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Abstract In this work, we propose a scheme for cosmic
evolution in a generalized Rastall gravity. In our approach,
the role of dark energy is taken by the non-conserved sector
of the stress energy–momentum tensor. The resultant cos-
mic evolution is found to naturally consists of three stages,
namely, radiation dominated, ordinary matter dominated, as
well as dark energy and dark matter dominated eras. Fur-
thermore, for the present model, it is demonstrated that the
eventual fate of the Universe is mostly insensitive to the ini-
tial conditions, in contrast to the standard �CDM model. In
particular, the solution displays the properties of a dynamic
attractor, which is reminiscent of quintessence and k-essence
models. Subsequently, the cosmic coincidence problem is
averted. The amount of deviation from a conserved stress
energy–momentum tensor is shown to be more remarkable
during the period when the dark energy evolves more rapidly.
On the other hand, the conservation law is largely restored for
the infinite past and future. The implications of the present
approach are addressed.

1 Introduction

As an alternative to general relativity, Rastall gravity is char-
acterized by the modified conservation law of the stress
energy–momentum tensor (SET) in curved spacetime [1].
The theory implies intriguing novelty in various aspects
regarding black hole physics [2–12] and cosmology [13–22]
as it has been explored recently by many authors. In partic-
ular, the rudimentary feature of Rastall gravity, in a natural
manner, supplies an alternative implementation for the dark
energy.
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The potential limit of general relativity has been systemati-
cally investigated on the largest scale against various observa-
tional data, namely, the supernova, large scale structure, and
the cosmic microwave background (CMB) measurements.
Among others, one of the most significant findings is the
apparent accelerating expansion of the Universe, and sub-
sequently, the dark energy scenario has become the most
accepted premise regarding a satisfactory account for the
experimental data. Moreover, it is deduced that the Universe
at the present day is mostly composed of dark energy and
dark matter. Subsequently, the physical properties, as well as
the cosmic evolution of dark energy, become an increasingly
active area in cosmology [23–27], due to its immediate con-
nection with our understanding of the fundamental nature of
the Universe.

Although the standard � Cold Dark Matter (�CDM)
model supplies a reasonable account for the observed prop-
erties of the cosmos, it also confronts several challenges
such as cosmic coincidence problem and fine tuning prob-
lem. In this regard, alternative approaches are primarily
carried out by modifying Einstein’s field equations, which
can be further divided into two distinct categories. The
first type of model focuses on the properties of the matter
field, which gives rise to dynamical dark energy models.
In the literature, efforts along this train of thought consist
of quintessence [28], tachyon [29], k-essence [30], phan-
tom [31], Chaplygin gas [32], holographic dark energy [33–
35], agegraphic dark energy [36,37], among others. The sec-
ond type of approach, on the other hand, is motivated by gen-
eralizing the geometry in Einstein’s general relativity. Such
attempts include f (R) [38], f (T ) [39], f (R, T ) theory [40],
Brans–Dicke theory [41], Gauss–Bonnet theory [42], Love-
lock [43], and Horava–Lifshitz theories [44–47].

In general relativity, the SET is minimally coupled to the
geometry. Consider a matter field that possesses a classical
continuous symmetry, and a conserved current is implied
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according to the Noether theorem. However, as an infinitesi-
mal symmetry transformation is made local, the action is no
longer invariant, but rather it gives rise to a contribution asso-
ciated with the Noether current. The above spacetime depen-
dent transformation is a well-known procedure of introducing
a gauge field into the theory. Here, the metric is playing the
role of the gauge field for a diffeomorphism invariance, and
the latter is related to the translation symmetry of the original
theory. Subsequently, the Hilbert energy–momentum tensor,
defined by the variation of the action of the matter field with
respect to the metric, is conserved. In this context, it has been
argued that the Rastall gravity can be viewed such that the
curvature–matter coupling is implemented by a non-minimal
fashion [48]. Therefore, the theory might be classified into
the second category of modified gravity.

