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Abstract In this article the geodesic motion of test particles
in the spacetime of a supersymmetric AdS5 black hole is
studied. The equations of motion are derived and solved in
terms of the Weierstrass ℘, σ , and ζ functions. Effective
potentials and parametric diagrams are used to analyze and
characterize timelike, lightlike, and spacelike particle motion
and a list of possible orbit types is given. Furthermore, various
plots of orbits are presented.

1 Introduction

The famous anti-de Sitter/conformal field theory (AdS/CFT)
correspondence provides a relation between gravity and
quantum field theory, in particular, Maldacena [1,2] con-
nected compactifications of string theory on anti-de Sit-
ter to a conformal field theory. Therefore, black holes that
are asymptotically anti-de Sitter are very interesting to
study.

A few years after Kerr [3] presented an asymptotically flat
rotating black hole, Carter [4] came up with the first rotat-
ing asymptotically anti-de Sitter black hole. In five dimen-
sions Hawking et al. [5] found an AdS black hole with
two rotation parameters. Five dimensional AdS black holes
are especially interesting since the AdS5/CFT4 correspon-
dence is very well understood and CFT can be described as
N = 4 SU(N) super Yang-Mills theory. One of the first
supersymmetric AdS5 black hole solutions were found by
Gutowski and Reall [6]. They considered the minimal D = 5
gauged supergravity theory described in [7] and found an
asymptotically AdS5 black hole parameterized by its mass,
charge, and two equal angular momenta. Many more black
hole solutions in supergravity theories were found, see, e.g.,
[8].
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The motion of test particles is a useful tool to study
black holes in various theories of gravity. The solutions
of the equations of motion can be applied to calculate
observable quantities like the shadow of a black hole
or the periastron shift of a bound orbit. Geodesics also
provide information on the structure of a spacetime. In
the framework of AdS/CFT, geodesics correspond to two-
point correlators [9]. In particular, spacelike geodesics
with both endpoints on the boundary (i.e., escape orbits
of particles with imaginary rest mass) are related to the
eikonal approximation of holographic two-point functions.
CFT correlators describe observables on the AdS bound-
ary.

The Hamilton–Jacobi formalism represents an efficient
method to derive the equations of motion for test particles.
In the four-dimensional Kerr spacetime, Carter [4] showed
that the Hamilton–Jacobi equation for test particles sepa-
rates. The resulting equations of motion can be solved ana-
lytically in terms of elliptic functions. In higher dimensions,
or in spacetimes with a cosmological constant, the analytical
solutions of the geodesic equations often require hyperel-
liptic functions [10–15]. The geodesics in a rotating super-
symmetric black hole spacetime were analyzed in [16,17],
where the complete analytical solution of the geodesics equa-
tions in the supersymmetric Breckenridge–Myers–Peet–Vafa
(BMPV) [18] spacetime was presented. Here we will study
the geodesic motion of test particles around the supersym-
metric, asymptotically AdS5 black hole of Gutowski and
Reall [6].

The article is structured as follows. We derive the equa-
tions of motion in Sect. 2 and give a complete classification
of the geodesics in Sect. 3. In Sect. 4 we solve the equations
of motion analytically in terms of the Weierstrass ℘, σ , and
ζ functions. Finally we present some example plots of the
orbits in Sect. 5 and conclude in Sect. 6.
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2 The supersymmetric AdS5 black hole

Gutowski and Reall [6] found a one-parameter family of
supersymmetric AdS5 black holes. The metric is given by

ds2 = − f 2dt2 − 2 f 2Ψ dtσ 3
L +U (R)−1dR2

+ R2

4

[
(σ 1

L)2 + (σ 2
L)2 + Λ(R)(σ 3

L)2
]
,

(1)

where the σ i
L can be expressed in terms of the Euler angles

(θ, φ, ψ) as

σ 1
L = sin φ dθ − cos φ sin θ dψ , (2a)

σ 2
L = cos φ dθ + sin φ sin θ dψ , (2b)

σ 3
L = dφ + cos θ dψ , (2c)

and the metric functions are

f = 1 − R2
0

R2 , (3)

Ψ = −εR2

2l

(
1 + 2R2

0

R2 + 3R4
0

2R2
(
R2 − R2

0

)
)

, (4)

U =
(

1 − R2
0

R2

)2 (
1 + 2R2

0

l2
+ R2

l2

)
, (5)

Λ = 1 + R6
0

l2R4 − R8
0

4l2R6 . (6)

The Maxwell potential is

A =
√

3

2

[(
1 − R2

R2
0

)
dt + εR4

0

4l R2 σ 3
L

]
. (7)

Here R0 is the radial coordinate of the black hole’s degen-
erate horizon, ε = ±1 is the sign of its angular momentum,
and l is the AdS radius. Note that ε can be absorbed into l,
consequently, in the following analysis of the geodesics we
set ε = 1 but examine the geodesic motion for arbitrary sign
of l.

