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Abstract The Particle Data Group recommends a set of
procedures to be applied when discrepant data are to be com-
bined. We introduce an alternative method based on a more
general and solid statistical framework, providing a robust
way to include possible unknown systematic effects inter-
fering with experimental measurements or their theoretical
interpretation. The limit of large data sets and practical cases
of interest are discussed in detail.

1 Introduction

In any field of science, it is often the case that a number
of data points or data sets need to be combined in order to
achieve a greater overall precision. Now, data naturally fluc-
tuate and it is not uncommon that one or several data points
may appear discrepant or outlying with respect to the bulk
of the data. This is not necessarily a concern, e.g., if the
results of the individual measurements or observations are
known to be dominated by the statistical uncertainty, or even
in the presence of significant systematic effects, as long as
their associated uncertainties can be reliably estimated. On
the other hand, if the observed discrepancies are suspiciously
large or plentiful, one may worry that some unknown system-
atic effect or unjustified but hidden assumption might have
moved the central value of one or more observations. In that
latter case, a more conservative handling of the data and its
combination would be called for.

Of course, it is impossible to know independently which of
the aforementioned situations—larger than expected random
fluctuations, unknown systematic effect(s), or both—one is
facing, or which of the individual data (sub)sets could be

1 The PDG collects, evaluates, averages and fits particle physics data
world-wide and assesses their implications and interpretations in a large
number of dedicated reviews.
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at fault. As a remedy, the Particle Data Group (PDG) [1]
proposed a set of rules according to which the uncertainty of
an average is to be enlarged by a scale factor S, while the
central values are to remain unchanged by fiat. Assuming
Gaussian errors, in a first step the reduced χ2 is computed
as twice the log-likelihood of the minimum divided by Neff ,
where Neff is the effective number of degrees of freedom
given by the number of observations (data points), N , minus
the number of independent fit parameters. Thus, for the most
common case of a simple average of one parameter, Neff =
N − 1:

1. If the reduced χ2 is smaller than unity, the results are
accepted and there is no scaling of errors.

2. If the reduced χ2 is larger than unity, and the experiments
are of comparable precision, then all errors are re-scaled
by a common factor S, given by the reduced χ2, i.e., S =√

χ2/Neff .
3. If some of the individual errors are much smaller than

others, then S is computed from only the most precise
experiments. The criterium for these is given with refer-
ence to an ad hoc cutoff value.

Given that the rationale for a procedure such as this one, is to
err on the conservative side, one immediate objection is that
if there is only one data point then no conservative scaling
will be applied, even though in this case one is most exposed
to a potential problem as there is no control measurement.

Another problem is that the set of individual data points
is not well-defined. In principle, one may combine certain
data subsets first, such as from different data taking peri-
ods or different decay channels obtained by the same experi-
mental apparatus, or combine identical channels obtained by
different detectors and average these is a second step. Con-
versely, one could split up the available results into more
but less precise individual entries. While this has no impact
on ordinary maximum likelihood analyses, it will generally
dilute or enlarge the reduced χ2 value on which the S factors

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-8115-3&domain=pdf
mailto:erler@fisica.unam.mx
mailto:rferrohernandez00@gmail.com


541 Page 2 of 9 Eur. Phys. J. C (2020) 80 :541

are based upon. In fact, applying PDG scale factors to data
points of which some have already undergone the scale fac-
tor treatment (typically, by the experimental collaboration)
then this kind of iteration does generally change the cen-
tral value of the combination. Also note that the prescription
according to which reduced χ2 values greater and smaller
than unity are being treated differently generates an unnec-
essary dichotomy.

In this paper we present an alternative which shares some
of the features of the PDG recommendation while improv-
ing on others. The framework is a hierarchical model within
Bayesian parameter inference [2]. The basic idea is that indi-
vidual data points are not considered independently and iden-
tically distributed (iid), but rather independently and simi-
larly distributed, in the sense that the parent distributions are
permitted to vary to some extent to allow for unknown effects
that may or may not be different from one data point (mea-
surement) to another. Thus, we propose a hierarchical model
where each measurement is assumed to determine a differ-
ent parameter, each considered as having arisen as a random
draw from a common parent distribution described in turn in
terms of hyper-parameters.

