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Abstract We determine exact and analytic solutions of the
gravitational field equations in Einstein–aether scalar model
field with a Bianchi I background space. In particular, we
consider nonlinear interactions of the scalar field with the
aether field. For the model under consideration we can write
the field equations by using the minisuperspace description.
The point-like Lagrangian of the field equations depends on
three unknown functions. We derive conservation laws for the
field equations for specific forms of the unknown functions
such that the field equations are Liouville integrable. Further-
more, we study the evolution of the field equations and the
evolution of the anisotropies by determining the equilibrium
points and analyzing their stability.

1 Introduction

According to the cosmological principle, the universe is
homogeneous and isotropic in large scales. Indeed, the evo-
lution of the universe from the radiation dominant epoch till
the present cosmic acceleration can be well-explained by
the homogeneous Friedmann–Lemaître–Robertson–Walker
(FLRW) model [1]. However, FLRW fails to explain the
early history of the universe starting from the origin and pre-
inflation epoch where quantum effects should be taken into
account.

Inflation is the main mechanism to explain today
isotropization of the observable universe. The mechanism of
inflation is often based on the existence of a scalar field known
as inflaton [2]. The scalar field energy density temporarily
dominates the dynamics and drives the universe towards a
locally isotropic and homogeneous form that leaves only
very small residual anisotropies at the end of a brief inflaton-
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dominated period. These anisotropies are observed in the
cosmic microwave background, which support the idea that
the spacetimes become isotropic ones by evolving in time
[3–5]. In addition a recent detailed study by using the X-ray
clusters challenged the isotropic scenario [6] and supported
the anisotropic cosmological scenario.

The spatial homogeneous but anisotropic spacetimes are
known as either Kantowski-Sachs or Bianchi cosmologies.
The isometry group of Kantowsky-Sachs spacetime is R ×
SO(3), and does not act simply transitively on spacetime,
nor does it possess a subgroup with simple transitive action.
This model isotropizes to close FLRW models [7–10]. On the
other hand, Bianchi spacetimes contain many important cos-
mological models including the standard FLRW model in
the limit of the isotropization, e.g., Bianchi III isotropizes
to open FLRW models, and Bianchi I isotropizes to flat
FLRW models. In Bianchi models, the spacetime manifold
is foliated along the time axis with three dimensional homo-
geneous hypersurfaces. The Bianchi classification provides
a list of all real 3-dimensional Lie algebras up to isomor-
phism. The classification contains eleven classes, nine of
which contain a single Lie algebra and two of which con-
tain a continuum-sized family of Lie algebras, but two of
the groups are often included in the infinite families, giv-
ing nine types of Bianchi spatially homogeneous spacetimes
instead of eleven classes. Bianchi spacetimes contain several
important cosmological models that have been used for the
discussion of anisotropies of primordial universe and for its
evolution towards the observed isotropy of the present epoch
[11–14]. There is an interesting hierarchy of Bianchi models.
In particular, the LRS Bianchi I model naturally appears as a
boundary subset of the LRS Bianchi III model. The last one
is an invariant boundary of the LRS Bianchi type VIII model
as well. Additionally, LRS Bianchi type VIII can be viewed
as an invariant boundary of the LRS Bianchi type IX models
[15–20].
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Bianchi spacetimes in the presence of a scalar field were
studied in [21]; where it has been found that an initial
anisotropic universe can end into a FLRW universe (i.e.,
it isotropizes) for specific initial conditions whenever the
scalar field potential has a large positive value. For exponen-
tial scalar field the exact solution of the field equations have
been found for some particular Bianchi spacetimes [22–24].
These exact solutions lead to isotropic homogeneous space-
times as it was found in [25,26].

An exact anisotropic solution of special interest is the Kas-
ner universe. The Kasner spacetime is the exact solution of
the field equations in general relativity in the vacuum for the
Bianchi I spacetime, where the space directions are isome-
tries, that is, the three-dimensional space admits three trans-
lation symmetries. Kasner universe has various applications
in gravitation. One of the most important application is that
Kasner solution can describe the evolution of the Mixmas-
ter universe when the contribution of the Ricci scalar of the
three-dimensional spatial hypersurface in the field equations
is negligible [27]. Hence, Kasner solution is essential for the
description of the BKL singularity. For other applications of
the Kasner universe and in general of the Bianchi I space-
times in gravitational physics we refer the reader to [28–35]
and references therein.

In this work, we are interested on the study of the gravita-
tional field equations in a Lorentz-violating theory known as
Einstein–aether theory [36–40]. Specifically, it is introduced
a unit vector, the aether, in the gravitational action. The exis-
tence of the aether spontaneously breaks the boost sector of
the Lorentz symmetry by picking out a preferred frame at
each point in spacetime. The action for Einstein–aether the-
ory is the most general covariant functional of the spacetime
metric gab and aether field ua involving no more than two
derivatives, excluding total derivatives [41,42].

There are few known exact solutions of the field equations
in Einstein field equations. Exact solutions in the Vacuum for
the Bianchi I, the Bianchi III, the Bianchi V and the isotropic
FLRW spacetime were derived recently in [43,44]. In [45]
the authors presented a generic static spherical symmetric
solution in Einstein–aether theory, where it has been shown
that the Schwarzschild spacetime is recovered. Other inho-
mogeneous exact solutions have been studied previously in
[46–48]. The spherical collapse in Einstein–aether theory is
studied in [49] where a comparison with the Hořava grav-
ity is presented. We remark that Einstein–aether theory can
be seen as the classical limit of Hořava gravity. Moreover,
Gödel-type spacetimes are investigated in [50,51].

Furthermore, there are various studies of Einstein-aether
models with a matter source. The general evolution in the
presence of modified Chaplygin gas was studied in [53],
while an analysis with the presence of a Maxwell field was
performed in [54]. Exact inhomogeneous spacetimes without

any isometry in Einstein–æther theory with a matter source
were derived recently in [52].

It has been proposed that a scalar field contributes to the
field equations of Einstein–aether theory where the scalar
field can interact with the aether [55]. Such model can
describe the so-called Lorentz-violated inflation [56]. The
dynamics of spatially homogeneous Einstein-aether cosmo-
logical models with scalar field with generalized harmonic
potential in which the scalar field is coupled to the aether
field expansion and shear scalars were studied in [57,58],
with emphasis on homogeneous Kantowski–Sachs models
in [59–61]. A similar analysis on the equilibrium points of
the field equations was performed for isotropic FLRW space-
times in [62–64]. Exact and analytic solutions of isotropic
and homogeneous spacetimes in Einstein–aether scalar field
cosmology are presented in [56,65–67].

In the following we are interested on the exact solutions of
Bianchi I spacetimes in Einstein–aether theory with a scalar
field interacting with the aether field. We consider a nonlin-
ear interaction, and we are able to write the field equations
by using the minisuperspace approach. The existence of a
point-like Lagrangian which can describe the field equations
is essential for our analysis because we can apply techniques
of Analytic Mechanics to study the dynamics and deter-
mine exact solutions for field equations. We are interested
on the dynamical systems analysis of the equilibrium points
for the gravitational field equations. From such analysis we
can extract information for the evolution of the field equa-
tions and for the main phases of the cosmological history. For
this analysis one can apply linearization around equilibrium
points, monotonic principle [68], the invariant manifold the-
orem [69–73], the center manifold theorem [69–71,74], and
normal forms theory [69–71].

The plan of the paper is as follows. In Sect. 2, we present
the model of our consideration which is the Einstein–æther
scalar field theory in Bianchi I spacetime. We write the
field equations and the specific form of the interaction term
between scalar field and aether field. We write the point-
like Lagrangian of the field equations. In Sect. 3, we present
analytic solutions of the field equations, the method that we
use to constraint the unknown functions of the model and
determine that analytic solutions is based on the existence of
conservation laws. In particular, we investigate the Liouville
integrability of the field equations. In Sect. 4, we perform
a detailed analysis of the equilibrium points for the gravita-
tional field equations by using Hubble-normalized variables.
Additionally, we use the center manifold theorem and the
normal forms calculations to analyze the stability of sets of
nonhyperbolic equilibrium points. It is well-known that the
procedure based on the formal series of polynomial changes
of coordinates devised by Poincarè [75–79] to integrate lin-
earizable dynamical systems in the neighbourhood of a equi-
librium point. It can also be used to normalize the system
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in the neighborhood of a equilibrium point for nonlineariz-
able dynamical systems, which are systems whose lineariza-
tion at the equilibrium point present resonances. This pro-
cedure is the basis of the normal forms calculations to be
implemented in Sect. 4.1.2. In Sect. 5, we use an alternative
dynamical system’s formulation which leads to the evolu-
tion of anisotropies decouples; and we study a reduced two-
dimensional dynamical system with local and with Poincarè
variables. Section 6 is devoted to conclusions.