It can be shown that the solution is asymptotically AdS5,
by using the coordinate transformation φ′ = φ+ 2ε

l t , see [6].
It has the R×S3 Einstein universe as its conformal boundary
and the S3 has the radius l. Boundary as well as bulk time
translations are generated by ∂

∂t . However, as for all rotating
AdS black holes, there is another timelike Killing vector field
in the bulk

V = ∂

∂t
+ 2ε

l

∂

∂φ′ . (8)

If V is used to generate time translations, we are working
in a co-rotating frame and there is no ergoregion. If, on the

other hand, ∂
∂t generates time translations, then an ergoregion

exists.
The metric (1) is characterized by its conserved quan-

tities associated with symmetries of the conformal bound-
ary, which was shown for asymptotically AdS spacetimes of
dimension D ≥ 4 by Ashtekar and Das [19]. In this case,
the black hole’s conserved quantities can be defined by an
Ashtekar and Das mass

M = 3πR2
0

4G

(
1 + 3R2

0

2l2
+ 2R4

0

3l4

)
, (9)

an angular momentum with respect to φ′ = φ + 2ε
l t of

J ′ = 3επR4
0

8Gl

(
1 + 2R2

0

3l2

)
, (10)

a vanishing angular momentum with respect to ψ , an energy
of

E = M + 3πl2

32G
, (11)

and a charge of

Q =
√

3πR2
0

2G

(
1 + R2

0

2l2

)
. (12)

We then obtain

M − 2

l
|J ′| =

√
3

2
|Q| (13)

and therefore the solution saturates the BPS bound, see also
[6]. Note that the conserved charges by Ashtekar and Das
are only correct for a special class of solutions, where the
non-normalizable modes of all matter fields vanish and the
Ricci curvature of the boundary metric also vanishes, unless
D ≤ 4. In [20] the authors present well defined conserved
charges for general asymptotically AdS black holes in the
presence of matter.

The solution (1) has a smooth event horizon at R = R0

and the spatial geometry of the horizon is a squashed S3

ds2
3 = R2

0

4

[(
σ 1
L

′′)2 +
(
σ 2
L

′′)2 +
(

1 + 3R2
0

4l2

)(
σ 3
L

′′)2
]

,

(14)

where the σ i
L

′′
are defined as the σ i

L with φ′′ = φ + 4 f 2Ψ

R2U
r

instead of φ. Behind the event horizon there is a curvature
singularity at R = 0 surrounded by a region of closed time-
like curves [6].
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2.1 The equations of motion

We use the Hamilton–Jacobi formalism to obtain the equa-
tions of motion for test particles in the spacetime of a super-
symmetric black hole. To solve the Hamilton–Jacobi equa-
tion of an uncharged particle

−2
∂S

∂τ
= gμν ∂S

∂xμ

∂S

∂xν
, (15)

we make the ansatz for the action S

S = 1

2
δτ − Et + Lφ + Jψ + SR(R) + Sθ (θ) . (16)

Here E is the particle’s conserved energy, L and J are its
conserved angular momenta along φ and ψ , respectively, τ

is an affine parameter along the geodesic, and δ is equal to 0
for light, equal to 1 for particles of positive mass, and equal
to −1 for particles of imaginary mass. The case δ = −1
corresponds to spacelike geodesics and is of relevance for
AdS/CFT if the geodesics’ endpoints are on the boundary
R → ∞. This is discussed in more detail in Sect. 3.4.

Using this ansatz and the metric (1), the Hamilton–Jacobi
Eq. (15) becomes

−δ = −R2ΛE2
(
4�2 f 2 + R2Λ

)
f 2

+ 8�EL

4�2 f 2 + R2Λ

+
(
16�2 cos2 θ f 2 + 4Λ cos2 θR2 + 4R2 sin2 θ

)
L2

R2 sin2 θ
(
4�2 f 2 + R2Λ

)

− 8 cos θ J L

R2 sin2 θ
+ 4J 2

R2 sin2 θ
+ 4

R2

(
∂Sθ

∂θ

)2

+U

(
∂SR
∂r

)2

.

(17)

One can separate the Hamilton–Jacobi Eq. (15) by terms in
R and θ in

δR2 − R4ΛE2
(
4�2 f 2 + R2Λ

)
f 2

+ 8R2�EL

4�2 f 2 + R2Λ

+ 4R2L2

4�2 f 2 + R2Λ
+ R2U

(
∂SR
∂r

)2

= K

(18)

and

−4 cos2 θL2

sin2 θ
+ 8 cos θ J L

sin2 θ
− 4J 2

sin2 θ
−4

(
∂Sθ

∂θ

)2

= K . (19)

Here we introduced K as a separation constant known as the
Carter [21] constant. Now we can solve Eq. (18) for ∂SR

∂r and

Eq. (19) for ∂Sθ

∂θ
, which can then be used to substitute the

functions SR and Sθ in the ansatz (16) (no need to actually
compute the integrals here). Finally, the equations of motion
can be deduced with a variational method; the derivatives of

the action S with respect to the constants of motion can be
set to zero.

With the help of the Mino [22] time γ given by R2 dγ =
dτ to remove the factor R2 from all equations and the sub-
stitution r = R2, this yields five differential equations of
motion
(

dr

dγ

)2

= P(r), (20)

(
dθ

dγ

)2

= Θ(θ), (21)

dφ

dγ
= −l

2Er2 + (2E − Ll)r + Ll − E

(l2 + r + 2)(r − 1)

− cos θ

sin2 θ
(J − L cos θ) , (22)

dψ

dγ
= 1

sin2 θ
(J − L cos θ) , (23)

dt

dγ
= (4El2 + 2Ll)r3 + (4E − 3Ll)r + Ll − E

4(l2 + r + 2)(r − 1)2 .