A similar approach is widely used in the biological sci-
ences when estimating treatment effects by combining sev-
eral studies performed under similar but not identical con-
ditions [3,4], in what is often referred to as meta-analysis
[5–7]. In these cases the experimental conditions can vary
slightly, so that the individual studies may be affected by
different unknown biases.

Several authors within the physics community introduced
attempts to incorporate the effects of unknown error sources
when combining data. For example, Ref. [8] finds results sim-
ilar to the ones in our work, but within a frequentist approach.
Ref. [9] models the probability of underestimating the exper-
imental error by including a different scale factor for each
measurement, which is in turn randomly drawn from a prior
distribution. Very recently it was shown [10] that it is even
possible to test the shape of the prior distribution, and not
just to constrain the values of its parameters. We leave this
kind of more complete analysis for the future.

In the next section we summarize the formalism of
Bayesian hierarchical modeling using the notation of Ref.
[2]. The rest of the paper introduces our approach, illustrated
by a number of examples and reference cases.

2 Bayesian inference

2.1 The non-hierarchical model

Suppose that we want to determine a parameter θ from an
experimental measurement or observation, and to be specific,
that the likelihood for the outcome y of such an experiment

Fig. 1 Ordinary averaging. We assume that the yi are random out-
comes of measurements of the same parameter θ

can be described as a Gaussian with central value θ and stan-
dard deviation σ ,

p(y|θ, σ ) = N (y|θ, σ ), (1)

where,

N (y|θ, σ ) ≡ 1√
2πσ

e− 1
2σ2 (y−θ)2

. (2)

The posterior distribution for the parameter θ can be obtained
through Bayes’ theorem,

p(θ |y, σ ) ∝ p(y|θ, σ )p(θ), (3)

where p(θ) is the prior probability distribution of θ . It is very
convenient to assume p(θ) to be a conjugate prior, which
means that the posterior distribution will fall within the same
family of functions as the prior. Thus, in our case we adopt
the prior,

θ ∼ N (μ̃, τ̃ ), (4)

yielding the posterior,

p(θ |y, σ, μ̃, τ̃ ) = 1√
2πστ̃

e
− 1

2σ2
τ̃

(θ−θτ̃ )2

, (5)

where,

1

σ 2
τ̃

≡ 1

σ 2 + 1

τ̃ 2 , (6)

is the sum of precisions of the prior and the experimental
result, while

θτ̃ ≡
(

1

σ 2 + 1

τ̃ 2

)−1 (
y

σ 2 + μ̃

τ̃ 2

)
, (7)

is the precision averaged central value. Clearly, if the exper-
iment has a small error, σ � τ̃ , it will dominate θτ̃ . In the
limit τ̃ → ∞, the prior is called non-informative.
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Now, let us include further such experiments with central
values yi and total errors σi , all measuring the same quan-
tity θ , as illustrated in Fig. 1. For simplicity, we assume that
the σi are mutually uncorrelated. The posterior distribution
p(θ |yi , σi , μ̃, τ̃ ) is again given by Eq. (5), but now with

1

σ 2
τ̃

=
N∑

i=1

1

σ 2
i

+ 1

τ̃ 2 , (8)

and

θτ̃ = σ 2
τ̃

(
N∑

i=1

yi
σ 2
i

+ μ̃

τ̃ 2

)

. (9)

Obviously, the uncertainty στ̃ in θ decreases strictly mono-
tonically with the inclusion of more experiments. Neverthe-
less, if one or several of the experiments was subject to a
number of systematic effects that was neither corrected for,
nor accounted for in the individual uncertainties σi , then the
experiments are (effectively) not measuring the same quan-
tity, and στ̃ would be underestimated. In other words, each
experiment can be viewed as measuring different parame-
ters θi , which are, however, not entirely independent of each
other, since after all, the experiments were supposed to con-
strain the same θ . We will now review hierarchical Bayesian
modeling, and propose it as a systematic method to interpo-
late between the extreme and rarely realistic cases of all θi
being either equal or else entirely independent of each other.

