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Abstract We show that minimal massive 3d gravity (MMG)
of (Bergshoeff et al. in Class Quantum Grav 31:145008,
2014), as well as the topological massive gravity, are par-
ticular cases of a more general ‘minimal massive gravity’
theory (with a single massive propagating mode) arising
upon spontaneous breaking of a local symmetry in a Chern–
Simons gravity based on a Hietarinta or Maxwell algebra.
Similar to the MMG case, the requirements that the propa-
gating massive mode is neither tachyon nor ghost and that
the central charges of an asymptotic algebra associated with a
boundary CFT are positive, impose restrictions on the range
of the parameters of the theory.
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1 Introduction

Three-dimensional gravity theories have attracted great deal
of attention since the early 80s as simpler tools for study-
ing features of General Relativity in higher dimensions, its
possible consistent modifications and extensions to quantum
gravity. Since then a variety of different 3d gravity models
with interesting geometric and physical properties have been
constructed and analyzed. Among these is the minimal mas-
sive 3d gravity (MMG) [1] which will be the focus of our
attention in this paper. This gravity model is a particular case
of a class of Chern–Simons-like theories [2–4]. In contrast
to the genuine 3d Chern–Simons theories which do not have
local degrees of freedom in the bulk, the Chern–Simons-like
gravities have propagating massive spin-2 modes coupled to
a number of other spin-2 fields.1

One of the main motivations for constructing modifica-
tions of 4d General Relativity which include massive gravi-
tons is to try to explain in this way the nature of dark mat-
ter and dark energy. Three-dimensional massive gravities
serve as useful toy models for studying peculiar features and
issues of these theories regarding e.g. the absence of Ostro-
gradski ghosts etc. An open fundamental question regarding
gravity theories with massive gravitons is whether a spin-
2 field mass can be attributed to spontaneous breaking of a
space-time symmetry which in general can be an extension

1 By “spin-2 fields” we somewhat loosely mean 3d Lorentz-vector-
valued one-form fields ara = dxμaraμ (x) (r = 1, 2, . . . , N ) which

include a dreibein ea(x) and a dualized spin connectionωa = 1
2 εabcωbc.
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of the Poincarè group. To answer this question one should
first individualize such a symmetry and then, ideally, find a
mechanism generating mass of a corresponding spin-2 field
similar to that of Englert–Brout–Higgs–Guralnik–Hagen–
Kibble. By now, such a mechanism is not known for gauge
spin-2 fields. In this situation one can resort to old construc-
tions called Phenomenological Lagrangians (see e.g. [5–7])
which have proved useful for understanding the most gen-
eral structure of symmetry breaking terms with the use of
Goldstone fields on which these symmetries are realized non-
linearly. A notable example is the first construction of the
supergravity action with non-linearly realized local super-
symmetry [8] (see [9] for a review and further developments).

In this paper we would like to address the above question
for 3d Chern–Simons-like MMG of [1] and, in particular, to
understand whether the presence of a massive spin-2 mode
therein can be seen as an effect of (partial) spontaneous break-
ing of a local symmetry containing the 3d Poincarè group as
a subgroup. We will show that this is indeed the case.2

The MMG contains three ‘spin-2’ fields, the dreibein ea ,
the spin connection ωa and an additional one-form field
ha . The first two are associated with gauge fields of the
local 3d Poincarè group generated by the translations Pa
and Lorentz rotations Ja . We would also like to treat ha as
a gauge field associated with an additional vector genera-
tor Za that extends the Poincarè group to a larger symmetry
which is however broken in the MMG action. We will restore
this larger symmetry by coupling the gauge fields ea and ha

to a Stückelberg-like spin-1 Goldstone field associated with
spontaneous breaking of Za-symmetry. The symmetry alge-
bra in question is the simplest among algebras constructed by
Hietarinta [11], a class of finite-dimensional supersymmetry-
like algebras containing higher-spin generators.3 The com-
mutators of the generators of this algebra are

[Ja, Jb] = εabc Jc, [Ja, Pb] = εabc Pc,

[Ja, Zb] = εabc Zc,

[Pa, Pb] = 0, [Za, Zb] = εabc Pc. (1.1)

Note that the commutator of Za closes on translations, some-
what similar to supersymmetry. Notice also that this algebra
is isomorphic (dual) to the three-dimensional Maxwell alge-
bra [21,22] in which the role of the generators Pa and Za

gets interchanged (Pa ↔ Za), namely

[Za, Zb] = 0, [Pa, Pb] = εabc Zc. (1.2)

2 The broken symmetry under consideration is not a 3d Weyl symmetry
which was assumed to be a source of the graviton mass in [10].
3 The most studied example of the Hietarinta algebras is the one in
which the spin-1/2 generators of a supersymmetry algebra are replaced
by their spin-3/2 counterparts. This algebra underlies the so-called
Hypergravity put forward in D = 2 + 1 by Aragone and Deser [12]
(see e.g. [13–20] for further studies of this theory).