(24)

The polynomial P and the function Θ are

P = −4
δr4

l2
+ 4

(
E2 + EL

l
− δ − 1

4

K

l2

)
r3

+
(

−L2 − K + 8δ + 12
δ

l2

)
r2

+2

(
L2 − 3

EL

l
+ K − 2δ + 2

E2

l2
+ 3

2

K

l2
− 4

δ

l2

)
r

−L2 + 2
EL

l
− K − E2

l2
− 2

K

l2
, (25)

Θ = K − 1

sin2 θ
(J − L cos θ)2 . (26)

To simplify the equations of motion, dimensionless quantities
were introduced by scaling with R0

R → R0R , t → R0t , τ → R0τ , l → R0l,

L → 1

4
R0L , J → 1

4
R0 J , K → 1

4
R2

0K . (27)

This was achieved by setting R0 = 1 and canceling factors
of 4 in front of L , J , and K for convenience.

3 Classification of the geodesics

The properties of the geodesics are determined by the poly-
nomial P in Eq. (25) and the function Θ in Eq. (26). The char-
acteristics of Θ and P are given by the particle’s constants of
motion (energy, angular momenta, Carter constant, δ param-
eter) and the metric’s (positive or negative) AdS radius. In
this section, features of the function Θ and the polynomial
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P – and therefore the types of orbits – for various sets of
constants of motion are studied. This is done analogously to
[23], where geodesic motion of electrically and magnetically
charged test particles in the Reissner–Nordström spacetime
has been examined.

3.1 The θ motion

To obtain real values of θ , the requirement Θ ≥ 0 has to
be met. From this it follows that K ≥ 0. The substitution
ξ = cos θ turns Eq. (21) into

(
dξ

dγ

)2

= Θξ with Θξ := aξ2 + bξ + c , (28)

where a = −L2 − K , b = 2L J , and c = K − J 2. Since
K ≥ 0 holds, it follows a ≤ 0. The zeros of the second
degree polynomial Θξ correspond to angles that confine the
particle’s θ motion. Note that for vanishing L in Eqs. (21) and
(23) the test particle’s motion is planar in the 3-dimensional
subspace given by the spherical coordinates (R, θ, ψ) as in
the Schwarzschild case.

The Θξ polynomial’s discriminant is given by D = b2 −
4ac and can be expressed as D = 4Kκ withκ = K+L2−J 2.
Θξ describes a downward opened parabola with zeros

ξ0 = L J ± √
Kκ

L2 + K
∈ [−1, 1] (29)

and maximum at
( L J
L2+K

, Kκ
L2+K

)
. A real solution θ implies

real zeros of Θξ and thus requires D ≥ 0. While |L| ≥ |J |
is sufficient, other cases require an upper limit of |J | given
by Jmax = √

K + L2. For symmetric motion with respect to
the equatorial plane L or J have to vanish. Other cases are
depending on the sign of K − J 2:

1. K < J 2: The zeros of Θξ are either both positive or
both negative, which confines the particle’s motion to
θ ∈ [0, π/2) for L J > 0 and θ ∈ (π/2, π ] for L J < 0.

2. K = J 2: The zeros of Θξ are
{
0, 2L J

L2+K

}
with θ ∈

[0, π/2] for L J > 0 and θ ∈ [π/2, π ] for L J < 0.
With the additional condition |L| = |J |, the orbit fills an
entire hemisphere [see Fig. 1(b) at L = ±4].

3. K > J 2: One zero of Θξ is positive and one is negative,
allowing the particle to cross the equatorial plane and
θ ∈ [0, π ].

Similarly to an effective potential, this behavior can be seen
in Fig. 1, where the allowed area of motion with respect to
L is shown for different choices of K .

In case of a double zero ξ0 of Θξ , the particle’s motion is
confined to a cone of opening angle arccos ξ0, which simpli-

(a) (b) (c)

Fig. 1 Allowed ξ motion in dependence of L for J = 4 and varying
K . Physically forbidden areas are marked in gray

fies Eqs. (22) and (23). This is possible for K = 0 or κ = 0
in three cases:

1. K = 0, κ > 0: ξ0 = J/L for |L| > |J |.
2. K > 0, κ = 0: ξ0 = L/J for |L| < |J |.
3. K = 0, κ = 0: ξ0 = signL J for |L| = |J |.

Since the θ motion is not depending on the particle’s mass
parameter δ, all results hold for all particle types.

3.2 The r motion

3.2.1 Possible types of orbits

For a degenerate horizon at r = 1 the following types of
orbits can be found for this spacetime:

1. Escape orbits (EO) with range [r1,∞) and 1 < r1.
2. Two-world escape orbits (TEO) with range [r1,∞) and

r1 < 1.
3. Periodic bound orbits (BO) with range [r1, r2] and r1 <

r2 < 1 or 1 < r1 < r2.
4. Many-world periodic bound orbits (MBO) with range

[r1, r2] and r1 < 1 < r2.
5. Terminating orbits (TO) with range [0, r2] and r2 < 1 or

with range [0,∞).