2.2 The hierarchical model

This is achieved by considering each θi to be the result of a
random draw from a parent distribution,

p(θi ) =
∫

p(θi |μ, τ)p(μ, τ)dμdτ, (10)

where p(μ, τ) is the hyper-prior distribution for what are
now called the hyper-parameters μ and τ . We sketch this
model in Fig. 2. Note that Eq. (10) implies the property of ex-
changeability between the θi , i.e. symmetry under θi ↔ θ j .
From Bayes’ theorem one has,

p(θi , μ, τ |yi , σi ) ∝ p(yi |θi , σi )p(θi |μ, τ)p(μ, τ), (11)

and explicitly in the Gaussian case,

p(θi , μ, τ |yi , σi ) ∝
N∏

i=1

N (yi |θi , σi )N (θi |μ, τ)p (μ, τ) .

(12)

Fig. 2 Hierarchical model. Each experimental parameter θi arises from
a random draw from a parent distribution with hyper-parameters μ and
τ , and each experimental central value yi is then considered to be the
result of a random draw from a Gaussian distribution with central value
θi and error σi

Marginalizing over θi one finds the “master” equation,

p(μ, τ |yi , σi ) ∝
N∏

i=1

N (μ|yi , σ 2
i + τ 2)p(μ, τ). (13)

We will use it to compute the posterior distribution of the
hyper-parameters, once a hyper-prior is chosen. For example,
assuming a flat prior for μ and τ , we can integrate over μ to
find,

p(τ |yi ) ∝
(

N∑

i=1

1

σ 2
i + τ 2

)− 1
2 N∏

i=1

N (μ̂|yi , σ 2
i + τ 2), (14)

where,

μ̂ =
(

N∑

i=1

1

σ 2
i + τ 2

)−1 N∑

i=1

yi
σ 2
i + τ 2

. (15)

The parameter τ quantifies general differences in the θi . If
τ = 0, the experiments measure the same parameter, i.e.,
θi = θ j . For τ → ∞, each one measures a completely
independent parameter θi .

From the master equation one can see that the parameter
of interest is μ. If τ = 0 the posterior distribution for μ

reduces to the ordinary likelihood for parameter estimation
given in Eq. (5) with τ̃ → ∞. The full posterior distribution
for μ can be obtained integrating Eq. (13) numerically over τ .
If there are large unknown systematic effects, then the most
likely values of τ will differ from zero, which leads to the
important result of increasing the error in μ.
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2.3 The hyper-prior

We propose a hyper-prior which is μ-independent, i.e.,
p(μ, τ) = p(τ ), and that interpolates smoothly between
a flat and a sharply peaked τ distribution,

p(τ )dτ 2 ∝
N∏

i=1

[
1

σ 2
i + τ 2

] α
2N

dτ 2. (16)

This form will prove to be useful due to the simple interpre-
tation of α in terms of the number of degrees of freedom,
and the possibility to obtain closed analytical formulas for
the posterior distribution of μ. We remark that in Bayesian
methods one needs to specify a prior that cannot be deter-
mined from first principles. Here we have chosen a prior
with a simple analytical form interpolating between a flat
prior and τ = 0. Very interestingly, while this prior is only
one of many possible choices, it turns out that it coincides
with Jeffrey’s prior in a certain limit. We will return to this
at the end of Sect. 6.

It is interesting to study the effect of this kind of prior on
the tails of the posterior density of μ. Integrating Eq. (13)
over τ produces the posterior density of μ given the data,

p(μ|yi ) ∝
∫ ∞

0

N∏

i=1

(
σ 2
i + τ 2

)− 1
2 (1+ α

N )

e
− (μ−yi )

2

2(σ2
i +τ2) dτ 2.

(17)

For large μ, the exponential suppression factor favors large
values of τ , so that,

p(μ|yi ) ∼
∫ ∞

0
τ−(N+α)e

− Nμ2

2τ2 dτ 2, (18)

and after a change of variables u2 ≡ μ2/τ 2,

p(μ|yi ) ∼ μ−(N+α−2). (19)

We observe that the usual exponential suppression of μ in the
tails has turned into a milder power law suppression which
increases with the effective number of degrees of freedom,
i.e., in our case the number or measurements, ν ≡ N +α−2.