2 Einstein–aether scalar field model

In this work, we consider the Einstein–aether theory with a
scalar field interacting with aether field, with action integral
[55]:

S =
∫

dx4
(√−g

R

2

)
− Sφ − SAether , (1)

SAether corresponding to the aether field uμ as follows:

SAether =
∫

d4x
√−g

(
K αβμνuμ;αuν;β − λ

(
ucuc + 1

))
,

(2)

and Sφ to the action integral of the scalar field

Sφ =
∫

dx4√−g

(
1

2
gμνφ;μφ;ν + V

(
φ, gαβ, ua;β, uα

))
.

(3)

The interaction of the scalar field φ (xμ) with the aether
field uμ, is introduced in the potential function of the scalar
field V = V

(
φ, gαβ, ua;β, uα

)
, function λ is a Lagrange

multiplier which has been introduced to ensure the unitarity
of the aether field uμ, i.e. uμuμ + 1 = 0. Moreover, tensor
K αβμν is defined by the metric tensor gμν as follows

K αβμν ≡ c1g
αβgμν + c2g

αμgβν + c3g
ανgβμ + c4g

μνuαuβ,

in which c1, c2, c3 and c4 are the coupling constants of the
aether field with the gravitational field. Consequently, since
the scalar field φ (xμ) is interacting with the aether field, and
the latter is interacting with the gravitational fields, we can
say that the scalar field φ (xμ) is not minimally coupled to
gravity. However, our proposal is rather different from the
so-called scalar tensor theory.

2.1 Bianchi I spacetime

For the underlying space in our consideration, we assume
the locally rotational symmetric Bianchi I spacetime with
line element

ds2 = −N (t) dt2 + e2λ(t)

(
e
√

2β+(t)dx2 + e− 1√
2
β+ (t)

+
√

3

2
β− (t) dy2 + e

− 1√
2
β+(t)+

√
3
2 β−(t)

dy2

)
, (4)

where eλ(t) is the radius of the three dimensional space, and
β+ (t) , β− (t) are the anisotropy parameters. In the limit
β+ (t) → 0 and β− (t) → 0, the line element (4) reduces to
that of the spatially flat FLRW spacetime.

The Kasner spacetime as we discussed in the introduction
is an exact solution of the field equations of general relativity
for the line element (4) where the anisotropic parameters
β+ (t) , β− (t) are always different from zero. While Kasner
spacetime can describe the BKL singularity, in the presence
of additional matter source the behaviour of the spacetime is
different.

Specifically, in the presence of a cosmological, the evolu-
tion of the spacetime can describe an early anisotropic space
where the isotropic de Sitter universe is a future attractor.
Bianchi I spacetime is the simplest anisotropic model and
it is one the basic models to study small anisotropies in the
universe. It has been proposed that the small anisotropies of
the CMB can be related with the early anisotropies of the uni-
verse [80], while Bianchi models can reproduce anisotropies
of that kind [81]. In [82] it has been show that Bianchi I mod-
els with anisotropic fluid sources can reproduce measurable
anisotropy in the CMB without effects upon the primordial
nucleosynthesis of helium-4.

In addition a detailed study of dynamics of Bianchi I uni-
verse with anisotropic source and an isotropic dark energy
component performed in [83], where it was found that the
asymptotic behaviour of the universe mimics the de Sitter
universe, while anisotropic fluid source contributes in the
CMB quadrupole. In the presence of a homogeneous scalar
field with an exponential potential the late time attractor is
also the isotropic FLRW spacetime for a specific values of
the exponent for the potential where the Kitada and Maeda
no-hair theorem is applied [26,84].

Bianchi I spacetime admits three isometries which are the
three translations of the Euclidean space, that is, the vector
fields

{
∂x , ∂y, ∂z

}
. Furthermore, we assume that the scalar

field φ (xμ) = φ (t, x, y, z), inherits the symmetries of the
spacetime which means that the scalar field is homogeneous
and depends only on the variable t , that is, φ (xμ) = φ (t).

However, the field equations of the Bianchi I spacetime
can describe the evolution of the anisotropic parameters in
inhomogeneous spacetimes, such are the Szekeres space-
times [85]. Specifically, in the case of silent universes, space-
times with zero magnetic part of the Weyl tensor, and with
an inhomogeneous pressureless fluid source, the dynamics of
the anisotropic parameters of the inhomogeneous spacetime
admit as past attractors two Kasner universes. However, in

123



589 Page 4 of 16 Eur. Phys. J. C (2020) 80 :589

the same model in the presence of additional isotropic fluid
source, the anisotropic inhomogeneous Kasner-like attrac-
tors reduce to anisotropic and homogeneous spacetimes [85–
87].

For the aether field we choose the comoving observer:
uμ = 1

N (t) δ
μ
t . For this selection, the aether field inherits the

symmetries of the spacetime, while the limit of the FLRW
spacetime can be recovered [43]. Moreover, as we shall
see in the following, with this specific selection for aether
field uμ the field equations can be derived by minisuper-
space approach for a specific form of the potential function
V
(
φ, gαβ, ua;β, uα

)
.

For the Bianchi I spacetime the kinematic quantities{
θ, σ 2, ωμν, α

μ
}

for aether field of our consideration, i.e.
uμ = 1

N (t) δ
μ
t , are derived

θ = 3

N
λ̇, σ 2 = 3

8N 2

((
β̇+
)2 + (β̇_

)2)
, (5)

and

ωμν = 0, αμ = 0. (6)

The kinematic quantities
{
θ, σ 2, ωμν, α

μ
}

are the expan-
sion rate, the shear, the vorticity and the acceleration for the
aether field uμ, as they are defined in the 1+3 decomposition;
that is,

θ = uμ;νhμ;ν, aμ = uμ;νuν, σ 2 = σμνσμν, (7)

in which

σμν = u(κ;λ)

(
hκ

μh
λ
ν − 1

3
hκλhμν

)
and

ωμν = u[κ;λ]hκ
μh

λ
ν . (8)

while hμν = gμν + uμuν .

For a potential function of the form V = V
(
φ, θ, σ 2

)
,

variation with respect to the metric tensor of (1) produce
gravitational field equations, which are

Gμν = T Aether
μν + T φ

μν, (9)

where Gμν is the Einstein tensor, Tμν
Aether is the energy–

momentum tensor of the aether field defined as [55]:

T Aether
μν = 2c1

(
uα

;μuα;ν − uμ;αuν;βgαβ
)

+ 2λuμuν + gμνu

− 2
[
(u(μ J

α
ν));α + (uα J(μν));α − (u(μ Jν)

α);α
]

− 2c4
(
uμ;αuα

) (
uν;βuβ

)
, (10)

with Jμ
ν = −Kμβ

ανu
α
;ν,u = −K αβ

μνu
μ

;αu
ν
;β , while T φ

μν

is the energy momentum tensor of the scalar field [57,58]:

T φ
μν = φ;μφ;ν −

(
1

2
gαβφ;αφ;β + V

(
φ, θ, σ 2

))
gμν

+ θV,θgμν + (Vθ );α uahμν

+
(
θV,σ 2 + (V,σ 2

)
;a u

a
)

σμν

+ V,σ 2

(
σμν;αuα − 2σ 2uμuν

)
. (11)

2.2 Energy–momentum tensors

In [57,58] the dynamical analysis of the field equations for the
locally rotational Bianchi I spacetime studied for the potential
of the form

V
(
φ, θ, σ 2

)
= V0 (φ) + V1 (φ) θ + V2 (φ) σ, (12)

for specific functions of VI (φ). In particular, for exponential
functions VI (φ) in [58] or for power-law functions VI (φ) in
[57]. In the case of FLRW spacetime, where σ = 0, scalar
field potentials with more general nonlinear dependence on
parameter θ , have been proposed and studied in the literature
[62–66].