The Chern–Simons action for gravity with the local sym-
metry generated by the 3d Maxwell algebra was constructed
and studied in [23–26]4 while its Hietarinta counterpart was
considered in [18,30]. Since from the algebraic point of view
the construction of the action is the same for (1.1) and (1.2)
and the only difference between the two is the choice of the
physical interpretation of the generators and corresponding
gauge fields, in what follows we will call the general model
under consideration the Hietarinta/Maxwell Chern–Simons
Gravity (HMCSG).

In Sects. 2 and 3 we will show that augmenting the
HMCSG action with terms that break linearly realized sym-
metry (1.1) along Za one gets an extension of the Minimal
Massive Gravity. It has, in general, two more coupling terms
in comparison with the MMG, but still has a single massive
propagating degree of freedom, as we show by performing
the Hamiltonian analysis in Sect. 5 and studying linear pertur-
bations of the fields around an AdS3 background in Sect. 7.
In Sect. 4, as a side remark, we demonstrate that when the
parameters of the HMCSG are restricted by a certain con-
dition which makes its equations of motion integrable, the
model reduces to a pure Chern–Simons theory with the gauge
group SL(2, R)×SL(2, R)×SL(2, R). In Section 6 we com-
pute the central charges of an asymptotic symmetry algebra
of the HMCSG with AdS3 boundary conditions. As in the
MMG case, the requirements that the propagating massive
mode is neither tachyon nor ghost and that the boundary CFT
central charges are positive impose restrictions on the range
of the parameters of the HMCSG theory. We analyze these
restrictions for some particular cases for which the parame-
ters of the HMCSG differ from those of the original MMG
in Sect. 7, and conclude with comments and an outlook in
Sect. 8.

2 Hietarinta/Maxwell Chern–Simons gravity and its
minimal massive extension

Let us start by reviewing the construction of a gravity action
which enjoys local symmetry transformations associated to
the algebra (1.1). The algebra (1.1) has the following invari-
ant bilinear form

〈Ja, Zb〉 = aηab, 〈Ja, Pb〉 = 〈Za, Zb〉 = −σ mηab,

〈Ja, Jb〉 = ηab, (2.1)

where m is a parameter of the dimension of mass, a has

the dimension of m
1
2 , while (−σ) is an arbitrary dimen-

4 Higher-spin extensions of the Maxwell algebra and corresponding
gravity models were considered in [27]. See also [28,29] for a detailed
study of the 3d Maxwell group, its infinite-dimensional extensions,
applications and additional references.
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sionless constant.5 The dimensions of the coefficients reflect
the canonical dimensions of [Ja] = m0, [Pa] = m and
[Za] = m

1
2 .

In the case of the Maxwell algebra (1.2) the dimension of
Za changes to m2 and the corresponding bilinear form is

〈Ja, Pb〉 = amηab, 〈Ja, Zb〉 = 〈Pa, Pb〉 = −σm2ηab,

〈Ja, Jb〉 = ηab, (2.2)

where now the parameter a is dimensionless.
The bilinear form (2.1) is used to construct the Chern–

Simons action (in which the wedge product of the differential
forms is implicit)

S = 1

2m

∫
M3

〈
AdA + 2

3
A3

〉
, (2.3)

for the gauge field one-form A taking values in the algebra
(1.1)

A = ea Pa + ωa Ja + ha Za . (2.4)

Explicitly, for the components of (2.4) the action (2.3) takes
the following form

SHCS = 1

2

∫
M3

[
2a

m
ha Ra − σ(2ea Ra + ha∇ha)

+ 1

m

(
ωadωa + 1

3
εabcω

aωbωc
)]

, (2.5)

where

∇ha = dha + εabcωbhc, Ra = dωa + 1

2
εabcωbωc.