3 Experiments with errors of the same size

When all errors are equal, σi = σ j ≡ σ , we obtain an ana-
lytical formula which illustrates how the PDG scale factor
re-emerges for large data sets. The master equation reads in

Fig. 3 Scale factor versus the square root of the reduced χ2. We
employed α = 0

this case,

p(μ, τ |yi ) ∝
(
σ 2 + τ 2

)− ν+2
2

exp

[

−
∑N

i=1(ȳi − μ)2

2(σ 2 + τ 2)

]

,

or simply,

p(μ|yi ) ∝
∞∫

0

(
σ 2 + τ 2

)− ν+2
2

exp

[
− σ 2χ2

2(σ 2 + τ 2)

]
dτ 2,

(20)

where we defined,

χ2 ≡ χ2(μ) ≡
N∑

i=1

(μ − ȳi )2

σ 2 , (21)

which is the usual χ2 function. Changing variables,

u ≡ σ 2χ2(μ)

2(τ 2 + σ 2)
, (22)

we obtain,

p(μ|yi ) ∝ (χ2)−
ν
2

χ2/2∫

0

u
ν
2 −1e−udu ∝ (χ2)−

ν
2 Fν(χ2),

(23)

which is the master formula in this case in terms of the
cumulative distribution function F for a χ2 distribution with
ν degrees of freedom. This equation implies an interesting
result. Since p(μ|yi ) depends on μ only through χ2(μ), we
have

dp(μ|yi )
dμ

= dp(μ|yi )
dχ2

dχ2

dμ
, (24)

so that the mode of the distribution is the same as in the usual
case, i.e., at the value of μ where χ ′(μ)2 = 0. Thus,
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Fig. 4 Scale factor versus the square root of the reduced χ2 for the
case N = 10

For σi = σ j the posterior distributions of the hierar-
chical and non-hierarchical models peak at the same
location.

From Eq. (23), we can also obtain the scale factor, which
we define here as the ratio of the sizes of the 68% highest
confidence intervals of the hierarchical and non-hierarchical
models. In Figs. 3 and 4, we show the scale factor for several
values of α and N , from which one can see the similarity to
the PDG scale factor for large N . We now turn to the case
of a large number of degrees of freedom and the Gaussian
approximation.

3.1 Large number of degrees of freedom

We rewrite Eq. (23) by another change of variables,

χ2r

2
= u, (25)

so that

p(μ|yi ) ∝
1∫

0

exp

[
−ν − 2

2

(
rχ2

ν−1 − ln r
)]

dr, (26)

where we defined χ2
ν−1 ≡ χ2/(ν − 2). Thus, large values

of ν suppress the integrand exponentially. Depending on the
value r0 = (χ2

ν−1)
−1 where rχ2

ν−1 − ln r has a minimum,
we have two cases:

(1) For r0 > 1 the minimum falls outside the integration lim-
its, and the integral can be approximated by considering
values of r near 1, which gives

p(μ|yi ) ∝ e−χ2/2

1 − χ2
ν−1

[
1 − e− ν−2

2

(
1−χ2

ν−1

)]
∼ e−χ2/2,

(27)

Fig. 5 Comparison of the exact result with the approximate formula
for α = 0

We recognize this is the usual likelihood for parameter
inference without scaling. Thus,

for σi ≈ σ j , ν → ∞ and χ2
ν−1(μ0) < 1, the hierarchical

model implies no scaling of the errors.

(2) For r0 < 1 the minimum resides inside the integration
region, and the integral can be approximated by consid-
ering values of r near r0. After some algebra,

p(μ|yi ) ∝
⎡

⎣1 + 2

ν − 1

(μ − μ0)
2

2
(

σ 2χ2
ν (μ0)

N

)

⎤

⎦

− ν
2

, (28)

which is proportional to the Student-t distribution for ν−
1 degrees of freedom, and for very large ν it can be further
approximated by a Gaussian,

p(μ|yi ) = tν−1

(
μ0,

σ 2χ2
ν

N

)
∼ N

(
μ0,

σ 2χ2
ν

N

)
. (29)

This yields another important result,

for σi ≈ σ j , ν → ∞ and χ2
ν−1(μ0) > 1, the hierarchical

model implies a re-scaling of the overall error by σ →
σ
√

χ2
ν (μ0).