In the case of FLRW spacetime, in [56] the authors pro-
posed an Einstein–aether scalar field where the interaction
between the aether and the scalar fields is introduced in the
coupling coefficients of the aether field with the gravitational
field. That leads to an equivalent theory with that [55], where
the scalar field potential is quadratic in the expansion rate
θ . The theory has been proposed as an alternative Lorentz
violating inflationary model. In this theoretical framework
the field equations can be described by a canonical point-
like Lagrangian. Because of that property, various techniques
from analytic mechanics applied in [67] can be used to deter-
mine new exact solutions.

Hence, in this work we consider the scalar field potential
to be quadratic on θ and σ , that is,

V
(
φ, θ, σ 2

)
= V0 (φ) + V1 (φ) θ2 + V2 (φ) σ 2, (13)

in order to be in agreement with the Einstein–aether scalar
field model proposed in [56].

For the line element (4) with N (t) = 1 and for the aether
field uμ = 1

N (t) δ
μ
t the energy–momentum tensor T Aether

μν is
diagonal with the following nonzero components:

T t Aether
t = 3 (c1 + 3c2 + c3) λ̇2

+ 3

4
(c1 + c3)

((
β̇+
)2 + (β̇−

)2)
, (14a)

T x Aether
x = (c1 + 3c2 + c3)

(
2λ̈ + 3λ̇2

)

+ c1 + c3

4

(
4
√

2β̈+ − 3
(
β̇+
)2 + 12

√
2λ̇β̇+

)

− 3 (c1 + c2)

4

(
β̇−
)2

, (14b)
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T y Aether
y = (c1 + 3c2 + c3)

(
2λ̈ + 3λ̇2

)

− c1 + c3

4

(
2
√

2β̈+ + 3
(
β̇+
)2 + 6

√
2λ̇β̇+

)

+ c1 + c3

4

(
2
√

6β̈− − 3
(
β̇−
)2 + 6

√
6λ̇β̇+

)
,

(14c)

T z Aether
z = (c1 + 3c2 + c3)

(
2λ̈ + 3λ̇2

)

− c1 + c3

4

(
2
√

2β̈+ + 3
(
β̇+
)2 + 6

√
2λ̇β̇+

)

− c1 + c3

4

(
2
√

6β̈− + 3
(
β̇−
)2 + 6

√
6λ̇β̇+

)
.

(14d)

Similarly, for the potential (13) the energy-momentum
tensor T φ

μν have the following nonzero components

T t φ
t = 9V1 (φ) λ̇2 + 3

8
V2 (φ)

((
β̇+
)2 + (β̇−

)2)

− 1

2
φ̇2 − V0 (φ) , (15a)

T x φ
x = 3V1 (φ)

(
2λ̈ + 3λ̇2

)
+ 6V1 (φ),φ λ̇φ̇

+ 1

2
φ̇2 − V0 (φ) + V2 (φ)

×
(√

2

2
β̈+ − 3

8

((
β̇+
)2 + (β̇−

)2)

+3
√

2

2
λ̇β̇+

)
+

√
2

2
V2 (φ),φ β̇+φ̇, (15b)

T y φ
y = 3V1 (φ)

(
2λ̈ + 3λ̇2

)
+ 6V1 (φ),φ λ̇φ̇

+ 1

2
φ̇2 − V0 (φ) − 1

8
V2 (φ)

×
(

2
√

2β̈+ + 3
(
β̇+
)2 + 6

√
2λ̇β̇+

)

−
√

2

4
V2 (φ),φ β̇+φ̇ + 1

8
V2 (φ)

×
(

2
√

6β̈− − 3
(
β̇−
)2 + 6

√
6λ̇β̇−

)

+
√

6

4
V2 (φ),φ β̇−φ̇, (15c)

and

T z φ
z = 3V1 (φ)

(
2λ̈ + 3λ̇2

)
+ 6V1 (φ),φ λ̇φ̇

+ 1

2
φ̇2 − V0 (φ) − 1

8
V2 (φ)

×
(

2
√

2β̈+ + 3
(
β̇+
)2 + 6

√
2λ̇β̇+

)

−
√

2

4
V2 (φ),φ β̇+φ̇ − 1

8
V2 (φ)

×
(

2
√

6β̈− + 3
(
β̇−
)2 + 6

√
6λ̇β̇−

)

−
√

6

4
V2 (φ),φ β̇−φ̇. (15d)

2.3 Minisuperspace description

Similarly with the case of FLRW in [56], the field equations
of the gravitation Action Integral (1) can be derived from the
point-like Lagrangian of the form

L
(
yA, ẏ A

)
= LGR

(
yA, ẏ A

)
+ Lφ

(
yA, ẏ A

)

+L Aether

(
yA, ẏ A

)
, (16)

where the vector fields yA is yA = (
N , λ, λ̇, β+, β̇+, β−, β̇−,

φ, φ̇
)
, while a dot demotes total derivative with respect to the

variable t , that is ẏ A = dyA

dt .
Function LGR

(
yA, ẏ A

)
describes the point-like

Lagrangian of General Relativity,

LGR

(
yA, ẏ A

)
= e3λ

N

(
−3λ̇2 + 3

8

((
β̇+
)2 + (β̇−

)2))
,

(17)

that term Lφ

(
yA, ẏ A

)
describes the point-like Lagrangian of

the scalar field, that is,

Lφ

(
yA, ẏ A

)
= −e3λ

N

(
9V1 (φ) λ̇2 + 3

8
V2 (φ)

((
β̇+
)2

+ (β̇−
)2)+ 1

2N
φ̇2 − NV0 (φ)

)
, (18)

while L Aether
(
yA, ẏ A

)
includes the terms which correspond

to the aether field uμ, which is given by the following expres-
sion

L Aether

(
yA, ẏ A

)
= − 3

N
e3λ
(
(c1 + 3c2 + c3) λ̇2

+
(

(c1 + c3)

4

)((
β̇+
)2 + (β̇−

)2))
.

(19)

Therefore, the point-like Lagrangian (16) is written as fol-
lows

L
(
yA, ẏ A

)
= e3λ

N

(
−3F (φ) λ̇2 + 3

8
M (φ)

((
β̇+
)2

+ (β̇−
)2)+ 1

2
φ̇2
)

− Ne3λU (φ) , (20)

in which U (φ) = V0 (φ) , F (φ) = (1 + c1 + 3c2 + c3

+3V1 (φ)) and M (φ) = (1 − 2 (c1 + c3) − V2 (φ)).
Variation with respect to the lapse function N gives the

constraint equation(
−3F (φ) λ̇2 + 3

8
M (φ)

((
β̇+
)2 + (β̇−

)2)+ 1

2
φ̇2
)

+U (φ) = 0, (21)
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where we have set N (t) = 1. Moreover, from the varia-
tion with respect to the variables {λ, β+, β−, φ}, we find the
second-order field equations:

F (φ)
(

2λ̈ + 3λ̇2
)

+ 3

8
M (φ)

((
β̇+
)2 + (β̇−

)2)

+
(

1

2
φ̇2 −U (φ) − 6F (φ),φ λ̇φ̇

)
= 0, (22a)

φ̈ + 3λ̇φ̇ +U (φ),φ + 3F (φ),φ λ̇2

− 3

8
M (φ),φ

((
β̇+
)2 + (β̇−

)2) = 0, (22b)

β̈+ + 3λ̇β̇+ + ln (M (φ)),φ β̇+φ̇ = 0, (22c)

β̈− + 3λ̇β̇− + ln (M (φ)),φ β̇−φ̇ = 0. (22d)

The latter two equations can be integrated as follows

M (φ) e3λβ̇+ − I1 = 0 , M (φ) e3λβ̇− − I2 = 0, (23)

where I1, I2 are integration constants. The first-order differ-
ential equations (23) are two conservation laws for the field
equations.