From a physical viewpoint, both the gravitationally
induced particle production [49–51] and quantum effects in
curved spacetime [52] might be associated with the violations
of the usual conservation law of the SET. This particularly
meaningful as it is understood that the conservation of SET
does not lead to particle production [53]. From the viewpoint
of relativistic kinetic theory, there is one more apparent mech-
anism even if the particle number is conserved, namely, the
kinetic diffusive process. As it was pointed out in Ref. [54],
the SET of the matter field is not conserved, as the evolu-
tion of the matter field is governed by the Fokker–Planck
equation. Moreover, it can be shown that the divergence of
the SET equals to a conserved four-current. In the study of
cosmology, the above physical scenarios are relevant and
evidently lead to important implications. In particular, the
non-conserved part of the SET might give rise to the dark
energy which, subsequently, is responsible for the present
accelerating expansion of the Universe [14–17,21,22]. In
Ref. [22], the authors studied the accelerating expansion of
the Universe by employing a generalized Rastall theory. In
particular, a non-minimal coupling between the geometry
and a pressureless matter field is shown to lead the transition
from the matter-dominated era to the accelerating expansion.
The cosmic evolution is also investigated for homogeneous
and isotropic flat Friedmann–Lemaître–Robertson–Walker
(FLRW) metric in Ref. [55]. The model is shown to be equiv-
alent to the particle creation mechanism in Einstein gravity
in the framework of non-equilibrium thermodynamics.

The present study involves such an attempt to construct
a reasonable scheme for cosmic evolution in a generalized
Rastall gravity. In our model, the dark energy is implemented
so that it is closely related to the violation of SET. The amount
of violation is found to be more significant during the period
when the contribution of dark energy increases and raises to
its present value. It eventually becomes insignificant, as it is
naturally dictated by the equations of motion. The resultant
cosmic evolution experiences three stages, namely, radiation
dominated, ordinary matter dominated, as well as dark energy

and dark matter dominated eras. We also show that the even-
tual fate of the Universe is insensitive to the initial conditions,
owing to the dynamical attractor behavior of the solution.

The rest of the paper is organized as follows. In the follow-
ing section, we briefly discuss the generalized Rastall gravity
utilized in the present study. The equations of motion of the
cosmic evolution are derived in Sect. 3. Numerical results
are presented in Sect. 4. Concluding remarks are given in the
last section.

2 Generalized Rastall gravity

In Refs. [11,12], based on the original idea by Rastall [1], we
proposed a generalized formulation of the Rastall theory. To
be specific, the equation of the gravitational field equation
and that of the SET read

Rμν − 1

2
gμνR = κ

(
Tμν − Aμν

)
,

∇μT
μ

ν = ∇μA
μ

ν, (2.1)

where κ = 8πG. We also impose a physical requirement
that the effect of A μ

ν and its derivatives must vanish in flat
spacetime. In fact, it can be shown that the above formulation
is rather general so that several modified gravity theories
could be viewed as its special cases [11].

As for the purpose of the present study, we consider a
specific case, namely,

Aμν = λgμνH , (2.2)

where H vanishes when R = 0. On the other hand, as a
scalar, H can be a function of the Ricci scalar R, T ≡
gμνTμν and other constants. By substituting the form of Aμν

into Eq. (2.1), we have

Rμν − 1

2
gμνR = κ

(
Tμν − λgμνH

)
,

∇μT
μ

ν = λ∇νH . (2.3)

For algebraic convenience, one defines

τμν = Tμν − λgμνH . (2.4)

Therefore, Eq. (2.3) can be rewritten in essentially the same
form as in general relativity

Rμν − 1

2
gμνR = κτμν,

∇μτμ
ν = 0. (2.5)

Although it is mathematically similar, usually, it is not phys-
ically appropriate to interpret τμν as the SET of the matter
field [56]. If one contracts both sides of the gravitational field
equation, it gives

R + κT = 4κλH . (2.6)
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Owing to the reasons to be discussed below, we choose

H = R (R + κT )

4κλ (4κ� − κT )
, (2.7)

where � is to be determined shortly. We note that, in the
vacuum, both factors on the numerator vanish as R → 0. In
order that H is a well-defined quantity, one requires that the
denominator of Eq. (2.7) being regular even when R → 0.

By substituting H into Eq. (2.6), one finds a quadratic
algebraic equation, which implies the following two solu-
tions for R:

R = −κT,

or R = κ (4� − T ) . (2.8)

The first solution is not physically relevant, because here,
we will investigate the scenario where R remains finite even
when the matter field Tμν vanishes. This is precisely the case
where dark energy plays a significant role in cosmic evolu-
tion. Therefore, we will only explore the implication of the
second solution. For the present model, this implies that � is
nonvanishing, while Tμν vanishes. This, in turn, ensures that
the denominator of Eq. (2.7) will be regular in our approach.