3.2.2 Analysis of the radial motion

To obtain real values of r from Eq. (20), the requirement
P ≥ 0 has to be met. Radial regions of physically allowed
motion are separated from forbidden ones by the positive
zeros of P, which correspond to the orbits’ turning points.
Whenever the polynomial has a non negative double zero,
that is,

P(r) = 0 and
dP

dr
(r) = 0 , (30)

a variation of parameters is expected to change the number of
positive zeros. By plotting the zeros of the resultant of the two
expressions in Eq. (30), one obtains parameter plots showing
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the boundaries between regions of 1, 2, 3 or 4 zeros of P.
This is shown for parametric L-l, K -E , and L-E diagrams
in Fig. 2.

As P is a polynomial of second degree in E , one can define
the two-part effective potential V±(r) as the values of energy
that yield P = 0, i.e., P can be rearranged in the form

P = f (r)(E − V+)(E − V−). (31)

Some effective potentials are shown in Figs. 3, 4 and 5.
Since one can factor out (r − 1) in V±, V+ and V− intersect
on the horizon at E = 0, given that V± is real. Additionally,
for the requirement that time should always run forward, i.e.,
dt / dγ ≥ 0, Eq. (24) is treated in a similar way as Eq. (20) for
the effective potential and corresponding regions are shown
as well.

Since P < 0 for δ = 1 and P > 0 for δ = −1 hold
in the limit r → ∞, orbits of particles of positive mass
are always bounded, particles of imaginary mass can exist in
unbound orbits for arbitrary energy. More precisely, one finds
for particles of non zero mass, i.e., δ = ±1, in the limiting
case r → ∞ from P = 0

V∞± = ±
√

δr

|l| . (32)

Similarly, for massless particles, i.e., δ = 0, it follows in
the limit r → ∞

V∞± = − L

2l
±

√
L2 + K

2|l| . (33)

Since here V∞+ > 0 and V∞− < 0 hold (for K > 0) and P < 0
for E = 0 in the limit r → ∞, for every set of parameters a
physically forbidden region in the vicinity of E = 0 can be
found. This behavior corresponds to the border of region (2)
in Fig. 2e as varying the energy E to region (3)+ allows for
an additional unbound orbit.

In special cases, terminating orbits can be found. Due to
the smoothness of the polynomial P, the condition P(0) ≥ 0
has to be fulfilled, which implies real V±(0), since P(0) opens
downward with respect to E . It follows

V±(0) = Ll ±
√

−Kl2 − 2K , (34)

giving K = 0 and E = Ll as first conditions. To allow for
non trivial terminating orbits with non zero range, addition-
ally P(r) > 0 has to hold on r ∈ (0, ε) with ε > 0. This
implies that the lowest order non vanishing coefficient of P
must be positive, which is a condition that is always met
in case of δ = −1 but never possible in other cases. The
influence of the choice of δ on the effective potential at the
singularity around E = Ll is shown in Fig. 4. Here parame-
ters are chosen to allow for bound orbits behind the horizon

for all particle masses δ. As regions with dt / dγ < 0 are
shown as well, it can be seen that all depicted bound orbits
cross regions where time is running backwards. For a particle
of non zero mass this can be avoided by lowering its energy
to the bottom of the potential well. A short-range terminating
orbit can be found in Fig. 4c at E = Ll. Additionally, the two
possible types of terminating orbits can be seen in Fig. 5a, b.

With the results of the parametric diagrams and the effec-
tive potentials we summarize all combinations of zeros of
P and show their corresponding types of orbits in Table 1.
Here the following connection of regions in the parametric
diagrams and types of orbits was found:

1. Region (1): P has one non negative zero r1 < 1, which
corresponds to a TEO of type A. For particles of imagi-
nary mass a TO of type A0 is possible for an energy of
E = Ll [see, e.g., Fig. 5a].

2. Region (2): P has two positive zeros r1 < 1 < r2, which
corresponds to a MBO of type B.

3. Region (3): P has three non negative zeros ri .

(a) Region (3)+: It holds r1 < 1 < r2, r3, resulting in a
MBO and an EO of type C.

(b) Region (3)−: For all zeros it holds ri < 1, resulting
in a BO and a TEO of type D. Again, for particles of
imaginary mass a TO of type D0 is possible for an
energy of E = Ll [see, e.g., Fig. 5b].

4. Region (4): P has four positive zeros ri .

(a) Region (4)+: It holds r1 < 1 < r2, r3, r3, resulting
in a MBO and a BO of type E.

(b) Region (4)−: It holds r1, r2, r3 < 1 < r4, resulting
in a BO and a MBO of type F.

Note that for every radially allowed orbit an angular
momentum J according to Sect. 3.1 can be chosen to allow
for θ motion as well.