It is amusing to note that for large ν we recovered the
PDG scale factor prescription. On the other hand, for
low values of ν our model implies larger scalings than
recommended by the PDG. In the next subsection we
approximate the distribution of μ as a Gaussian, so as to
obtain an analytical formula for the scale factor in terms
of ν and the value of χ2.
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3.2 Gaussian approximation

To do so, we expand the logarithm of the posterior distribu-
tion p = p(μ|yi ) in powers of μ around μ0,

ln p = C + d ln p

dμ

∣∣∣∣
μ0

(μ − μ0) + d2 ln p

dμ2

∣∣∣∣
μ0

(μ − μ0)
2

2
+ · · ·

The second term on the right hand side is zero because we
are expanding around the maximum. The third term can be
compared to the corresponding term of the expansion of a
Gaussian distribution, which gives

1

σ 2
Bayes

≈ − d2 ln p

dμ2

∣∣∣∣
μ0

= −2N

σ 2

d ln p

dχ2

∣∣∣∣
χ2

0

. (30)

Using Eq. (23) we have,

−2
d ln p

dχ2

∣∣∣∣
χ2

0

= ν

χ2 −
(
χ2/2

)( ν
2 −1) e−χ2/2

γ
(
ν/2, χ2/2

) , (31)

where γ is the incomplete Gamma function, defined by

γ (s, x) ≡
x∫

0

t s−1e−t dt. (32)

As we mentioned before, the scale factor SBayes is defined
as the ratio of the sizes of the 68% highest confidence inter-
vals of the hierarchical and non-hierarchical models. In the
Gaussian approximation we find,

SBayes ≈ √
N

σBayes

σ
≈

√
χ2

ν

⎡

⎣1 + 1
∑∞

k=1
(χ2)kν!!
(ν+2k)!!

⎤

⎦

1
2

,

(33)

where we have used the power series expansion of the incom-
plete Gamma function,

γ (s, x) = xs
(s)e−x
∞∑

k=0

xk


(s + k + 1)
. (34)

In Fig. 5 we compare the approximate formula with the exact
result. As expected, the approximation improves for larger
values of ν. We are now ready to discuss the general case of
unequal errors, σi �= σ j .

Fig. 6 The blue points with identical errors originate from a Gaussian
distribution centered at 10. The last blue point has the same precision
as the combination of the previous 10 points, but deviates by about 5 σ .
The red point is the ordinary weighted average after PDG scaling. The
black point is obtained using our Bayesian method

4 Experiments with unequal precisions

To understand this case, we fix the value of τ in Eq. (13). The
distribution of μ is then Gaussian, with total error,

1

σ 2
t

=
N∑

i=1

1

σ 2
i + τ 2

, (35)

and central value,

μ0 =
(

N∑

i=1

1

σ 2
i + τ 2

)−1 N∑

i=1

yi
σ 2
i + τ 2

. (36)

Thus, experiments with smaller errors are more sensitive to
τ than less precise ones. Suppose that M of the experiments
have an error σM , and that σM is much smaller than the error
σ of the rest of the experiments. Then, for σM  τ � σ the
scaling will mainly affect the experiments with small errors.
Since we were unable to find an analytical formula for the
peak or mean of τ , we proceed with a numerical analysis.

As a first example, we randomly generated eleven fic-
titious measurement points from a Gaussian with standard
deviation σ = 1 centered at the value of 10. The last point is
from a Gaussian centered at 10+5/

√
10 with σM = 1/

√
10,

which is chosen so that its precision is the same as the com-
bined precision of the other ten. The results are shown in
Fig. 6. The red point denotes the ordinary weighted average
with PDG scaling applied, and is pulled away from the hor-
izontal line as a result of the deviating 11th measurement.
The black point, on the other hand, is the average obtained
as the result of our Bayesian hierarchical model (here we
use α = 10 to specify our prior). It is closer to the bulk of
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Fig. 7 The measurement points with small error are shown in blue,
the usual averages with the PDG scaling in red, and the hierarchical
averages in black. The labels at the horizontal axis show by how many
σM the blue points deviate from the gray point. The gray band represents
the ordinary weighted averages of the bulk of measurements in Fig. 6

data than to the measurement with the smaller error. This
is a reasonable property, since it is less likely that all the
measurements in the bulk had a systematic error in the same
direction.

