region make the rel-
evant operators to be non diagonal in the |ν, n〉 basis, which
invalidates the method performance.

The third modification is that the secondaries are regis-
tered not at all kinematically available rapidities 0 < y < Y
but in a more narrow range 0 < y1 < y < y2 < Y . To
implement this condition into generating function one has to
replace K → K (u) (9) at the interval [y1, y2] to fix there
the number of emitted particles, whereas the intervals [0, y1]
and [y2,Y ]. have to be left with unchanged BFKL operator
K = K (1) (16). Thus instead of (8) one has

P(u) =
∫

d 2q

q2

∫
d 2l

l 2

×�A(q)〈 q| eK (1)(Y−y2)eK (u)(y2−y1)eK (1)y1 |l 〉 �B(l).

(20)
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To proceed further, we first substitute the operator in the
middle with the above obtained expressions (11) and (12),

〈 q| eK (1)(Y−y2)eK (u)(y2−y1)eK (1) y1 |l 〉

= e
Lu

(
2ψ(1)−ln

q2
0

m2
g

)
〈 q| eK (1)(Y−y2)

(
q2

m2
g

)− 1
2 Lu

H(u, D, D∗)

×
(
q2

m2
g

)− 1
2 Lu

eK (1)y1 |l 〉.

Here L = α(y2 − y1). The next step is purely algebraic. With
the help of identities

D qn = qn (D + n), D∗ (q∗)n = (q∗)n (D∗ + n),

valid for any n, we drag BFKL exponents with K (1) operator
to the right and to the left through q2 powers until they join
the operator H(u, D, D∗),

eK (1)(Y−y2)

(
q2

m2
g

)− 1
2 Lu

H(u, D, D∗)
(
q2

m2
g

)− 1
2 Lu

eK (1) y1

=
(
q2

m2
g

)− 1
2 Lu

eKL (Y−y2) H(u, D, D∗) eKR y1

(
q2

m2
g

)− 1
2 Lu

,

KL = −1

2

[
ψ

(
1 + D + 1

2
Lu

)
+ ψ

(
−D − 1

2
Lu

)

+ψ

(
1 + D∗ + 1

2
Lu

)
+ ψ

(
−D∗ − 1

2
Lu

) ]
,

KR = −1

2

[
ψ

(
1 + D − 1

2
Lu

)

+ψ

(
−D + 1

2
Lu

)
+ ψ

(
1 + D∗ − 1

2
Lu

)

+ψ

(
−D∗ + 1

2
Lu

) ]
.

The third step is to insert the complete set,

P(u) =
∑
n

∫
dν

∫
d 2q

q2 �A(q)〈 q |
(
q2

m2
g

)− 1
2 Lu

|ν, n〉

×〈 ν, n| eKL (Y−y2) H(u, D, D∗) eKR y1 |ν, n 〉

×
∫

d 2l

l 2 〈 ν, n|
(
q2

m2
g

)− 1
2 Lu

| l〉�B(l). (21)

Here we take into account that the operators KL , KR, H are
diagonal in |ν, n〉 basis, besides the angular independence of
the impact factors selects n = 0 in the sum. Recalling (13),

(14) the momentum integrals read

∫
d 2q

q2 �A,B(q)〈 q |
(
q2

m2
g

)− 1
2 Lu

|ν, 0〉

= CA,B

(
−1

2
Lu ± 1

2
iν

)
(q2

R)−
1
2 ± 1

2 iν

(
q2
R

m2
g

)− 1
2 Lu

Thus we have

P(u) =
∫

dν e
−L ln

q2
R

m2
g eL ω0 u T (u), ω0 = ln

q2
R

q2
0

+ 2ψ(1),

(22)

where

T (u) =
∫
dν CA

(
−1

2
Lu + 1

2
iν

)
CB

(
−1

2
Lu − 1

2
iν

)

×〈 ν, 0| eKL (Y−y2) H(u, D, D∗) eKR y1 |ν, 0 〉. (23)

Notice thatu-independent multiplies are irrelevant in the gen-
erating function as they are absorbed in its overall normal-
ization. That is why the fictitious gluon mass mg drops out of
the final distribution. The natural infrared cut off is provided
by q0 momentum. In what follows we will assume the typical
scale q2