In addition we can construct the third conservation law

M (φ) e3λ
(
β−β̇+ − β+β̇−

)− I3 = 0, (24)

which is the angular momentum in the plane {β+, β−}.
Lagrangian function (20) describes a singular dynamical

system, because ∂L
∂ Ṅ

= 0. However, without loss of gener-
ality we can select N (t) = N (λ (t) , β+ (t) , β− (t) , φ (t)),
such that Lagrangian (20) describes the equation of motion
of a point particle which motion takes place into the four-
dimensional manifold with line element

ds2
(4) = e3λ

N

(
−3F (φ) dλ2 + 3

8
M (φ)

(
(dβ+)2

+ (dβ−)2
)

+ 1

2
dφ2

)
, (25)

under the action of the potential functionVef f = Ne3λU (φ).
The line element (25) is called the minisuperspace of the
gravitational system.

The minisuperspace description is very helpful because
techniques and results from Analytic Mechanics can be
applied to study the dynamics and the general evolution of
the field equations; and also determine exact and analytic
solutions of the field equations.

We proceed our analysis by constructing analytic solu-
tions of the gravitational field equations. We assume N (t) =
N (λ (t) , β+ (t) , β− (t) , φ) .

3 Analytic solutions

In this Section, we present some analytic solutions of the
field equations for specific forms of the unknown functions

U (φ) , F (φ) and M (φ). As we mentioned before, the point-
like Lagrangian (20) describes the motion of a point in a four-
dimensional space with conservation laws: the quantities
I1, I2, I3 and the constraint equation (21), which can be seen
as the Hamiltonian function h

(
λ, λ̇, β+, β̇+, β−, β̇−, φ, φ̇

)
,

with Hamiltonian constraint h = 0. The four conservation
laws are independent and not all, but only three of them, are
in involution. They are {I1, I2, h}. Therefore, in order to infer
about the integrability of the field equations and to be able
to write an analytic solution we need to determine at least an
additional conservation law.

In order to specify the unknown functions U (φ) , F (φ)

and M (φ) such that the field equations admit additional con-
servation laws, we apply the analysis presented before in [88–
90]. We use the theory of point transformations to provide a
geometric criteria to constrain the unknown functions of the
gravitational theory and construct conservation laws.

We focus on the construction of conservation laws lin-
ear in the momentum. In order to have the latter true, two
main requirements should be satisfied: the minisuperspace
(25) to admit isometries and the effective potential Vef f =
Ne3λU (φ) to be invariant under the action of a point trans-
formation with generator and isometry of (25).

We define the new scalar field dφ = √
K (ψ)dψ , such

that the minisuperspace (25) takes the form

ds2
(4) = e3λ

N

(
−3F (ψ) dλ2 + 3

8
M (ψ)

(
(dβ+)2

+ (dβ−)2
)

+ 1

2
K (ψ) dψ2

)
. (26)

For arbitrary functions F (ψ) , M (ψ) the latter line element
admits only three isometries, which form the E2 group in the
plane {β+, β−}. The corresponding conservation laws are the
I1, I2 and I3. There are two cases in which we classify the
existence of solutions. These are Case A: F (ψ) arbitrary and
Case B: M (ψ) arbitrary.

3.1 Case A: F (ψ) arbitrary

Without loss of generality we assume K (ψ) = F (ψ) and

N = e3λF (ψ) , M (ψ) = F (ψ) M̄ (ψ) , U (ψ) = Ū (ψ)
F(ψ)

,
hence the point-like Lagrangian (20) is written

L
(
yA, ẏ A

)
=
(

−3λ̇2 + 3

8
M̄ (ψ)

((
β̇+
)2 + (β̇−

)2)+ 1

2
ψ̇2
)

−e6λŪ (ψ) . (27)

The field equations which are derived from the point-like
Lagrangian (27) admit additional conservation laws linear in
the momentum when

{
M̄ (ψ) = M1eM0ψ, Ū (ψ) = U0

}
,{

M̄ (ψ) = M1eM0ψ, Ū (ψ) = U0e−6κφ
}
.
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3.1.1 M̄ (ψ) = M1eM0ψ, Ū (ψ) = U0

For M̄ (ψ) = M1eM0ψ and Ū (ψ) = U0, the gravitational
field equations admit the additional conservation laws

1 = eM0ψ
(
β+β̇+ + β−β̇−

)
, (28a)

2 = 3

16
M2

0 e
M0φ

((
(β+)2 − (β−)2

)
β̇− − β+β−β̇+

)

+ (β̇− + M0β−φ̇
)
, (28b)

2 = 3

16
M2

0 e
M0φ

((
(β+)2 − (β−)2

)
β̇+ − β+β−β̇−

)

− (β̇+ + M0β+φ̇
)
, (28c)

By using the conservation laws I1, I2 the field equations
are described by the point-like Lagrangian

L
(
yA, ẏ A

)
=
(

−3λ̇2 + 1

2
ψ̇2
)

−U0e
6λ

−3
(
(I1)2 + (I2)2)

8
e−M0ψ, (29)

where the reduced field equations are

λ̈ −U0e
6λ = 0, (30a)

ψ̈ − 3
(
(I1)2 + (I2)2)

8

M0

M1
e−M0ψ = 0, (30b)

with constraint equation
(

−3λ̇2 + 1

2
ψ̇2
)

+U0e
6λ + 3

(
(I1)2 + (I2)2)

8M1
e−M0ψ = 0.

(30c)

Hence, the field equations are reduced to the following sys-
tem

3λ̇2 −U0e
6λ = λ0, (31a)

1

2
ψ̇2 + 3

(
(I1)2 + (I2)2)

8M1
e−M0ψ = λ0. (31b)

We find that the latter two equations are conservation laws for
the field equations, but they are nonlinear in the momentum
and are hidden symmetries [91–93].

For λ0 = 0 the analytic solution is

λ (t) = −1

6
ln
(

3U0 (t − t0)
2
)

,

ψ (t) = 1

M0
ln

(
−
(

3
(
(I1)2 + (I2)2)

16M1

)
(t − t1)

2

)
. (32)

On the other hand for λ0 �= 0 the analytic solution is

λ (t) = 1

6
ln

(
λ0

U0

(
tanh

(√
3λ0 (t − t0)

)2 − 1

))
, (33a)

ψ (t) = − 1

M0
ln

⎛
⎜⎜⎝M1

8λ0

(
1 − tanh

(√
2λ0

2M0
(t − t1)

)2
)

3
(
(I1)2 + (I2)2)

⎞
⎟⎟⎠ ,

(33b)

with

β+ (t) = 8I1M1
√

2λ0

3M0
(
(I1)2 + (I2)2)

× tanh

((
M0

√
2λ0

2
(t − t1)

)2
)

+ β+0, (33c)

β+ (t) = 8I2M1
√

2λ0

3M0
(
(I1)2 + (I2)2)

× tanh

((
M0

√
2λ0

2
(t − t1)

)2
)

+ β−0. (33d)

In the latter solution if U0 = 0, it follows λ (t) =√
3λ0
3 (t − t0).
We remark that the line element of the underlying space

has the following form

ds2 = −
(
e3λ(t)F (ψ (t))

)2
dt2 + e2λ(t)

×
(
e
√

2β+(t)dx2 + e
− 1√

2
β+(t)+

√
3
2 β−(t)

dy2

+e
− 1√

2
β+(t)−

√
3
2 β−(t)

dz2
)

, (34)

where F (ψ (t)) is an arbitrary function.

3.1.2 Analytic solution for arbitrary M̄ (ψ)

We observe that using the conservation law I1, I2 in (27) and
for Ū (ψ) = U0, the point-like Lagrangian of the reduced
field equations is written

L
(
yA, ẏ A

)
=
(

−3λ̇2 + 1

2
ψ̇2
)

−U0e
6λ − M ′ (ψ) , (35)

where M ′ (ψ) = 3
(
(I1)2+(I2)2)

8 (M (ψ))−1.
The reduced gravitational field equations are

λ̈ −U0e
6λ = 0, ψ̈ + (M ′ (ψ)

)
,ψ

= 0, (36)

with constraint
(−3λ̇2 + 1

2 ψ̇2
)+U0e6λ + M ′ (ψ) = 0, and

hidden conservation laws

3λ̇2 −U0e
6λ = λ0,

1

2
ψ̇2 + M ′ (ψ) = λ0. (37)

from which it follows

λ (t) = 1

6
ln

(
λ0

U0

(
tanh

(√
3λ0 (t − t0)

)2 − 1

))
or
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λ (t) =
√

3λ0

3
(t − t0) for U0 = 0, (38)

while ψ (t) is given in terms of quadratures.
Some functions of M ′ (ψ) where ψ (t) is expressed in

closed form are presented in [94]. Recall that the conservation
laws I1, I2 are I1 = M̄ (ψ) β̇+, I2 = M̄ (ψ) β̇− .