(2.6)

The Hietarinta Chern–Simons (HCS) action (2.5) is invari-
ant (up to a boundary term) under the infinitesimal gauge
transformations

δea = ∇εaP + εabc(hbεcZ + ebεcJ ),

δha = ∇εaZ + εabchbεcJ ,

δωa = ∇εaJ . (2.7)

Note that the term 2a
m ha Ra in (2.5) can be absorbed by the

term 2ea Ra upon the field redefinition ea → ea − a
σm ha . So,

without loss of generality, instead of (2.5) we will deal with
the action

SHCS = 1

2

∫
M3

[
−σ(2ea Ra + ha∇ha)

+ 1

m

(
ωadωa + 1

3
εabcω

aωbωc
)]

. (2.8)

Also note that if instead of the Hietarinta algebra (1.1), we
had used the Maxwell algebra (1.2) and the corresponding

5 The minus sign in front of σ was chosen to make our convention closer
to that of [1]. We will also set the value of the gravitational constant as
16πG = 1.

bilinear form (2.2) as the basis for constructing the action
(2.3), instead of (2.8) we would get

SMCS = 1

2

∫
M3

[
2aea Ra − m σ(2ha Ra + ea∇ea)

+ 1

m

(
ωadωa + 1

3
εabcω

aωbωc
)]

. (2.9)

In this action the role of the dreibein ea (associated with
the Poincarè translations) and of the additional spin-2 field
ha get interchanged in comparison to (2.8).6 Now we can
absorb the first term of (2.9) into its second term by redefining
ha → ha − a

σm e
a and get

SMCS = 1

2

∫
M3

[
− m σ (2ha Ra + ea∇ea)

+ 1

m

(
ωadωa + 1

3
εabcω

aωbωc
)]

. (2.10)

So, if one insists on associating the genuine graviton field
with the Poincaré generator Pa , one concludes that the
Maxwell Chern–Simons (MCS) gravity based on (2.10) actu-
ally does not have the standard Einstein term ea Ra . In this
respect the Maxwell Chern–Simons gravity (2.10) can be
regarded as a deformation of the “exotic” Einstein gravity
considered e.g. in [31]. The parity-odd first order action of
the latter is obtained from (2.10) by removing its first term.

From the Chern–Simons structure of the action (2.3) it fol-
lows that the models under consideration do not have prop-
agating degrees of freedom in the 3d bulk.

2.1 Breaking the Hietarinta symmetry

We would now like to generate non-trivial bulk dynamics
(and mass) of fields in the above Hietarinta/Maxwell Chern–
Simons model by adding to the action (2.8) terms which can
be associated with a spontaneous breaking of the Hietarinta
symmetry (1.1) down to its Poincaré subalgebra.

2.1.1 Spontaneous breaking of the rigid symmetry

By the Goldstone’s theorem, the spontaneous breaking of a
rigid (global) continuous symmetry is characterized by the
appearance of massless Nambu–Goldstone fields associated
with broken symmetry generators. In the case under con-
sideration these are the vector generators Za and the cor-
responding Goldstone field is a vector field Aa(x) of mass
dimension m [18] which should not be confused with the
Chern–Simons one-form (2.4). The Goldstone vector field

6 Notice that in the Maxwell case the dimension of ha gets changed in
comparison with the Hietarinta case in accordance with the change of
the dimension of Za in (2.2).
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appears in the Cartan one-form7

�0 = g−1
0 dg0 = Ea

0 Pa + Ha
0 Za,

Ea
0 = dxa − f −2

2
εabc Abd Ac,

Ha
0 = f −1d Aa(x), (2.11)

where

g0 = ex
a Pa e f −1Aa(x)Za , (2.12)

is a Hietarinta group element with xa being a flat 3d space-
time coordinate and f being a symmetry breaking parameter

of mass-dimension m
3
2 . The subscript 0 indicates that, at this

moment, we are dealing with a rigid symmetry with respect
to which the one-form (2.11) is invariant under the transfor-
mation

g0 → eεaJ Ja eεaP Pa eεaZ Za g0 , (2.13)

where the parameters are x-independent. The spontaneously
broken symmetry associated with εaZ Za is realized on xa

and the Goldstone field Aa(x) infinitesimally as a non-linear
transformation [18]