In Fig. 7 we show how the two kind of averages change
when we move the central value of the 11th measurement (in
blue) while leaving the other 10 unchanged. Just for orien-
tation, the gray band represents the ordinary average (non-
hierarchical) of the bulk of measurements with the same error.
As in Fig. 6, the red points are the usual PDG-scaled aver-
ages, while the black points are the hierarchical averages.
Clearly, as we approach the bulk the combined error shrinks.

5 Neutron lifetime

There is an interesting discrepancy between the two types of
experiments measuring the lifetime of the neutron. For a state
of the art review of both types and more details, see Ref. [11].
The first type are beam experiments [12–14], which measure
the number of protons or electrons from decays of cold neu-
trons in a beam passing through a magnetic or electric trap.
After the beam has passed the trap, some of the neutrons are
deposited in a foil at the end of the beam path. The neutron
lifetime is proportional to the rate of neutrons deposited and
inversely proportional to the rate of decays detected.

The other type of experiment uses bottles [15–21] con-
taining ultra-cold neutrons with a kinetic energy of less than
100 neV. Neutrons with such a low kinetic energy can be con-
fined due to the effective Fermi potential between neutrons
and atomic nuclei in many materials. Gravitational forces
and magnetic fields can also be used to confine the neutrons
within the container. The idea is simply to count the num-

Fig. 8 Neutron lifetime measurements. The green points are the results
of bottle experiments, and the blue ones of beam experiments. The
discrepancy can easily be seen. The black point to the left is the Bayesian
average of the full data, while the first red point is the usual average
with the PDG scaling. Similarly for the right black and red points but
restricted to the bottle results. The PDG scaling for beam plus bottle
experiments is SPDG = 1.96, while for bottle only is SPDG = 1.56

ber of surviving neutrons after some time and to deduce the
lifetime.

We now apply our method with α = 6 to the results of
these experiments which are shown in Fig. 8. PDG χ2 scaling
(SPDG = 1.93), which is shown in red, yields the lifetime
τn = 879.71 ± 0.78 s, while the Bayesian method (black
point to the left) gives τ

Bayes
n = 880.51+0.98

−0.83 s. We find that
our Bayesian hierarchical method increases the central value
when the beam experiments are included. Even when only
bottle experiments are considered, our method still gives a
slightly larger average value τ

Bayes
n = 879.53+0.64

−0.63 s, than
the PDG method τn = 879.35±0.64 s where SPDG = 1.56.
This is due to the bulk of the bottle experiments that prefer
lifetimes longer than 880 s. It is important to recall that the
tails of the Bayesian hierarchical model do not fall as fast as
a Gaussian, so that there is still a non-negligible probability
for τn to be lower.

6 Relations to other models

While this paper was being written, two interesting papers
related to our work appeared. The first one [22] discusses
the kaon mass in the context of a skeptical combination of
experiments, scaling each experimental error independently
but correlated. The second one [23] studies the discrepancy
that arises when the PDG scaling is applied to sub-sets of
experiments and then to the combination of the sets, vs. (for
example) applying it to the whole data at the same time. The
conclusion is that

the χ2/ν prescription used to enlarge the standard devi-
ation does not hold sufficiency.
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Fig. 9 Scaling for α = 6

This means that the scaling is not sufficient to properly
describe the full probability distribution. Our model would
have had the same problem had we used the marginalized
(over τ 2) distribution of μ. This is because the “correlations”
that emerge through τ 2 would be absent. But it is clear from
Eq. (13) that if we use the posterior distribution of μ and τ 2

of a subset of experiments as the prior for the remaining sub-
set, then the updated posterior will be the same as combining
the whole data set simultaneously.