3.3 Static orbits

It has been shown in [24] that some axisymmetric rotat-
ing spacetimes possess a ring in the equatorial plane, on
which stationary particles remain stationary with respect
to an asymptotic static observer. As this is possible in
higher dimensions as well (see [24] and references therein),
we check whether this is the case for the spacetime at
hand. Hence, parameters have to be chosen to allow for an
extremum of V± at rst and a double zero in Eq. (29) at cos θst.
Additionally, the right hand sides of Eqs. (22) and (23) have
to vanish. We use cos θst = L J

L2+K
from Eq. (29), under con-

ditions discussed in Sect. 3.1, together with Eq. (23), from
which the requirement K = 0 and |J | ≤ |L| can be derived.
With this, a turnaround energy Eturn can be defined by solving
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 Parametric L-l, K -E , and L-E diagrams for varying mass
parameter δ and parameters E = 1.8, K = 8 (a–c), L = 4, l = 4
(d–f), and l = 1, K = 4 (g–i), showing regions (1)–(4). This marks
the number of positive zeros of the polynomial P in Eq. (25), i.e., lines
corresponding to transitions of negative roots to complex ones are not

shown. Associated orbit types can be found in Table 1 and are described
in Sect. 3.2.2. In cases (d)–(i) one double zero of P for E = 0 and all K
or L can be found. Since no regions of different numbers of zeros are
separated by these lines (see Fig. 3 for E = 0), they are omitted
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Effective potential V± of the r motion for various sets of param-
eters. The blue (dark gray) line indicates V+, the green (light gray) one
V−. Physically forbidden areas are marked in gray and in the hatched
areas it holds dt / dγ < 0. The horizon at r = 1 is shown by a vertical
dashed line. Some characteristic orbits of type A, B, C, E from Table 1

with 1 to 4 turning points are shown. Points denote the turning points
and horizontal dashed lines correspond to the particle’s energy E . Com-
paring (d) and the L-E diagram in Fig. 2g at L = 20, orbits of type B
and E can be found in regions with 2 and 4 zeros, respectively

Table 1 Types of orbits of light and particles in the spacetime of a
supersymmetric AdS5 black hole. Thick lines represent the range of the
orbits and thick dots indicate their turning points. The vertical double
line represents the horizon. The vertical single line corresponds to the

singularity, which can only be reached by particles of imaginary mass
and K = 0, resulting in orbits of type A0 and D0. The column δ dis-
tinguishes between particles with imaginary/positive mass (−1/1) and
light (0)
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(a) (b) (c)

Fig. 4 Effective potential V± of the r motion for varying δ and
K = 0, L = 80, l = 1, which allows bound orbits of type D and
F (see Table 1) behind the horizon. For a more detailed description see

Fig. 3. Additionally, the turnaround energy Eturn of the φ motion is
shown as a dash-dotted line, which mostly overlaps with the border of
the hatched area corresponding to dt / dγ < 0

(a) (b) (c)

Fig. 5 a, b Effective potential V± of the r motion for δ = −1 with
parameters chosen to allow for terminating orbits of type A0 and D0
(see Table 1). c Effective potential V± of the r motion with parameters

chosen to allow for a pointy petal BO of type E. For a more detailed
description see Fig. 3. Additionally, the turnaround energy Eturn of the
φ motion is shown as a dash-dotted line

Eq. (22) for E yielding

Eturn(r) = (r − 1)Ll

2r2 + 2r − 1
. (35)

This is also shown in Figs. 4 and 5, since here K = 0 holds.
To obtain a stationary point, Eturn has to intersect V± in an
extremum of V±. In this spacetime, we could not find such
intersections. However, pointy petal BOs (in front of the hori-
zon), semi BOs (behind the horizon) as well as MBOs, where
the particle is periodically at rest, are found at arbitrary inter-
sections of Eturn and V± for particles of positive mass. In
case of a pointy petal BO, an effective r potential and φ

turnaround energy is shown in Fig. 5c.

3.4 Spacelike geodesics and AdS/CFT

Spacelike geodesics are usually not considered in the analy-
sis of geodesic motion, since they represent test particles with
imaginary rest mass (δ = −1). In the context of AdS/CFT,
however, there are applications for spacelike geodesics. CFT
correlators or Feynman propagators describe observables on
the asymptotic boundary of an AdS spacetime. Correlation
functions of fields in the bulk are related to correlation func-
tions of CFT operators on the boundary. Using the Green
function, the correlator of two operators can be written as

〈O(t, x)O(t ′, x′)〉 =
∫

exp[iΔL(P)]DP . (36)
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Here L(P) describes the proper length of the path P
between the boundary points (t, x) and (t, x′). In the case of
spacelike trajectories L(P) is imaginary, so that the whole
expression is real. m is the mass of the bulk field, which is
related to the conformal dimension Δ = 1+√

1 + m2 of the
OperatorO . For large masses, i.e., Δ ≈ m, the WKB approx-
imation can be used to calulate the operator, which is then
described by the sum over all spacelike geodesics between
the boundary points

〈O(t, x)O(t ′, x′)〉 =
∑
g

exp
(−ΔLg

)
. (37)

The real proper length of a geodesic Lg diverges due to con-
tributions near the AdS boundary and has to be renormalized
by removing the divergent part in pure AdS. The sum is then
dominated by the shortest spacelike geodesic between the
boundary points (see, e.g., [9,25,26]).

In this formalism we need geodesics that have endpoints
on the boundary at r → ∞. This is the case for escape orbits
(EOs) and two-world escape orbits (TEOs) that have a single
turning point and reach infinity. For EOs both endpoints of the
geodesic are located on a single boundary, since the turning
point is outside the horizons. The corresponding two-point
correlators can be used to calculate for example the thermal-
ization time [25] or the entanglement entropy [27,28].

Particles on TEOs cross the horizon and therefore the end-
points are on two disconnected boundaries. TEOs can also
be considered as propagators [9,26]. The boundary correla-
tors can probe the physics behind the horizon. This could be
used to study the formation of black holes [9], the black hole
singularity [29], or the information paradox [30].