3.1.3 M̄ (ψ) = M1eM0ψ, Ū (ψ) = U0e−6κφ

When M̄ (ψ) = M1eM0ψ, Ū (ψ) = U0e−6κφ , then the grav-
itational field equations admit the additional conservation law

4 = −6

(
λ̇ + φ̇

6κ

)
+ 3

8

M1M0

κ
eM0φ

(
β+β̇+ + β−β̇−

)
,

(39)

The five conservation laws {h, I1, I2, I3,4} do not provide
any set of four-conservation laws which are in involution
except from the case where M0 = 0, that is M̄ (ψ) = M1 i.e.
F (ψ) � M (ψ). Thus, the anisotropic parameters β̇+ and
β̇− are linear functions of t , that is

β+ (t) = I1t + I+, β− (t) = I2t + I−, (40)

while the other field equations are generated by the point-like
Lagrangian

L
(
yA, ẏ A

)
=
(

−3λ̇2 + 1

2
ψ̇2
)

−U0e
6(λ−κφ)

−3

8

(
(I1)

2 + (I2)
2
)

. (41)

We define the new scalars λ = u+v and ψ = 1
κ
u+√

6v,
where the gravitational field equations are simplified to

(
3 − 1

2κ2

)
u̇2 + 6

(
1 − 1√

6κ

)
u̇v̇ −U0e

6
(

1−√
6κ
)
v

− 3

8

(
(I1)

2 + (I2)
2
)

= 0, (42)

ü +
U0κ

(
6κ − √

6
)

√
6κ − 1

e
6
(

1−√
6κ
)
v = 0,

v̈ − U0
(
6κ2 − 1

)
√

6κ − 1
e

6
(

1−√
6κ
)
v = 0. (43)

The latter system can be easily integrated and written the
analytic solution by using closed-form functions.

3.2 Case B: M (ψ) arbitrary

We define a new field dζ = √
Mdφ, such that the point-like

Lagrangian (20) to be written as

L
(
yA, ẏ A

)
=
(

−3F̄ (ζ ) λ̇2 + 3

8

((
β̇+
)2 + (β̇−

)2)

+1

2
ζ 2
)

− e6λŪ (ζ ) , (44)

where we have set N = e3λM (ζ ) and the new functions are

defined as F (ζ ) = F̄ (ζ ) M (ζ ), U (ζ ) = Ū (ζ )
M(ζ )

. In addition,
we apply the conservation-laws I1, I2 such that the remain-
ing field equations are simplified to

F λ̈ + F,ζ λ̇φ̇ − e6λU (ζ ) = 0, (45a)

φ̈ + 3F,ζ λ̇
2 + e6λU,ζ = 0, (45b)(

−3F̄ (ζ ) λ̇2 + 3

8

((
β̇+
)2 + (β̇−

)2)+ 1

2
ζ 2
)

+ e6λŪ (ζ ) + 3

8

(
(I1)

2 + (I2)
2
)

= 0. (45c)

We apply the same procedure as before, where we find
that the reduced dynamical system admits linear conserva-
tion laws for the following sets of the unknown functions
{F (ζ ) = F0, U (ζ ) = U0},

{
F (ζ ) = F0e−F1ζ , U (ζ ) = 0

}
and

{
F (ζ ) = F0ζ

2, U (ζ ) = U0ζ
−
√

6
F0

}
. The two first sets

are covered in case A; therefore, we continue with the pre-
sentation of the new analytic solution for the power-law func-
tions.

3.2.1 F (ζ ) = F0ζ
2, U (ζ ) = U0ζ

−
√

6
F0

For F (ζ ) = F0ζ
2, U (ζ ) = U0ζ

−
√

6
F0 the reduced field

equations (45a), (45b) and (45c) admit the extra conservation

law 5 = d
dt

(
e−√

6F0λζ
)

.

Using the new canonical variables x = e
√

6F0λζ and

y = e−√
6F0λζ or ζ 2 = xy , λ = 1

2
√

6F0
ln
(
x
y

)
, the field

equations are written as

ẍ − 2

√
6

F0
y
−1−

√
6
F0 , ÿ = 0,

1

2
ẋ ẏ +U0y

−
√

6
F0 + 3

8

(
(I1)

2 + (I2)
2
)

= 0, (46)

where the conservation law 5 becomes 5 = ẏ.
Consequently, we find the analytic solution

x = −2U0

5

(
1 −

√
6

F0

)−1

(5 (t − t0))
−
√

6
F0

+x1 (t − t0) + x0 , y = 5 (t − t0) , (47)

with constraint equation x15 + 3
8

(
(I1)2 + (I2)2) = 0.
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Recalling that at this case, the line element is of the form

ds2 = −
(
e3λ(t)M (ζ (t))

)2
dt2 + e2λ(t)

(
e
√

2β+(t)dx2

+e
− 1√

2
β+(t)+

√
3
2 β−(t)

dy2 + e
− 1√

2
β+(t)−

√
3
2 β−(t)

dz2
)

,

where M (ζ (t)) is an arbitrary function and for the latter
solution the anisotropic functionsβ+, β− are linear functions
on t and the scale factor λ (t) is expressed as

exp (λ)=
(
x

y

)2
√

6F0

=
(
Ū1 (t − t0)

−1− 1√
6F0 + x1

)2
√

6F0

.

(48)

where Ū1 = Ū1 (U0,5, F0).
Considering now the case where M (ζ (t)) is a constant

function, then for large values of (t − t) we have eλ � x1,
from where we find the exact solution

ds2 = − (x1)
6 dt2 + x2

1

(
e
√

2I1t dx2 + e
− 1√

2
I1t+

√
3
2 I2t dy2

+e
− 1√

2
I1t−

√
3
2 I2dz2

)
, (49)

the latter is an anisotropic solution with constant volume. On
the other hand, for small values of t − t0 it follows that the
dominant term is eλ � Ū1 (t − t0)−2

√
6F0−2 from which we

write

ds2 = −
(
Ū1 (t − t0)

−2
√

6F0−2
)6

dt2

+ (Ū1
)2

(t − t0)
−4

√
6F0−4

(
e
√

2I1t dx2

+e
− 1√

2
I1t+

√
3
2 I2t dy2 + e

− 1√
2
I1t−

√
3
2 I2t dz2

)
, (50)

or under the change of coordinates (t − t0) � τ
1
K , where

C − 1 = −6
√

6F0 − 6, the spacetime metric is written as

ds2 = −dτ 2 + τ
2(K−1)

3K

⎛
⎝e√

2I1τ
1
K dx2 + e

(
− 1√

2
I1+

√
3
2 I2

)
τ

1
K

dy2

+e

(
− 1√

2
I1−

√
3
2 I2

)
τ

1
K

dz2

⎞
⎠ , (51)

where we have removed the non-essential constants.

4 Dynamical systems analysis

We continue our study by performing a detailed analysis of
the equilibrium points for the gravitational field equations.
From such analysis we can extract information of the evolu-
tion of solutions of field equations and for the description of
the main phases of the cosmological history. This approach

has been widely applied before in various cosmological mod-
els with many interesting results, for example, we refer the
reader to [95–104] and references therein.

The equilibrium points of a spherically symmetric cos-
mology in Einstein–aether theory were studied before in
[48]; specifically, non-comoving perfect fluid has been con-
sidered. Static gravitational models in Eintein–æther theory
with a perfect fluid with a barotropic equations of state and
a scalar field were studied in [60,61]. In addition in [52]
it was performed a detailed study of the stability for inho-
mogeneous and anisotropic models of generalized Szekeres
spacetimes. Moreover, isotropic and homogeneous models
in Einstein–aether theory with scalar field were considered
before in [65–67]. The equilibrium points of Einstein–aether
scalar field theory in Bianchi I spacetimes were studied in
[57,58].