R � q2
0

If the value ω0 can be treated as a large parameter the func-
tion P(u) results into Poisson distribution. It clearly follows
from (22) by keeping there the maximal ω0 power for each
N , which amounts to differentiating eLω0 u only while the
rest factors are taken just at u = 0. The mean gluon number
then N = ω0L � 1. The first correction arises from the
terms with one power of ω0 less than in the main order,

PN = P(0)
N + P(1)

N

= C
1

N !
∂N

∂uN
P(u)

∣∣∣∣
u=0

≈ C
1

N !
(
ω0L

)N
T (0)

[
1 + N

1

ω0L

T ′(0)

T (0)

]

≈ C
1

N !
(
ω0L

)N
T (0)

[
1 + 1

ω0L

T ′(0)

T (0)

]N

where C is the normalization constant. As is evident from
the last line the first order correction preserves the form of
the Poisson distribution,

PN = 1

N !
(
ω′

0L
)N

e−ω′
0L ,

affecting only the mean number of gluons, N
′ = ω′L =

ω0L + T ′(0)
T (0)

.
We try to estimate the first order contribution for L � 1,

supposing, in addition, both the rapidity intervals to be equal
(actually of the same order) and large, (Y − y2) = y1 = y,
αy � 1.
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The leading for L � 1 terms could be expected to arise
from the function H(u, ν, 0), therefore the part of interest is

T ′(0) ≈
∫
dν CA

(
−1

2
L + 1

2
iν

)
CB

(
−1

2
L − 1

2
iν

)

× exp
{
αy

(
KL (0, ν) + KR(0, ν)

)} ∂

∂u
H(u, ν, 0)

∣∣
u=0.

(24)

It is convenient to rewrite the sum in the exponent as

KL(0, ν) + KR(0, ν) = −ψ

(
1

2
+ 1

2
iν + 1

2
L

)

−ψ

(
1

2
− 1

2
iν + 1

2
L

)

− π sin πL

cos πL + cosh 2πν
.

Aiming at the large L asymptotics, it is sufficient to take this
expression only for integer L , that removes at all the last
term, whereupon we have

KL(0, ν) + KR(0, ν) = −2ψ

(
1

2
+ 1

2
L

)

+ 1

4
ψ ′′

(
1

2
+ 1

2
L

)
ν2 + O(ν4).

Similarly presenting the function

∂

∂u
H(u, ν, 0)

∣∣
u=0

= −2 ln �

(
1

2
+ 1

2
L − 1

2
iν

)
− 2 ln �

(
1

2
+ 1

2
L + 1

2
iν

)

− ln (cos πL + cosh 2πν) + ln 2π2 (25)

makes it clear that only the first two terms grow with L while
the last ones, being periodic in L , do not and can be omitted.
Given now that ψ ′′(x) ∼ −1/x2 for x � 1 the typical ν

values in the T (0) integral (23), ν2 ∼ L2/(αy), are small
compared to L2 when αy � 1. It allows to neglect ν in the
function H ′(0, ν, 0) as well as in the impact factor functions
CA,B in (24), that finally yields

T ′(0)

T (0)
= −L ln

L

2
+ L + O(1). (26)

It is worth to point out that in terms of the original basic
decomposition (11) the main contribution to the multiplic-
ity is due to the power multipliers whereas the function
H(u, D, D∗) specifies the corrections.

The generating function for the distribution of the gluons
carrying in aggregate the fixed total transverse momentum
Q according to (11) and (19) is

P(Q, u) =
∫

d 2z

(2π)2 e
Lu(2ψ(1)−ln

q2
0

m2
g
)

eizQ P(z, u),

P(z, u) =
∫

d 2q

q2

∫
d 2l

l 2

×�A(q)

(
q2

m2
g

)− 1
2 Lu

〈 q|e−iqz H(u, D, D∗)eiqz |l 〉

×
(

l2

m2
g

)− 1
2 Lu

�B(l).

The momentum Q is the total momentum of the gluons that
are supposed to be registered, that is only those emitted with
the transverse momenta larger than q0.

There is an important difference from the previous case,
where the main order source is in the terms with no deriva-
tives of the function H(u, D, D∗). Here the dominant terms
including H(0, D, D∗) = 1 result into z-independent con-
tribution that in turn produces P(Q, u) ∼ δ(2)(Q).