In the spacetime of a supersymmetric AdS5 black hole,
geodesics relevant for AdS/CFT exist in the regions (1), (3)+
and (3)−, see Fig. 2 and Table 1. Depending on the parameters
of the black hole, we find EOs or TEOs. In region (3)+ EOs
exist that return to the same boundary where they started. In
region (1) and (3)−, there are TEOs crossing the horizon with
endpoints on two disconnected boundaries.

4 Solution of the geodesic equations

In this section we solve the equations of motion (20)–(24)
analytically.

4.1 Solution of the θ equation

Equation (28) can be solved by an elementary function. In
case of a < 0 and D > 0, this leads to

θ(γ )= arccos

(
1

2a

(√
D sin

(±√−a(γ−γ0)+γ θ
0

) − b
))

(38)

as a solution of Eq. (21). Here γ0 and θ0 are the initial values
of γ and θ , respectively, we set γ θ

0 = arcsin 2a cos θ0+b√
D

and

“±” denotes the sign of dθ
dγ

(γ0).

4.2 Solution of the r equation

By substituting r = 1
x + rP, with rP chosen to be a zero

of P, one can simplify Eq. (20) to a differential equation of
the type

( dx
dγ

)2 = Px
3 with a polynomial Px

3 := ∑3
i=0 bi x

i of
third order on its right hand side (this step is not necessary

for δ = 0). The following substitution x = 1
b3

(
4y − b2

3

)

transforms this to

(
dy

dγ

)2

= 4y3 − g2y − g3 =: Py
3, (39)

with coefficients

g2 = b2
2

12
− b1b3

4
, g3 = b1b2b3

48
− b0b2

3

16
− b3

2

216
. (40)

This elliptic differential equation is solved by the Weierstrass
℘ function [31], which leads to

y(γ ) = ℘
(
γ − γ ′

0; g2, g3
)

(41)

as a solution of Eq. (39). Here we set γ ′
0 := γ0 + ∫ ∞

y0

dy√
Py

3

with y0 = y(x(r0)) and the initial value r0 of r . The solution
of Eq. (20) is now obtained by

r(γ ) = b3

4℘(γ − γ ′
0; g2, g3) − b2

3

+ rR . (42)

4.3 Solution of the φ equation

To integrate Eq. (22), we handle its two parts separately and
set

dφ

dγ
=: A(r) + B(θ) . (43)

Again, the substitution ξ = cos θ is used, this time upon B.
Together with Eq. (28), one gets for the θ part

± dφθ = ξ2

ξ2 − 1

L dξ√
Θξ

− ξ

ξ2 − 1

J dξ√
Θξ

. (44)

Here the “±” indicates the sign of dθ
dγ

(γ0). Upon the two
fractions we apply partial fraction decompositions

± dφθ = 1

2

L − J

ξ − 1

dξ√
Θξ

− 1

2

L + J

ξ + 1

dξ√
Θξ

+ L
dξ√
Θξ

. (45)
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The first part can be easily integrated with the substitution
y = ξ − 1, the second part with y = ξ + 1. The third part is
equal to ∓L dγ , as can be seen from Eq. (28). This yields

φθ (γ ) = ±1

2

L − J√−c1
arctan

2c1 + b1y

2
√−c1Θy,1

∣∣∣∣
ξ(γ )−1

ξ0−1

∓ 1

2

L + J√−c2
arctan

2c2 + b2y

2
√−c2Θy,2

∣∣∣∣
ξ(γ )+1

ξ0+1

− L(γ − γ0) (46)

=: I1(γ ) + I2(γ ) + I3(γ ) , (47)

where Θy,i := ay2 + bi y + ci , i = 1, 2 with b1 = b + 2a,
b2 = b−2a, c1 = a+b+c, and c2 = a−b+c. Furthermore,
ci < 0 was assumed.

Now we integrate the r dependent part A of Eq. (22).
We use the two substitutions applied in Sect. 4.2 and recall
Eq. (41) to identify A = A(r(y(γ ))). A partial fraction
decomposition on A(y) is performed to get

dφr =
[
K0 + K1

y(γ ) − p1
+ K2

y(γ ) − p2

]
dγ , (48)

where K0, K1, and K2 are constants of the partial frac-

tion decomposition and p1 = (l2+rP+2)b2−3b3
12(l2+rP+2)

and p2 =
(rP−1)b2−3b3

12(rP−1)
are poles of first order. According to [32]1, the

elliptic integrals of third kind
∫ ν

ν0

dν
℘ (ν)−p can be solved in

terms of the Weierstrass σ and ζ functions by using addition
theorems. One obtains with ν := γ − γ0

φr (γ ) = K0(ν − ν0) +
2∑

i=1

Ki

℘′(νi )

[
2ζ(νi )(ν − ν0)

+ ln
σ(ν − νi )

σ (ν0 − νi )
− ln

σ(ν + νi )

σ (ν0 + νi )

]
.

(49)

Here νi is a Weierstrass transformed pole pi , which solves
℘(νi ) = pi for i = 1, 2 in the fundamental parallelogram of
℘(ν).

The solution of Eq. (43) is given by the sum of this expres-
sion, Eq. (46), and the initial value φ0.