We continue by defining new variables in the so-called
H -normalization (recall H = θ

3 = λ̇
N ) [105]:

x = φ̇√
6F λ̇

, y2 = U

3F λ̇2
, �+ = 1

2

√
M

2F

β+
λ̇

,

�− = 1

2

√
M

2F

β−
λ̇

, (52)

With the use of the new variables the gravitational field equa-
tions (21)–(22d) are written as follows

dx

dλ
= −3

2

(
1 − x2

)
x − 1

2

(√
6μ + 3x

)
y2

−
√

3

2

F,φ

F

(
1 − x2

)

+
M
(

3Mx + √
6FM,φ

)

2F2

(
(�+)2 + (�−)2

)
,

(53a)

dy

dλ
= 1

2
y
((

3 + √
6μx + 3

(
x2 − y2

))

+
√

3

2

F,φ

F
xy + 3

(
M

F

)2 (
(�+)2 + (�−)2

))
,

(53b)

d�+
dλ

= −3

2

√
M

F

(
1 − x2 + y2

)
�+

+ 3

2

(
M

F

) 5
2

�+
(
(�+)2 + (�−)2

)

+ √
6
√
M

F,φ

F
x�+ − √

6
M,φ√
M

x�+, (53c)

d�−
dλ

= −3

2

√
M

F

(
1 − x2 + y2

)
�−

+ 3

2

(
M

F

) 5
2

�−
(
(�+)2 + (�−)2

)
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+ √
6
√
M

F,φ

F
x�− − √

6
M,φ√
M

x�−, (53d)

along with the algebraic equation

1 −
(
x2 + y2

)
−
(
(�+)2 + (�−)2

)
= 0. (54)

Given μ = √
F

U,φ

U we can express φ as a function of μ

through φ = φ (μ). The evolution equation for μ is given by
the first-order ordinary differential equation

dμ

dλ
=
√

3

2
x

(
2F

U,φφ

U
+ μ

F,φ√
F

− 2μ2
)

. (55)

For any equilibrium solution of the field equations, P =(
xP , yp, �+p, �−p

)
, Eq. (22a) becomes

λ̈

λ2 = − 1

λ0
, (λ0)

−1 = 1

2

(
4
√

6xp + 3x2
p

+3
(

1 − y2
p + (�+p

)2 + (�−p
)2)) (56)

which means that λ (t) = λ0 ln (t − t0) for (λ0)
−1 �= 0.

Similarly, for the anisotropic parameters β+, β− we find

β̈± = −σ±λ̇2, σ± = 2
(

3
√

2 + 4
√

3xp
)

�±p (57)

from which it follows β± (t) = (λ0)
2 σ± ln (t − t0) +

β±1 (t − t0±).
Finally, the exact solution for the scalar field at the critical

point P is

φ (t) = φ1t
1
2 (1+√

1−4φ0) + φ2t
1
2 (1−√

1−4φ0), (58)

where φ0 = 3 (λ0)
2
(√

6x + μy2 − 2
((

�+p
)2 + (�−p

)2 − 1
))

.

4.1 F (φ) = φ2, M (φ) = φ2 and U (φ) = U0φ
μ

We proceed our analysis by considering F (φ) = φ2,

M (φ) = φ2 and U (φ) = U0φ
μ, where the system (53)

is simplified as

dx

dλ
= 1

2

(
2
√

6 + 3x
) (

x2 + (�+)2 + (�−)2 − 1
)

,

(59a)

dy

dλ
= 1

2
y
(

3x2 + √
6 (μ + 2) x + 3x2

+3
(

1 − y2 + (�+)2 + (�−)2
))

, (59b)

d�+
dλ

= 3

2
�+

(
x2 + (�+)2 + (�−)2 − y2 − 1

)
, (59c)

d�−
dλ

= 3

2
�−

(
x2 + (�+)2 + (�−)2 − y2 − 1

)
, (59d)

where now μ = const. Using constraint (54) the system (59)
becomes

dx

dλ
= −1

2

(
3x + 2

√
6
)
y2,

dy

dλ
= 1

2
y
(

3x2 + √
6(μ + 2)x − 6y2 + 6

)
,

d�+
dλ

= −3�+y2,
d�−
dλ

= −3�−y2, (60)

where the evolution equation for �− is decoupled, there-
fore the system’s dimensionality can be reduced in one-
dimension. We restrict the analysis to the reduced system in
the three dimensional manifold {x, y, �+}, where the equi-
librium points of (60), have the following coordinates

PA = (xA, 0, �+A) , PB =
(

−μ + 2√
6

,

√
2 − μ (4 + μ)

6
, 0

)
.

(61)

Point PB describes an isotropic FLRW universe, the exact
solution at the equilibrium point. It is a scaling solution with

an equation of state parameter wφB = −1+ (μ+2)2

3 . Point PB

exists when |μ + 2| <
√

6. On the other hand, PA describes
a two-dimensional surface, that is, a family of nonhyperbolic
equilibrium points, which in general describe an anisotropic
universe when �+A �= 0. At the family of points PA only the
kinetic part of the scalar field contributes in the cosmological
solution.

We determine the eigenvalues of the linearized system
around the critical points. For the family of points PA the
eigenvalues are

e1 (PA) = 3 +
√

3

2
(μ + 2) xA, e2 (PA) = e3 (PA) = 0.

(62)

Eigenvalues e1 (PA) can be negative when{
μ < −2 − √

6, −
√

6
μ+2 < xA ≤ 1

}
or
{
μ > −2 + √

6,

−1 ≤ xA −
√

6
μ+2

}
. However, because two of the eigenval-

ues are zero the center manifold theorem should be applied
(see Sect. 4.1.1).

For point PB the three eigenvalues are

e1 (PB) = μ (4 + μ) − 2, e2 (PB) = e3 (PB) = 1

2
e1 (PB) .

(63)

Consequently, point PB , whenever it exists, is always an
attractor.

4.1.1 Center manifold theorem for PA

Introducing the new variables

x1 = x − xA, x2 = �+ − �+A, x3 = y, (64)
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we obtain the evolution equations

dx1

dλ
= −1

2

(√
6(μ + 2) + 6x1 + 6xA

)
x2

3 , (65a)

dx2

dλ
= −3 (x2 + �+A) x2

3 , (65b)

dx3

dλ
= 1

2

(√
6(μ + 2)x1 − 6x2

3 + √
6(μ + 2)xA + 6

)
x3.

(65c)

The center manifold is therefore given by the graph
{
(x2, x1, x3)∈R

3 : x3 =h(x1, x2), Dh = 0, h(0, 0) = 0,

x1
2 + x2

2 ≤ δ
}

, (66)

where h satisfies the partial differential equation

h

(
h

((√
6(μ + 2) + 6x1 + 6xA

) ∂h

∂x1

+6(�+A + x2)
∂h

∂x2
− 6h

)

+√
6(μ + 2)x1 + √

6(μ + 2)xA + 6
)

= 0. (67)

The above equation admits the three solutions:

h(x1, x2) = 0,

h(x1, x2) = ±√
6 (x2 + �+A)2 c1(ξ) − μ2 − 4μ + 2

√
6(μ + 2)ξ (x2 + �+A) + 2√

6
,

(68)

where c1 is an arbitrary function of ξ =
√

6(μ+2)+6x1+6xA
6(x2+�+A)

.
Only the first solution satisfies Dh = 0, h(0, 0) = 0. There-
fore, the center manifold is given locally by
{
(x1, x2, x3) ∈ R

3 : w = 0, x1
2 + x2

2 ≤ δ
}

. (69)

The evolution on the center manifold is given by

x ′
1 = 0, x ′

2 = 0. (70)

That is x1 and x2 are constants at the center manifold.
Introducing the time rescaling d f

dτ
= 1

x3
2
d f
dλ

, the equations
become

x ′
1(τ ) = 1

2

(
−√

6(μ + 2) − 6x1(τ ) − 6xA
)

, (71a)

x ′
2(τ ) = −3x2(τ ) − 3�+A, (71b)

x ′
3(τ ) =

√
6(μ + 2)x1(τ ) − 6x3(τ )2 + √

6(μ + 2)xA + 6

2x3(τ )
,

(71c)

whose general solutions are

x1(τ ) = c1e
−3τ − μ + 2√

6
− xA, x2(τ ) = c2e

−3τ − �+A,

x3(τ ) =
√

2
√

6c1(μ + 2)e−3τ + 6c3e−6τ − μ2 − 4μ + 2√
6

.