Another interesting point made in Ref. [23] is the fact
that the PDG scaling treats any value of N equally, while for
fixed χ2/N the p value decreases with N . In other words,
since the probability distribution of the reduced χ2 func-
tion peaks around one as the number of degrees of freedom
increases, the scaling (given a discrepant value of the reduced
χ2) should be larger when more experiments are included in
the average. This is not the case for the PDG description,
because the scaling only depends on the reduced χ2 value
and not on the number of degrees of freedom. Now, it is clear
from Fig. 3 that in the Hierarchical Model with α chosen
close to zero this problem would be aggravated, i.e., for any
given value of the reduced χ2, there is more scaling for low
N . However, we can use the freedom to choose a value of
α to improve on this issue. First we demand the variance of
the τ distribution to be finite, which corresponds to α > 6.
In Fig. 9 we show the scaling versus the reduced χ2 with
α = 6 + ε (where ε is an infinitesimal) from which one
can see that for large values of the reduced χ2 the scaling
reduces as N gets smaller. This is just the desired effect. On
the other hand, we still have more scaling for small values of
the reduced χ2. This is a natural consequence of the fact that
for a low number of experiments τ can not be constrained
too strongly, which translates into an enlarged error for μ.

One can also consider Jeffrey’s prior.E.g., if we specify to
the case of uncertainties of equal magnitude, σi = σ j = σ ,

In the case of a distribution with several parameters (in our case μ

and τ 2), Jeffrey’s prior is defined as the square root of the determinant
of Fisher’s information matrix, which in turn is defined as the average
(over yi ) of the Hessian of the log-likelihood N (

yi |μ, τ 2 + σ 2
i

)
.

then Jeffrey’s prior reduces precisely to Eq. (16) with α = 3.
This would lead to a plot very similar to the one shown in
Fig. 9.

7 Conclusions and outlook

We proposed a Bayesian hierarchical model as a strategy to
compute averages of several uncorrelated experimental mea-
surements, specifically with the possibility in mind that unac-
counted for systematic effects might be present, leading to
underestimates of the quoted uncertainties. We should stress
that the point is not that (some part of) the systematic error has
been underestimated or assessed too aggressively. If this is
suspected then a strategy should be developed to increase the
systematic error component(s), which would imply—among
other things—that statistics limited measurements would not
be questioned. Here, we rather addressed the generic situation
in which unknown effects or human errors may be present,
and which therefore could affect even ostensibly clean deter-
minations.

We have shown that our methodology resembles the rec-
ommendation of the Particle Data Group whenever the num-
ber of degrees of freedom (data points) is large. Our approach
connects smoothly to cases with fewer degrees of freedom,
though. Another important advantage is that it makes the
underlying assumptions in the averaging process transpar-
ent. E.g., a large value of the parameter α appearing in our
proposed form of the prior, implies a strong believe that the
experiments do not have an unknown systematic error, while
a small value corresponds to a more agnostic point of view.
Our method can be extended to experiments with correlated
errors, but we leave this generalization for the future.

Due to the additive form, σ 2
i + τ 2, of the denominator

in the exponential part of the distribution, our model has
the drawback that it tends to penalize experiments with high
precision more strongly. This relative issue is already seen in
the τn example, where the most recent beam measurement
which has a larger error than most bottle experiments and a
higher central value tends to push the combined value up.
On the other hand, the natural power suppressed tails of the
posterior distribution help to mitigate possible strong shifts
in the central value.

We also would like to point out that to apply our method
to the PDG, it has to be studied, discussed and compared
with other approaches in more detail, to confirm that it can
be used within the PDG framework.

In closing, we remark that we also envision an application
of this model in the context of new physics searches within the
Standard Model Effective Field Theory (SMEFT) framework
[24,25], in which thousands of a priori independent operator
(Wilson) coefficients need to be determined. Yet, many of
these operators are almost certainly generated at some com-
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mon energy scale, and are consequently not entirely inde-
pendent. Thus, the idea is to assume that (classes of) the
Wilson coefficients are random samples generated at a com-
mon ultra-violet energy scale, lending itself to a hierarchical
approach. This can be particularly useful when estimating
the sensitivity of a hypothetical future experiment to physics
beyond the Standard Model. This is another direction for
future work.
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