By substituting it back into field equations, one finds

Rμν − 1

2
gμνR + κgμν� = κTμν,

∇μT
μ

ν = ∇ν�. (2.9)

Before proceeding further, we pause to give a few com-
ments regarding Eq. (2.9). First, if one assumes � ≡ �eff/κ

where �eff is a constant, the above equations become iden-
tical to those of the standard �CDM model. Therefore, it
seems rather appealing to identify the physical content of
� with the cosmological constant. Although, in the present
model, as further discussed below, its temporal dependence
plays an essential role. In Ref. [12], it is demonstrated
that an (anti-)de Sitter solution can be effectively found in
Rastall gravity where the spacetime is asymptotically flat.
It is achieved by taking H = H (R) and Tμν = 0. In
other words, the above solution again confirms the previous
findings that a metric in asymptotically flat Rastall gravity
naturally gives rise to that in general relativity with a cosmo-
logical constant. Moreover, according to the second equation
of Eq. (2.9), � measures the violation of the SET. Indeed,
from the viewpoint of the Rastall gravity, all different types
of matter fields are described by Tμν , as a result, the observa-
tion of dark energy merely reflects, to what degree, the SET
of the matter field deviates from a conserved current. It is
also worth mentioning that Eq. (2.9) is very similar to those
obtained from different theories where the conservation of
the SET is partly breaking (for instance, see Refs. [57,58]
and related discussions in the last section).

In the following section, we proceed to derive the equa-
tions for cosmic evolution and investigate their solutions.

Accordingly, we will treat � as a variable, and solve its tem-
peroal dependence.

3 Cosmic evolution in generalized Rastall gravity

The equations for cosmic expansion can be formulated by
employing the co-moving coordinates, in terms of which the
SET of the matter field is given by

Tμ
ν =

⎛

⎜⎜
⎝

−ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

⎞

⎟⎟
⎠ . (3.1)

According to the discussions in the previous section, we
denote � ≡ ρde, the energy density of the dark energy. It
is noted, by using Eq. (2.4) and the solution Eq. (2.8), it is
straightforward to show that the tensor τμ

ν reads

τμ
ν =

⎛

⎜⎜
⎝

−ρ − ρde 0 0 0
0 P + Pde 0 0
0 0 P + Pde 0
0 0 0 P + Pde

⎞

⎟⎟
⎠ , (3.2)

where Pde = −ρde is recognized as the pressure of dark
energy. In other words, although � is not a constant, the
equation of state of the dark energy still satisfies a simple
form, namely, wde = Pde

ρde
= −1, which is in agreement with

the observed results. Furthermore, the the cosmological prin-
ciple implies that ρ = ρ(t), P = P(t), ρde = ρde(t), and
Pde = Pde(t) are functions independent on spatial coordi-
nates.

We proceed to derive the equations of motion in terms of
the FLRW metric

ds2 =−dt2 + a(t)2
[

dr2

1 − kr2 + r2
(
dθ2+sin(θ)2dϕ2

)]
,

(3.3)

where k represents the curvature density of the Universe.
Therefore, the (0, 0) and (1, 1) components of gravitational
field equation in Eq. (2.9) can be rewritten as

(
ȧ

a

)2

+ k

a2 = 8πG

3
(ρ + ρde) ,

2ä

a
+

(
ȧ

a

)2

+ k

a2 = −8πG (P − ρde) , (3.4)

while the equation regarding the SET gives

ρ̇ + ρ̇de = − (ρ + P)
ȧ

a
. (3.5)

We note only two of the above three equations are indepen-
dent.

We consider the matter content of the Universe consists
of radiation, ordinary matter, dark matter, and dark energy.
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Radiation, ordinary matter, and dark matter are assumed to be
independent between one another. They satisfy the standard
equations of states, namely, Pr = 1

3ρr and Pm = Pdm = 0.
Therefore, the total pressure and density of the matter fields
are given by

ρ = ρr + ρm + ρdm,

P = Pr + Pm + Pdm = Pr = 1

3
ρr. (3.6)

As independent fluid components, we further assume that
radiation and ordinary matter satisfy, respectively, an equa-
tion regarding the conservation of its SET, namely,

ρ̇m + ρm
ȧ

a
= 0,

ρ̇r +
(

ρr + 1

3
ρr

)
ȧ

a
= 0, (3.7)

For the dark matter, however, the corresponding equation is
constrained by Eq. (3.5). It is not difficult to show that the
resultant equation reads

ρ̇dm + ρ̇de + ρdm
ȧ

a
= 0. (3.8)

Now, there is only one free variable left, and for the last
equation, we impose a rather simple scenario:

ρde = βρdm, (3.9)

which can be viewed as to effectively incorporate a specific
type of interaction between the dark energy and dark matter.
We note that this is in tune with the fact that Eq. (3.8) also
demonstrates that dark matter and dark energy are related.
Otherwise, in comparison with Eq. (3.7), the second term on
the l.h.s. of Eq. (3.8) would have not been present.