(72)

Hence, x1(τ ) → −μ+2√
6

−xA, x2(τ ) → −�+A, x3(τ ) →√
−μ2−4μ+2√

6
, as τ → ∞.

4.1.2 Normal forms

In this section we show normal form of expansions for the
vector field (65) defined in a vicinity of PA, expressed in the
form of Proposition 1. In general, let X : R

n → R
n be a

smooth vector field satisfying X(0) = 0. We can formally
construct the Taylor expansion of x about 0, namely, X =
X1 + X2 + · · · + Xk + O(|x|k+1), where Xr ∈ Hr , the real
vector space of vector fields whose components are homo-
geneous polynomials of degree r , X1 = DX(0)x ≡ Ax, i.e.,
the matrix of derivatives. For r = 1 to k we write

Xr (x) =
r∑

m1=1

· · ·
r∑

mn=1

n∑
j=1

Xm, jxme j ,
∑
i

mi = r, (73)

Let denote the vector space Br = {
xmei := xm1

1 xm2
2

xm3
3 ei |m j ∈ N,

∑
m j = r, i, j = 1, 2, 3

} ⊂ Hr .

Let L(r)
A be the linear operator that assigns to h(y) ∈ Hr

the Lie bracket of the vector fields Ay and h(y):

L(r)
A : Hr → Hr , h → L(r)

A h(y) = Dh(y)Ay − Ah(y).

(74)

Applying this operator to monomials xmei , where m is a
multiindex of order r and ei basis vector of R3, we find

L(r)
J xmei = {(m · λ) − λi } xmei . (75)

The eigenvectors in Br for which �m,i ≡ (m · λ) − λi �= 0
form a basis of Br = LJ(Hr ) and those such that �m,i = 0,

associated to the resonant eigenvalues, form a basis for the
complementary subspace, Gr , of Br in Hr . Obtaining the
normal form we must look for resonant terms, i.e., those
terms of the form xmei with m and i such that �m,i = 0 for
the available m, i.

Theorem 1 (Theorem 2.3.1 in [69]) Giving a smooth vector
field X(x) onRn with X(0) = 0, there is a polynomial trans-
formation to new coordinates, y, such that the differential
equation x′ = X(x) takes the form y′ = Jy +∑N

r=1 wr (y)+
O(|y|N+1), where J is the real Jordan form of A = DX(0)

and wr ∈ Gr , a complementary subspace of Hr on Br =
LA(Hr ), where LA

(r) is the linear operator that assigns to
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h(y) ∈ Hr the Lie bracket of the vector fields Ay and h(y),
L(r)

A : Hr → Hr , h → L(r)
A h(y) = Dh(y)Ay − Ah(y).

Let x∗ = (xA, �+A, 0)T ∈ PA. By taking the linear trans-
formation x1 = x − xA, x2 = �+ − �+A, x3 = y,
as in Sect. 4.1.1, we obtain the vector field X given by
(65) which is C∞ in a neighborhood of the origin. Let

λ1 = 0, λ2 = 0, λ3 = 1
2

(√
6(μ + 2)xA + 6

)
/∈ Z.

Proposition 1 (Leon and Paliathanasis 2020) Let be the vec-
tor fieldX given by (65). Then, there exist a transformation to
new coordinates x → z, such that (65), defined in a vicinity
of 0, has normal form

z′1 = − 3
√

6(μ + 2)(μ(μ + 4) − 2)z2
1z

2
3(√

6(μ + 2)xA + 6
)2

−
3z4

3

(√
6(μ+2)(μ(μ+4)+10)+12

√
6(μ+2)x2

A+18(μ(μ+4)+6)xA
)

2
(√

6(μ+2)xA+6
)2

+ O(|z|5), (76a)

z′2 = − 18(μ + 2)2�+Az2
1z

2
3(√

6(μ + 2)xA + 6
)2 + 3(μ + 2)z1z2z2

3

(μ + 2)xA + √
6

−
9�+Az4

3

(
μ(μ + 4) + 2

√
6(μ + 2)xA + 10

)
(√

6(μ + 2)xA + 6
)2

+ O(|z|5), (76b)

z′3 = 1

2
z3

(√
6(μ + 2)(xA + z1) + 6

)

+
3(μ + 2)z1z3

3

(√
6(μ(μ + 4) + 7) + 9(μ + 2)xA

)
(√

6(μ + 2)xA + 6
)2

+ O(|z|5). (76c)

Proof The system (65) can be written as

x′ = Jx + X2(x) + X3(x) (77)

where x stands for the phase vector x = (x1, x2, x3)
T , and

J =
⎛
⎜⎝

0 0 0
0 0 0

0 0
√

3
2 xA(μ + 2) + 3

⎞
⎟⎠ ,

X2(x) =

⎛
⎜⎜⎜⎝
x2

3

(
−
√

3
2 (μ + 2) − 3xA

)

−3�+Ax2
3√

3
2 (μ + 2)x1x3

⎞
⎟⎟⎟⎠ ,

X3(x) =
⎛
⎝−3x1x2

3
−3x2x2

3
−3x3

3

⎞
⎠ . (78)

Simplifying the quadratic part The linear operator L(2)
J :

H2 → H2 has eigenvectors xmei with eigenvalues �m,i =
λ3m3 −λi , i = 1, 2, 3,m1,m2,m3 ≥ 0,m1 +m2 +m3 = 2.

The eigenvalues �m,i for the allowed m, i are �(0,0,2),1 =

√
6(μ+2)xA+6, �(0,0,2),2 = √

6(μ+2)xA+6, �(1,0,1),3 =
0.

Eliminating the non-resonant quadratic terms, we imple-
ment the quadratic transformation

x → y + h2(y), h2 : H2 → H2,

h2(y) =

⎛
⎜⎜⎜⎜⎝

− y2
3

(√
6(μ+2)+6xA

)

2
(√

6(μ+2)xA+6
)

− 3�+A y2
3√

6(μ+2)xA+6
0

⎞
⎟⎟⎟⎟⎠ , (79)

such that the vector field (77) transforms into

y′ =Jy − L(2)
J h2(y) + X2(y) + X̃3(y)+X̃4(y) + O(|y|5),

(80)

where

X̃3(y) =

⎛
⎜⎜⎜⎜⎝

3(μ(μ+4)−2)y1 y2
3√

6(μ+2)xA+6
3
√

6(μ+2)�+A y1 y2
3√

6(μ+2)xA+6
− 3y2y2

3

− 3y3
3

(
μ(μ+4)+3

√
6(μ+2)xA+16

)

2
√

6(μ+2)xA+12

⎞
⎟⎟⎟⎟⎠ ,

X̃4(y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 3y4
3

(√
6(μ+2)(μ(μ+4)+10)+12

√
6(μ+2)x2

A+18(μ(μ+4)+6)xA
)

2
(√

6(μ+2)xA+6
)2

− 9�+A y4
3

(
μ(μ+4)+2

√
6(μ+2)xA+10

)
(√

6(μ+2)xA+6
)2

0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(81)

such as

−L(2)
J h2(y) + X2(y) =

√
6

2
(μ + 2)y1y3e3 �⇒ y′ = Jy

+
√

6

2
(μ + 2)y1y3e3 + X̃3(y) + X̃4(y) + O(|y|5). (82)

Simplifying the cubic part The linear operator L(3)
J :

H3 → H3 has eigenvectors xmei with eigenvalues �m,i =
λ3m3 −λi , i = 1, 2, 3,m1,m2,m3 ≥ 0,m1 +m2 +m3 = 3.