4.4 Solution of the ψ equation

To obtain the ψ motion from Eq. (23), we proceed similarly
to the solution of the θ part of the φ motion in Sect. 4.3.
Again, with the substitution ξ = cos θ and partial fraction
decompositions, one gets

± dψ = −1

2

L − J

ξ − 1

dξ√
Θξ

− 1

2

L + J

ξ + 1

dξ√
Θξ

. (50)

1 Here an incorrect index has been changed.

Using the definitions of Eq. (47), we find with the initial value
ψ0 of ψ

ψ(γ ) = −I1(γ ) + I2(γ ) + ψ0 . (51)

4.5 Solution of the t equation

The integral of the right hand side of Eq. (24) can be derived
similarly to that of A(r) in Sect. 4.3. Here the partial fraction
decomposition leads to

dt =
[
H0 + H1

y(γ ) − p1
+ H2

y(γ ) − p2
+ H3

(y(γ ) − p2)2

]
dγ

(52)

with H0, H1, H2, and H3 given by the partial fraction
decomposition and p1 and p2 are poles of first and second
order, respectively, that are identical to those in Eq. (48). The
integral of the first three terms yields an expression of the type
obtained in Eq. (49). Again, according to [32],2 the elliptic
integral of type

∫ ν

ν0

dν
(℘ (ν)−p)2 can be solved in terms of the

Weierstrass σ and ζ functions. One obtains with ν := γ −γ0

and the initial value t0 of t

t (γ ) = t0 + H0(ν − ν0) +
2∑

i=1

Hi

℘′(νi )

[
2ζ(νi )(ν − ν0)

+ ln
σ(ν − νi )

σ (ν0 − νi )
− ln

σ(ν + νi )

σ (ν0 + νi )

]

− H3℘
′′(ν2)

(℘′(ν2))3

[
2ζ(ν2)(ν − ν0)

+ ln
σ(ν − ν2)

σ (ν0 − ν2)
− ln

σ(ν + ν2)

σ (ν0 + ν2)

]

− H3

(℘′(ν2))2

[
2℘(ν2)(ν − ν0) + 2[ζ(ν) − ζ(ν0)]

+ ℘′(ν)

℘ (ν) − ℘(ν2)
− ℘′(ν0)

℘ (ν0) − ℘(ν2)

]
.

(53)

5 The orbits

To plot the spatial coordinates (φ,ψ, θ, r) of the set of ana-
lytical solutions for the particle’s motion in a Cartesian coor-
dinate system, a coordinate transformation has to be chosen.
The angular line element dΩ2 = 1

R2

∑3
μ,ν=1 gμν dxμ dxν

for xμ = (t, φ, ψ, θ, R) of the metric in Eq. (1) yields in
case of R → ∞

2 Here two incorrect signs have been changed.
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(a) (b)

Fig. 6 MBO and BO for parameters K = 4, L = 20, δ = 1, l =
1, J = 0, and energy E = 0.95. The projections onto the x-z plane
(bottom left) show the turning points of the φ motion as a dotted line.

Projections onto the x-y plane are shown at the bottom right. The spheres
and dashed circles show the horizon at R = 1. The corresponding effec-
tive potential of the r motion can be found in Fig. 3d

(b)(a)

Fig. 7 MBO and EO for parameters K = 4, L = 4, δ = 0, l =
1, J = 0, and energy E = 0.386699. The projections onto the x-z
plane (bottom left) show the turning points of the φ motion as a dotted

line. Projections onto the x-y plane are shown at the bottom right. The
spheres and dashed circles show the horizon at R = 1
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(a) (b) (c) (d)

Fig. 8 MBO and EO for parameters K = 12, L = 8, δ = 0, l = 1, J = 4, and energy E = 0.6672265. The trajectory is confined to an area
above θ = π/2. In b and d the dotted curves denote the turning points of the φ motion. The spheres and dashed circles show the horizon at R = 1

(a) (b) (c) (d)

Fig. 9 MBO and EO for parameters K = 0, L = 8, δ = 0, l = 1, J = 4, and energy E = 0.343913. The trajectory lies on a cone with opening
angle θ < π/2. In b the dotted circle indicates the φ turning points. The spheres and dashed circles show the horizon at R = 1

(a) (b) (c) (d)

Fig. 10 a, b TEO for parameters K = 4, L = 4, δ = 0, l = 1, J =
0, and energy E = 0.4. In b the dotted curve denotes the turning points
of the φ motion. c, d TO for parameters K = 0, L = 8, δ = −1, l =
1, J = 4, and energy E = Ll = 8. The trajectory lies on a cone with

opening angle θ < π/2. The corresponding effective potential of the r
motion can be found in Fig. 5a. The spheres and dashed circles show
the horizon at R = 1

dΩ2 = 1

4

[
dθ2 + dψ2 + dφ2 + 2 cos θ dφ dψ

]
. (54)

On the other hand, the angular line element of flatspace in
biazimuthal coordinates (ϕ1, ϕ2, ϑ, R) is

dΩ2 = dϑ2 + sin2 ϑ dϕ2
1 + cos2 ϑ dϕ2

2 . (55)