Eqs. (3.7), (3.8) and (3.9) can be solved analytically to
give

ρdm = ρdm0

(a0

a

) 3
1+β

,

ρm = ρm0

(a0

a

)3
,

ρr = ρr0

(a0

a

)4
. (3.10)

Here, the radiation and ordinary matter evolve as in stan-
dard �CDM model. Also, the evolution of the dark energy
accompanies that of dark matter, which reads

ρde = βρdm = βρdm0

(a0

a

) 3
1+β

. (3.11)

Here, the index 0 indicates the values at present.
One can also rewrite the field equation similar to the Fried-

man equation. By introducing the Hubble parameter H ≡ ȧ
a

and and the spatial curvature density

ρk ≡ − 3k

8πGa2 = ρk0

(a0

a

)2
. (3.12)

one finds

r + m + dm + de + k = 1, (3.13)

where the i = 8πGρi
3H2 with i = r, m, dm, de, k indicating

the density parameters of radiation, ordinary matter, dark
matter, dark energy, and spatial curvature respectively.

The deceleration parameter q ≡ − äa
ȧ2 is found to be

q = r − de + m + dm

2
. (3.14)

4 Numerical results

In the section, we present the numerical results in Figs. 1, 2,
3, 4, 5, 6, 7 and 8. We first determine the constants of the
integration regarding equations of the cosmic evolution by
the values of the measurements to date [59]. To be specific,
we choose dm0 = 0.27, de0 = 0.68, m0 = 0.05. Also,
we assume a spatially flat Universe by considering k = 0.
Moreover, the redshift z = 1100, where the energy density
of ordinary matter exceeds that of the radiation, is also taken
as an input [60]. Subsequently, for the proposed model, the
parameter β is found to be 2.52, which will be used in the
remainder of this paper. The calculations are then carried
out for the generalized Rastall theory, which are compared
against those from the standard �CDM model. The corre-
sponding results obtained by adopting the above parameters

Fig. 1 The calculated cosmic evolutions of dimensionless density
parameters as functions of a/a0. The present day a/a0 = 1 is indicated
by a vertical black solid line. The quantities de, dm, m, and r are
represented by black, orange, red, and green curves. The calculations
are carried out for different parameters in generalized Rastall gravity.
The cosmic evolution evaluated by using the specific initial conditions
which reproduces the measurements is presented by solid curves. Those
obtained by using different perturbed initial conditions are indicated by
dashed and dotted curves
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Fig. 2 The same as Fig. 1. The calculated cosmic evolutions of dimen-
sionless density parameters as functions of a/a0. The calculations are
carried out for the standard �CDM model. The cosmic evolution, as
well as the results regarding arbitrary initial perturbations, are shown
in solid, dashed, and dotted curves. The zoomed-in plot illustrates the
density parameters in the vicinity of a/a0 = 1

Fig. 3 An comparison of the calculated cosmic evolutions of the den-
sity parameters of dark energy between the two models. The results of
the standard �CDM model are shown in solid curves, and those of the
generalized Rastall theory are indicated by dash-dotted curves

are shown in Figs. 1, 2, 3, 4 and 5 by the solid curves in
different colors.

On top of the above solution, the initial conditions of the
relevant equations are arbitrarily perturbed at an instant with
a sufficiently large redshift. In other words, due to the per-
turbations, the constants of integration will no longer remain
unchanged, and the calculations are performed for a system
of five equations, namely, Eqs. (3.4), (3.7), (3.8), and (3.9)
for five variables a, ρde, ρdm, ρr, and ρm for given β. Subse-

Fig. 4 The calculated deceleration parameter q as a function of a/a0.
The present day a/a0 = 1 is indicated by a vertical black solid line.
The calculations are carried out for different parameters in generalized
Rastall gravity. The cosmic evolution evaluated by using the specific
initial conditions which reproduces the measurements is presented by
solid curves. Those obtained by using different perturbed initial condi-
tions are indicated by dashed and dotted curves

Fig. 5 The same as Fig. 4. The calculated deceleration parameter q
as a function of a/a0. The calculations are carried out for the standard
�CDM model. The cosmic evolution, as well as the results regarding
arbitrary initial perturbations, are shown in solid, dashed, and dotted
curves. The zoomed-in plot illustrates the deceleration parameters in
the vicinity of a/a0 = 1

quently, we investigate how the evolution of the composition
of the Universe, and in particular, the density parameters at
present day a/a0 = 1, depends on different initial condi-
tions. The latter are presented in dashed and dotted curves in
Figs. 1, 2, 4, and 5 for both models.