The eigenvalues �m,i for the allowed m, i are �(1,0,2),1 =
�(1,0,2),2 = �(0,1,2),2 = �(0,0,3),3 = √

6(μ + 2)xA + 6.
Eliminating the non-resonant terms of third order, we

implement the coordinate transformation

y = z + h3(z), h3 : H3 → H3,

h3(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3(μ(μ+4)−2)z1z2
3(√

6(μ+2)xA+6
)2

− 3z2
3

(
z2

(√
6(μ+2)xA+6

)
−√

6(μ+2)�+Az1

)
(√

6(μ+2)xA+6
)2

− 3z3
3

(
μ(μ+4)+3

√
6(μ+2)xA+16

)

2
(√

6(μ+2)xA+6
)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (83)
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such as

−L(3)
J h3(z) + X̃3(z) = 0 �⇒ z′ = Jz

+
√

6

2
(μ + 2)z1z3e3 + ˜̃X4(z) + O(|z|5), (84)

where

˜̃X4(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 3z4
3

(√
6(μ+2)(μ(μ+4)+10)+12

√
6(μ+2)x2

A+18(μ(μ+4)+6)xA
)

2
(√

6(μ+2)xA+6
)2 − 3

√
6(μ+2)(μ(μ+4)−2)z2

1z
2
3(√

6(μ+2)xA+6
)2

− 18(μ+2)2�+Az2
1z

2
3(√

6(μ+2)xA+6
)2 + 3(μ+2)z1z2z2

3

(μ+2)xA+√
6

− 9�+Az4
3

(
μ(μ+4)+2

√
6(μ+2)xA+10

)
(√

6(μ+2)xA+6
)2

3(μ+2)z1z3
3

(√
6(μ(μ+4)+7)+9(μ+2)xA

)
(√

6(μ+2)xA+6
)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (85)

Then, the result of the proposition follows. ��

Finally, the fourth order terms, which all are non-resonant,
can be removed under the quartic transformation

z1 → w1 − 3
√

6(μ + 2)(μ(μ + 4) − 2)w2
1w2

3(√
6(μ + 2)xA + 6

)3

−
3w4

3

(√
6(μ+2)(μ(μ+4)+10)+12

√
6(μ+2)x2

A+18(μ(μ+4)+6)xA
)

2
(√

6(μ+2)xA+6
)2 (

2
√

6(μ+2)xA+12
) ,

(86)

z2 → w2 − 18(μ + 2)2�+Aw2
1w2

3(√
6(μ + 2)xA + 6

)3

+ 3(μ + 2)w1w2w
2
3(

(μ + 2)xA + √
6
) (√

6(μ + 2)xA + 6
)

−
9�+Aw4

3

(
μ(μ + 4) + 2

√
6(μ + 2)xA + 10

)
(√

6(μ + 2)xA + 6
)2 (

2
√

6(μ + 2)xA + 12
) , (87)

z3 → w3 +
3(μ + 2)w1w

3
3

(√
6(μ(μ + 4) + 7) + 9(μ + 2)xA

)
(√

6(μ + 2)xA + 6
)3 . (88)

Neglecting the higher order terms we obtain the integrable
system

z′1 = 0, z′2 = 0, z′3 = 1

2
z3

(√
6(μ + 2)(xA + z1) + 6

)
,

(89)

with general solution

z1(λ) = z10, z2(λ) = z20,

z3(λ) = z30e
1
2 λ
(√

6(μ+2)(xA+z10)+6
)
. (90)

5 Alternative dynamical system’s formulation

Using the alternative variables and time derivative

x = φ̇√
6F λ̇

, z = 3F λ̇2

U
, �+ = 1

2

√
M

2F

β+
λ̇

,

�− = 1

2

√
M

2F

β−
λ̇

,
d f

dτ
= z

d f

dλ
, (91)

we obtain the dynamical system

x ′ = −
√

3

2
(μ + 2) − 3x, �′+ = −3�+,

z′ = −z
[
z
(√

6(μ + 2)x + 6
)

− 6
]
. (92)

It is worth noticing that the system (92) is integrable with
general solution

x(τ ) = c1e
−3τ − μ + 2√

6
, �+(τ ) = c2e

−3τ ,

z(τ ) = 6

2
√

6c1(μ + 2)e−3τ + 6c3e−6τ − μ2 − 4μ + 2
.

(93)

The equilibrium points are

PB : (x, �+, z) =
(

−μ + 2√
6

, 0,− 6

μ(μ + 4) − 2

)
,

PC : (x, �+, z) =
(

−μ + 2√
6

, 0, 0

)
. (94)

The eigenvalues of PB are {−6,−3,−3}, therefore, it is a
sink. On the other hand, PC has eigenvalues {6,−3,−3},
and it is a saddle. Interestingly, the equation for �+ decou-
ples, and we can study a reduced dynamical system for the
variables (x, z).

In Fig. 1 are presented some orbits of system (92) for some
values of parameter μ in the Poincarè variables (U, V ). The
point PB , whenever it exists, it is a sink. Point PC is always
a saddle. The system admits three configurations at infinity
Q1 : (U, V ) = (1, 0), Q2 : (U, V ) = (0, 1), and Q3 :
(U, V ) = (−1, 0), whose dynamics is shown in the plots. In
this coordinates the set PA : (x, y, �+) = (xA, 0, �+A) is
translated to Q2 due to limy→0 z = ∞, limz→∞(U, V ) =
(0, 1).
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(a) (b)

(c) (d)

Fig. 1 Orbits of the system (92) for some values of parameter μ in

the Poincarè variables (U, V ) =
(

x√
1+x2+z2 , z√

1+x2+z2

)
. The point

PB , whenever it exists, it is a sink. Point PC is always a saddle. The

system admits three configurations at infinity Q1 : (U, V ) = (1, 0),
Q2 : (U, V ) = (0, 1), and Q3 : (U, V ) = (−1, 0), whose dynamics is
shown in the plots

6 Conclusions

In this paper we have investigated a Lorentz violating
Einstein-aether theory which contains a scalar field nonmini-
mally coupled with the aether field. For the physical space we

consider the homogeneous but anisotropic Bianchi I space-
time.

We have extended previous analyses on the subject by
considering an interacting function between the scalar and the
aether fields, which is nonlinear on the kinematic quantities
of the time-like aether field. In particular we assume that
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the interacting function is quadratic on the expansion rate θ

and on the shear σ , while in the generic scenario has three
unknown functions of the scalar field, as expressed by Eq.
(13).

The novelty of the interacting function under consider-
ation is that we can determine a point-like Lagrangian and
write the field equations by using the minisuperspace descrip-
tion. Indeed, the field equations can be seen as the motion of
a point-like particle in a four-dimensional Riemannian space
wich coordinates the three scalars of the Bianchi I space-
time and the field φ, under the action of a potential function.
By using this property, we are able to apply methods from
analytic mechanics and study the integrability properties of
the field equations. We use Ansätze for conservation laws
which are linear in the momentum, such that it is possible to
specify the unknown functions of the field equations, which
allows for exact or analytic solutions of the field equations
by using closed-form functions. Hence, the field equations
are Liouville integrable.

In order to study the dynamics and the evolution of the
anisotropies, we determine the equilibrium points for the
field equations. These points describe some specific physical
solutions for the model of our consideration. We perform our
analysis by using the Hubble-normalized variables, also by
using an alternative dimensionless variables which lead to the
evolution of anisotropies with local and with Poincarè vari-
ables. From the two sets of variables we conclude that the
isotropic spatially flat FLRW spacetime is a future attrac-
tor for the physical space. However, anisotropic solutions
of Kasner-like are allowed by the theory of our considera-
tion. Additionally, we have used the center manifold theorem
and the normal forms calculations to analyze the stability of
sets of nonhyperbolic equilibrium points. All these tools lead
to system’s reductions: center manifold and alternative for-
mulations reduce the system dimensionality; whereas nor-
mal forms allow to eliminate non-resonant terms by using a
sequence of nearly identity nonlinear transformations, keep-
ing at each step only the terms at perturbation level which
are relevant in the dynamics.

Finally, it is worth mentioning that our work contributes
to the subject of Lorentz violating theories with a matter
source. From the results of our analysis, it follows that real
anisotropic physical solutions exist in Einstein-aether scalar
field theory, while the generic evolution of the dynamics to
an isotropic state in large scales, it is supported by the theory.
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