To find the leading behavior at small q0 and the total
momentum Q �= 0 we apply the formal trick:

H(u, D, D∗) = H

(
u,

∂

∂t
,

∂

∂t∗

)
et Det

∗D∗ |t=t∗=0,

and employ the operator identities

et Det
∗D∗

eiqz = eiqzet Det
∗D∗

, q1 = 1
2 (t + t∗)q1 − 1

2i (t − t∗)q2,

q2 = 1
2i (t − t∗)q1 + 1

2 (t + t∗)q2,

et Det
∗D∗

∫
d2l | l〉 1

l2
�B

(
l2

q2
R

)
=

∫
d2l | l〉 e

−t−t∗

l2
�B

(
et+t∗ l2

q2
R

)
.

Then we get

P(z, u) = H

(
u,

∂

∂t
,

∂

∂t∗

) ∣∣∣∣
t=t∗=0

e
−(t+t∗)

(
1
2 Lu+1

)

×
∫

d2q

q4 e−i(q−q)z

(
q2

m2
g

)−Lu

×�A

(
q2

q2
R

)
�B

(
et+t∗ q

2

q2
R

)

or doing z integrals, that return (2π)2δ(2)(Q − q + q),

P(Q, u) = e
−L ln Q2

m2
g e

L(2ψ(1)+ln Q2

q2
0

)u

H

(
u,

∂

∂t
,

∂

∂t∗

) ∣∣∣∣
t=t∗=0

e−(t+t∗)( 1
2 Lu+1) nLu−1

t,t∗

× 1

Q4 �A

(
1

nt,t∗
Q2

q2
R

)
�B

(
et+t∗

nt,t∗
Q2

q2
R

)
,

nt,t∗ ≡ (1 − et )(1 − et
∗
).
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In principle this form could offer one more tool to handle the
generating function, but here it is only needed to factorize
out the leading asymptotics assuming ω0(Q) = 2ψ(1) +
ln Q2

q2
0

� 1. The non vanishing result is obtained after the

function H is once differentiated,

P(1)
N (Q) = e

−L

(
ln

q2
R

m2
g
+ln Q2

q2
R

)
C1

(
Q2

q2
R

)
1

(N − 1)! ωN−1
0 (Q).

Although this is a first term it looks like a correction to the
Poisson distribution, the computation of C1 function being
similar to what has been done above for T ′(0). The analog
of the leading term comes from the delta-function piece,

P(0)
N (Q) = e

−L

(
ln

q2
R

m2
g

)
C0

1

N !
(
ω0L

)N
δ(2)(Q),

C0 = 1

q2
R

∫
d2x �A(x)�B(x)

(
x2)−L−2

.

If the total momentum essential range is q2
0  Q2  q2

R

(due to impact factors) the value C1
( Q2

q2
R

) ≈ C1(0) could be

found from the relation∫
d2Q

[
P(0)
N (Q) + P(1)

N (Q)
]

= e
−L ln

q2
R

m2
g

[
1

N !
(
ω0L

)N
T (0)

+ 1

(N − 1)!
(
ω0L

)N−1
T ′(0)

]

for known T (0), T ′(0).

4. Concluding, the distribution of the gluons arising from the
cut of BFKL Pomeron in LLA has been found for the two
separate cases. The first one is entirely unobservable although
it literally refers to the gluons “inside” the Pomeron, that is to
the distribution of the ladder diagrams in the Pomeron Green
function. It is exactly of the Poisson type, the “mean number”
of the gluons, or the ladder “length”, being proportional to
the Pomeron intercept.

The second case concerns the real multiple emission in the
scattering. The gluon distribution is generally more complex
but getting closer to the Poisson one, when the gap param-
eter q0, that plays the role of the infrared cut off, decreases.
However in this case the mean gluon number turns out not to
be identical to the intercept.

The first order corrections to the Poisson distribution
obtained for L = αY � 1 affects only its mean number
parameter. The distribution of the gluons with a fixed total
transverse momentum looks like the first order correction
with the main term vanishing for the non zero momentum
value.

The next order corrections as well as the effects from
L ∼ 1 presumably cause the deviation from the Poisson

distribution but its form would be more dependent on the
impact factors. Here we are mainly interested in the effects
of BFKL dynamics and have used roughly estimated impact
factors.

This situation looks different compared to e+e− case,
where more complicated parton distributions are obtained
[13]. Assuming soft branching hypotheses [27] telling that
main qualitative features of the secondary hadrons distribu-
tion are similar to those of the partons one plausibly expects
the secondary hadron to be distributed similarly to the glu-
ons according to Poisson form. It could explain the observed
KNO scaling effects [1,5].

The authors are grateful to M.G. Ryskin for helpful dis-
cussion.
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