As expected, from Fig. 1, the results show that the cos-
mic evolution consists of three stages, namely, the radia-
tion dominated, ordinary matter dominated, as well as dark
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Fig. 6 An comparison of the calculated deceleration parameter q
between the two models. The results of the standard �CDM model
are shown in solid curves, and those of the generalized Rastall theory
are indicated by dash-dotted curves

Fig. 7 The dynamic attractor solution in the generalized Rastall grav-
ity. The results show the deviations from the specific solution governed
by a specific choice of initial conditions. The calculations are carried out
for the differences in the density parameter of dark energy de (x-axis)
and those in deceleration parameter q (y-axis). Each individual curve
is obtained by evaluating the cosmic evolution with an arbitrary initial
condition. The red dashed curve and black dotted curve correspond to
the same perturbations investigated in Figs. 1 and 4. The calculations
are carried out for generalized Rastall gravity by using the parameters
given in the text

energy and dark matter dominated eras. Also, it can be clearly
inferred that the eventual fate of the Universe, calculated by
the present model, is insensitive to the initial conditions. To
be specific, the density parameters for the dark energy and
dark matter all converge to the given values, irrelevant to spe-
cific initial conditions. Meanwhile, during the evolution, the
compositions of the radiation and ordinary matter reflet the

Fig. 8 The amount of deviation from a conserved SET, shown as a
function of a/a0. The calculations are carried out for generalized Rastall
gravity by using the model parameters described in the text

details of the perturbed initial conditions. This point becomes
particularly evident as one compares the above results against
those of the standard �CDM model shown in Fig. 2. In the
�DCM model, the density parameters at present a/a0 = 1
are dictated largely by the initial conditions, as shown by the
zoomed-in plot of Fig. 2. We note that the present findings are
in agreement with other approaches [35,61], which incorpo-
rate the interaction between the dark energy and dark matter.
The difference for the present model is that, in the framework
of Rastall theory, the dark energy degree of freedom appears
naturally from the deviation from the conservation law of the
SET.

To clearly illustrate the difference in the resultant cosmic
evolution between the two models, we present a comparison
of the calculated density parameters in Fig. 3. It is found that
although the density parameters of the dark energy and dark
matter are identical at the present day in both models, their
respective rates of change are distinct. In the �CDM model,
the density parameter increases rapidly at a/a0 = 1, whereas
that of the matter falls dramatically. As a result, to reproduce
their measured values at the present day, one must carefully
tune the initial conditions, which, in turn, gives rise to the
related coincidence problem, as illustrated in Fig. 2. In the
generalized Rastall theory, on the other hand, the evolutions
of ordinary matter and dark matter are separated. The dark
matter starts to arise together with the dark energy, owing
to their interaction, after the ordinary matter dominated era.
Moreover, both the dark energy and dark matter begin to
saturate at the present day. Therefore their values do not sen-
sitively depend on the initial conditions.

In Figs. 4, 5 and 6, one shows the resultant deceleration
parameters for different initial conditions as functions of red-
shift in both models. Again, it is found that the deceleration
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parameter eventually approaches a given value, independent
of specific initial conditions. Regarding both models, the val-
ues of q are identical at a/a0 = 0, and the general trend is
also found to be similar. However, for the Rastall gravity, one
observes that q has begun to converge at a/a0 = 0. This is
different from the case of the �CDM model where, again,
at the present-day q is falling rapidly. As a result, the related
value of q is sensitively governed by the specific initial con-
ditions.

The above properties regarding the generalized Rastall
theory can be shown more transparently as one focuses on the
deviations from the specific solution discussed at the begin-
ning of the section. The corresponding results are presented
in Fig. 7 where one studies the discrepancies in cosmic evolu-
tions by arbitrarily perturbing the initial conditions. To illus-
trate, we have chosen to show the differences in the density
parameter of dark energy de and the deceleration parame-
ter q. It is observed that the solution displays the properties
of a dynamic attractor, which is reminiscent of quintessence
and k-essence models. In other words, it is found that the
deviations in evolution regarding different initial conditions
all converge to the origin. Therefore, they are insensibility to
the initial conditions in the present approach.