A comparison of Eqs. (54) and (55) suggests the coordinate
transformation

φ = ϕ1 + ϕ2 , ψ = ϕ2 − ϕ1 , θ = 2ϑ, (56)

which, together with the biazimuthal coordinates and r =
R2, transforms (φ,ψ, θ, r) to (x, y, z, w) by
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(b)(a) (d)(c)

Fig. 11 TO and TEO for parameters K = 0, L = 36.39992, δ =
−1, l = 0.3, J = 4, and energy E = Ll = 10.919976. The trajectory
lies on a cone with opening angle θ < π/2. The sphere and dashed

circle show the horizon at R = 1. The corresponding effective potential
of the r motion is very similar to the one shown in Fig. 5b

(b)(a)

Fig. 12 Pointy petalBO for parameters K = 0, L = 17.1, δ = 1, l =
1, J = 0, and energy E = 0.8686915. The trajectory lies on a cone
with opening angle θ = π/2. The sphere and dashed circle show the
horizon at R = 1. The corresponding effective potential and turnaround
energy of the r and φ motion, respectively, can be found in Fig. 5c. The
particle periodically stops at the outer turning points

x = √
r sin

θ

2
cos

φ − ψ

2
, (57a)

y = √
r sin

θ

2
sin

φ − ψ

2
, (57b)

z = √
r cos

θ

2
cos

φ + ψ

2
, (57c)

w = √
r cos

θ

2
sin

φ + ψ

2
. (57d)

Furthermore, we choose a projection in the 3-dimensional
Cartesian subspace of the coordinates (x, y, z) by setting
w = 0. This preserves the notion of a horizon on the surface
of a sphere with radius R = 1, but as a consequence we
have to set ψ = −φ, so only analytical solutions of φ, θ,

and r are used. Another consequence is that the θ motion on
the interval [0, π ] is now mapped to the upper hemisphere
only, thereby, as the horizon is shown in the following as a

(b)(a)

Fig. 13 BO for parameters K = 0.1, L = 80, δ = 1, l = 1, J = 0,
and energy E = 81.5082984. The corresponding effective potential of
the r motion is very similar to the one shown in Fig. 4a

complete sphere of radius 1, the lower half sphere is of no
physical relevance.

The figures above show the particle’s motion for various
sets of parameters. The first orbit of a particle of positive mass
is of type E and is shown in Fig. 6, its effective potential can
be found in Fig. 3d. For similar parameters (L was decreased)
a lightlike orbit of type C is shown in Fig. 7. Both of those
orbits pass the equatorial plane. An orbit that is confined to
one hemisphere has to satisfy K < J 2, as was discussed in
Sect. 3.1. A lightlike orbit of this kind is shown in Fig. 8 for
type C.

In case of K = 0 and κ > 0, one obtains an orbit confined
to a cone of fixed opening angle arccos J

|L| . This is shown in
Fig. 9 for type C. A two-world escape orbit of type A can be
found in Fig. 10a. This is obtained by increasing the energy
slightly above the effective potential’s maximum while the
other parameters are unchanged compared to Fig. 7. By the
increase in energy, the many-world periodic bound orbit and
the escape orbit merged into one two-world escape orbit.
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Now we present orbits of particles with imaginary mass
that reach the boundary at infinity and therefore are of rel-
evance for AdS/CFT. A terminating orbit of type A0, with
its effective potential depicted in Fig. 5a, can be found in
Fig. 10c. In Fig. 11 we show a terminating orbit and a two-
world escape orbit of type D0 of a particle with imaginary
mass in an effective potential very similar to the one shown
in Fig. 5b.

The pointy petal bound orbit of type E of a particle that is
periodically at rest is depicted in Fig. 12, its effective poten-
tial in Fig. 5c. Here parameters are chosen by determining
the intersection of the effective potential V± and turnaround
energy Eturn while θ is, for simplicity, chosen to be constant,
as discussed in Sect. 3.3.

Finally, a bound orbit behind the horizon for a particle
of positive mass (type F) is shown in Fig. 13. This requires
small K and large L . Its effective potential is very similar to
the one shown in Fig. 4a but its trajectory is not confined to
a cone of fixed opening angle θ .

6 Conclusion

In this article the spacetime of a supersymmetric AdS5 black
hole was studied by analyzing the geodesics (elliptic) equa-
tion of motion and deriving its analytical solutions in terms
of the Weierstrass ℘, σ , and ζ functions. Effective potentials
and parametric diagrams were used to classify possible types
of orbits, which are characterized by the particle’s energy,
angular momenta, Carter constant, and mass parameter as
well as the metric’s AdS radius.

We showed that timelike orbits are always bounded and
thus do not reach the AdS boundary. For lightlike and
spacelike geodesics multiple types of orbits with a bound-
ary at infinity and therefore with relevance for AdS/CFT
were found. This, for spacelike geodesics and for a specific
energy, includes the possibility of a terminating orbit. Bound
orbits behind the horizon (for large angular momentum L)
and many-world periodic bound orbits are possible indepen-
dently of the particle’s mass. However, stable bound orbits
outside of the horizon are only possible for particles of pos-
itive mass.

Future work might focus on extending the equations of
motion to particles with electric and magnetic charge. Addi-
tionally, the orbits’ observables, e.g., in case of a bound orbit,
its periastron shift or, in case of a lightlike escape orbit, its
light deflection or the black hole’s shadow, might be calcu-
lated similarly as in [14] by making use of the analytical
solutions.
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