Last but not least, in Fig. 8, we show the amount of devia-
tion from a conserved SET, which is the 0-component of the
r.h.s. of Eq. (2.1), as a function of a/a0, for the generalized
Rastall theory. As discussed above, for the present model,
the amount of violation is related to the dynamical evolution
of the dark energy. As shown in Fig. 8, the deviation is time-
dependent. Its magnitude becomes more significant when the
dark energy evolves more rapidly, and the peak is found to
locate at approximately a/a0 ∼ 0.3. On the other hand, the
SET is mostly conserved in the infinite past and future.

5 Discussions and concluding remarks

Owing to the fact that one has to discard one of the solutions
of Eq. (2.8), which introduces a vanishing factor on both
sides of Eq. (2.7), the numerator of the equation is chosen
as a second-order polynomial. In fact, Eq. (2.7) only con-
tains � as an unknown scalar function, which is identified
with a dynamical cosmological constant. For this reason, it is
actually a rather economical choice of ansatz in the present
model.

In comparison to the standard �CDM model, effectively,
the proposed scheme only contains one additional variable,
�. The latter is described by the assumed equation of motion
Eq. (3.9). In this context, it is a minimal scheme necessarily to
describe the dynamical evolution of dark energy. In compar-
ison to other recent studies [22,55] about cosmic evolution
in Rastall theory, the present approach introduces a unified
scheme to deal with different matter contents of the Universe.

In other words, by solving a closed system of equations, dif-
ferent eras of cosmic evolution are derived naturally. More-
over, we argue that our model possesses a dynamic attractor
solution, which provides a possible explanation for the coin-
cidence problem.

It is also interesting to mention that the non-conserved
SET can be treated in terms of a generalized version of the
two measure theories [62,63]. In this case, the dynamics can
be derived from an action which consists of two measures. In
particular, the latter involves a scalar density in the place of
the usual factor of the Jacobian

√−g. The theory is recently
generalized in order to accommodate the fact the SET is not
conserved as one considers the diffusive process in the rel-
ativistic Fokker–Plank equation [54]. There, the divergence
of the SET is shown to be related to the conserved particle
flow. This can be achieved by replacing the dynamic space-
time four-vector in the original theory by the gradient of a
scalar field [57,58]. The resultant theory gives rise to a uni-
fied description of the interacting dark energy and dark mat-
ter. It is, therefore, intriguing to compare the above approach
against the Lagrangian formalism of Rastall theory.

To summarize, the present study involves an attempt to
propose a scheme for cosmic evolution in a generalized
Rastall gravity. In our model, the physical content of the dark
energy is attributed to the non-conserved sector of the SET.
The resultant cosmic evolution is naturally found to consists
of three stages, namely, radiation dominated, ordinary matter
dominated, as well as dark energy and dark matter dominated
eras. Also, for the present model, it is shown that the even-
tual fate of the Universe is largely insensitive to the initial
conditions, and the cosmic coincidence problem is therefore
averted. Furthermore, we show that the amount of violation
is found to be more significant when the dark energy evolves
dynamically.
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are included in the article’s Creative Commons licence, unless indi-

123



561 Page 8 of 8 Eur. Phys. J. C (2020) 80 :561

cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. P. Rastall, Phys. Rev. D 6, 3357 (1972)
2. Y. Heydarzade, F. Darabi, Phys. Lett. B 771, 365 (2017).

arxiv:1702.07766
3. J.P. Morais Graca, I.P. Lobo, Eur. Phys. J. C78, 101 (2018).

arxiv:1711.08714
4. K.A. Bronnikov, J.C. Fabris, O.F. Piattella, E.C. Santos, Gen. Rel-

ativ. Gravit. 48, 162 (2016). arxiv:1606.06242
5. Y. Heydarzade, H. Moradpour, F. Darabi, Can. J. Phys. 95, 1253

(2017). arxiv:1610.03881
6. E. Spallucci, A. Smailagic, Int. J. Mod. Phys. D 27, 1850003

(2017). arxiv:1709.05795
7. R. Kumar, S.G. Ghosh, Eur. Phys. J. C 78, 750 (2018).

arxiv:1711.08256
8. Z. Xu, X. Hou, X. Gong, J. Wang, Eur. Phys. J. C 78, 513 (2018).

arxiv:1711.04542
9. M. Sadeghi, (2018), arxiv:1809.08698

10. I.P. Lobo, H. Moradpour, J.P.M. Graça, I.G. Salako, Int. J. Mod.
Phys. D27, 1850069 (2018). arxiv:1710.04612

11. K. Lin, Y. Liu, W.-L. Qian, Gen. Relativ. Gravit. 51, 62 (2019).
arxiv:1809.10075

12. K. Lin, W.-L. Qian, Chin. Phys. C 43, 083106 (2019).
arxiv:1812.10100

13. A.S. Al-Rawaf, M.O. Taha, Phys. Lett. B 366, 69 (1996)
14. A.S. Al-Rawaf, M.O. Taha, Gen. Relativ. Gravit. 28, 935 (1996)
15. C.E.M. Batista, M.H. Daouda, J.C. Fabris, O.F. Piattella, D.C.

Rodrigues, Phys. Rev. D 85, 084008 (2012). arxiv:1112.4141
16. J.C. Fabris, O.F. Piattella, D.C. Rodrigues, C.E.M. Batista,

M.H. Daouda, Int. J. Mod. Phys. Conf. Ser. 18, 67 (2012).
arxiv:1205.1198

17. K.A. Bronnikov, J.C. Fabris, O.F. Piattella, D.C. Rodrigues, E.C.
Santos, Eur. Phys. J. C 77, 409 (2017). arxiv:1701.06662

18. F. Darabi, K. Atazadeh, Y. Heydarzade, Eur. Phys. J. Plus 133, 249
(2018). arxiv:1710.10429

19. F.-F. Yuan, P. Huang, Class. Quantum Gravity 34, 077001 (2017).
arxiv:1607.04383

20. J.C. Fabris, M.H. Daouda, O.F. Piattella, Phys. Lett. B 711, 232
(2012). arxiv:1109.2096

21. C.E.M. Batista, J.C. Fabris, O.F. Piattella, A.M. Velasquez-Toribio,
Eur. Phys. J. C 73, 2425 (2013). arxiv:1208.6327

22. H. Moradpour, Y. Heydarzade, F. Darabi, I.G. Salako, Eur. Phys.
J. C 77, 259 (2017). arxiv:1704.02458

23. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989). (569(1988))
24. T. Padmanabhan, Phys. Rep. 380, 235 (2003).

arxiv:hep-th/0212290
25. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15,

1753 (2006). arxiv:hep-th/0603057
26. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys.

Space Sci. 342, 155 (2012). arxiv:1205.3421
27. M. Li, X.-D. Li, S. Wang, Y. Wang, Commun. Theor. Phys. 56, 525

(2011). arxiv:1103.5870
28. R.R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80, 1582

(1998). arxiv:astro-ph/9708069
29. A. Sen, JHEP 07, 065 (2002). arxiv:hep-th/0203265

30. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Phys. Rev.
Lett. 85, 4438 (2000). arxiv:astro-ph/0004134

31. S. Nojiri, S.D. Odintsov, Phys. Lett. B 562, 147 (2003).
arxiv:hep-th/0303117

32. AYu. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511,
265 (2001). arxiv:gr-qc/0103004

33. A.G. Cohen, D.B. Kaplan, A.E. Nelson, Phys. Rev. Lett. 82, 4971
(1999). arxiv:hep-th/9803132

34. M. Li, Phys. Lett. B 603, 1 (2004). arxiv:hep-th/0403127
35. B. Wang, Y.-G. Gong, E. Abdalla, Phys. Lett. B 624, 141 (2005).

arxiv:hep-th/0506069
36. R.-G. Cai, Phys. Lett. B 657, 228 (2007). arxiv:0707.4049
37. H. Wei, R.-G. Cai, Phys. Lett. B 660, 113 (2008). arxiv:0708.0884
38. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010).

arxiv:1002.4928
39. F.W. Hehl, J.D. McCrea, E.W. Mielke, Y. Ne’eman, Phys. Rep.

258, 1 (1995). arxiv:gr-qc/9402012
40. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84,

024020 (2011). arxiv:1104.2669
41. C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961). (142(1961))
42. S. Nojiri, S.D. Odintsov, Phys. Lett. B 631, 1 (2005).

arxiv:hep-th/0508049
43. D. Lovelock, J. Math. Phys. 12, 498 (1971)
44. P. Horava, Phys. Rev. D 79, 084008 (2009). arxiv:0901.3775
45. P. Horava, Phys. Rev. Lett. 102, 161301 (2009). arxiv:0902.3657
46. K. Lin, A. Wang, Q. Wu, T. Zhu, Phys. Rev. D 84, 044051 (2011).

arxiv:1106.1486
47. K. Lin, S. Mukohyama, A. Wang, T. Zhu, Phys. Rev. D 89, 084022

(2014). arxiv:1310.6666
48. W.A.G. De Moraes, A.F. Santos, Gen. Relativ. Gravit. 51, 167

(2019). arxiv:1912.06471
49. G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2738 (1977)
50. L. Parker, Phys. Rev. D 3, 346 (1971). (Erratum: Phys. Rev. D 3,

2546 (1971))
51. L.H. Ford, Phys. Rev. D 35, 2955 (1987)
52. R. Bertlemann, Anomalies in Quantum Field Theory (Oxford Uni-

versity Press, Oxford, 1996)
53. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space

(Cambridge University Press, Cambridge, 1982)
54. S. Calogero, JCAP 11, 016 (2011). arxiv:1107.4973
55. D. Das, S. Dutta, S. Chakraborty, Eur. Phys. J. C 78, 810 (2018).

arxiv:1810.11260
56. F. Darabi, H. Moradpour, I. Licata, Y. Heydarzade, C. Corda, Eur.

Phys. J. C 78, 25 (2018). arxiv:1712.09307
57. D. Benisty, E. Guendelman, Eur. Phys. J. C 77, 396 (2017).

arxiv:1701.08667
58. D. Benisty, E. Guendelman, Z. Haba, Phys. Rev. D 99, 123521

(2019). arXiv:1812.06151 (Erratum: Phys. Rev. D 101, 049901
(2020))

59. P.A.R.A. de Planck et al., Astron. Astrophys. 571, A1 (2014).
arxiv:1303.5062

60. S.A. Gregory, M. Zeilik, Introductory Astronomy and Astrophysics
Saunders Golden Sunburst Series, 4th edn. (Cengage Learning,
Boston, 1997)

61. S.D.H. Hsu, Phys. Lett. B 594, 13 (2004). arxiv:hep-th/0403052
62. E. Guendelman, A. Kaganovich, Phys. Rev. D 53, 7020 (1996).

arxiv:gr-qc/9605026
63. E. Guendelman, Mod. Phys. Lett. A 14, 1043 (1999).

arxiv:gr-qc/9901017

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1702.07766
http://arxiv.org/abs/1711.08714
http://arxiv.org/abs/1606.06242
http://arxiv.org/abs/1610.03881
http://arxiv.org/abs/1709.05795
http://arxiv.org/abs/1711.08256
http://arxiv.org/abs/1711.04542
http://arxiv.org/abs/1809.08698
http://arxiv.org/abs/1710.04612
http://arxiv.org/abs/1809.10075
http://arxiv.org/abs/1812.10100
http://arxiv.org/abs/1112.4141
http://arxiv.org/abs/1205.1198
http://arxiv.org/abs/1701.06662
http://arxiv.org/abs/1710.10429
http://arxiv.org/abs/1607.04383
http://arxiv.org/abs/1109.2096
http://arxiv.org/abs/1208.6327
http://arxiv.org/abs/1704.02458
http://arxiv.org/abs/hep-th/0212290
http://arxiv.org/abs/hep-th/0603057
http://arxiv.org/abs/1205.3421
http://arxiv.org/abs/1103.5870
http://arxiv.org/abs/astro-ph/9708069
http://arxiv.org/abs/hep-th/0203265
http://arxiv.org/abs/astro-ph/0004134
http://arxiv.org/abs/hep-th/0303117
http://arxiv.org/abs/gr-qc/0103004
http://arxiv.org/abs/hep-th/9803132
http://arxiv.org/abs/hep-th/0403127
http://arxiv.org/abs/hep-th/0506069
http://arxiv.org/abs/0707.4049
http://arxiv.org/abs/0708.0884
http://arxiv.org/abs/1002.4928
http://arxiv.org/abs/gr-qc/9402012
http://arxiv.org/abs/1104.2669
http://arxiv.org/abs/hep-th/0508049
http://arxiv.org/abs/0901.3775
http://arxiv.org/abs/0902.3657
http://arxiv.org/abs/1106.1486
http://arxiv.org/abs/1310.6666
http://arxiv.org/abs/1912.06471
http://arxiv.org/abs/1107.4973
http://arxiv.org/abs/1810.11260
http://arxiv.org/abs/1712.09307
http://arxiv.org/abs/1701.08667
http://arxiv.org/abs/1812.06151
http://arxiv.org/abs/1303.5062
http://arxiv.org/abs/hep-th/0403052
http://arxiv.org/abs/gr-qc/9605026
http://arxiv.org/abs/gr-qc/9901017

	Cosmic evolution of dark energy in a generalized Rastall gravity
	Abstract 
	1 Introduction
	2 Generalized Rastall gravity
	3 Cosmic evolution in generalized Rastall gravity
	4 Numerical results
	5 Discussions and concluding remarks
	Acknowledgements
	References