δxa = f −1

2
εabcεb Z Ac(x),

δAa = f εaZ − f −1

2
εdbcε

b
Z Ac ∂d Aa . (2.14)

The unique Lagrangian for Aa(x) with the minimal number
of derivatives (up to two) which is invariant under (2.14) is
of the Volkov–Akulov type and has the following form

S1 = μ1 f 2

3!
∫

εabcE
a
0 E

b
0 E

c
0

= μ1

∫
d3x

(
f 2 + 1

2
εabc Aa ∂b Ac

− f −2

8
εabcεde f Aa Ad ∂e Ab ∂ f Ac

)
, (2.15)

where μ1 is a dimensionless constant parameter.
Note that a would be third-order derivative term in (2.15)

vanishes. Interestingly, the action (2.15) contains the Abelian
Chern–Simons term for Aa , while the presence of the quar-
tic term breaks U (1) gauge invariance of the CS action and
makes propagating a scalar mode of Aa which happens to be
of a Galileon type (see [18] for details). Therefore, the spon-
taneous breaking of the Hietarinta symmetry produces the
vector Goldstone field which has only one dynamical degree
of freedom.

Using the components of the Cartan form (2.11) one can
also construct a Hietarinta-invariant term which is of the third

7 For the details of the model see [18] which in turn is based on
the Volkov–Akulov construction [32,33] of Lagrangians with sponta-
neously broken and non-linearly realized supersymmetry.

order in derivatives of Aa(x)

S2 = μ2 f
5
3

∫
εabcH

a
0 E

b
0 E

c
0, (2.16)

where μ2 is a dimensionless parameter. Modulo total deriva-
tives, it has the following explicit form

S2 = −μ2 f − 10
3

8

∫
εabcd A

ad Abd Ac A2.

Also note that two more possible contributions to the Gold-
stone field action are actually total derivatives

S3,4 =
∫

εabc

(
μ3 f

4
3 Ha

0 Hb
0 Ec

0+μ4 f Ha
0 Hb

0 Hc
0

)

=
∫

εabc

(
μ3 f − 2

3 d(Aad AbEc
0)+μ4 f −2d Aad Abd Ac

)
.

(2.17)

To recapitulate, the actions (2.15)–(2.17) are manifestly
invariant under Lorentz rotations, Poincaré translations and
rigid Hietarinta symmetry (2.14). The last one acts as a (non-
linear) shift on the Goldstone field Aa and thus is sponta-
neously broken by the vacuum solution Aa = 0.

2.1.2 Gauging the non-linearly realized symmetry

To couple the Goldstone field Aa(x) to the gauge fields (2.4),
we should covariantize the Cartan form (2.11) which makes
it invariant under the transformation (2.13) whose parameters
are promoted to functions of the space-time coordinates xμ.
The result is

� = g−1(d + A)g = Ea Pa + ωa Ja + HaZa, (2.18)

where now

g = eφa(x)Pa e f −1Aa(x)Za , (2.19)

with φa(x) being an arbitrary 3d vector function and

Ea = ea + ∇φa + f −1εabchb Ac − f −2

2
εabc Ab∇Ac,

Ha = ha + f −1∇Aa . (2.20)

The gauge group acts on φa and Aa as follows

δφa = −εaP − εabc(εZbhc + εJbφc),

δAa = − f εaZ − εabcεJb Ac. (2.21)

Combined with the variations of the gauge fields (2.7), the
action of the gauge transformations on (2.20) reduces to their
Lorentz rotations

δJ E
a = −εabcεJbEc, δJ H

a = −εabcεJbHc, (2.22)

leaving the one-forms (2.20) invariant under the action of the
transformations along Pa and Za .
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The following comment is now in order. The vector φa(x)
might be thought of as a Goldstone (Stückelberg) field asso-
ciated with breaking of the local Poincaré translations. How-
ever, this “breaking” does not result in changing the number
of the physical (on-shell) degrees of freedom of the dreibein
ea . The reason is that, in addition to the invariance under
local Hietarinta symmetry, the Chern–Simons gravity action
(2.5) is invariant under the 3d diffeomorphisms

xμ → xμ + ζμ(x). (2.23)

Under the diffeomorphisms the dreibein transforms as fol-
lows

δea = ∇(ξμeaμ) − εabc(ξμωμb)ec + iξ∇ea . (2.24)

Comparing (2.24) with (2.7) we see that the first and the sec-
ond term in (2.24) can be associated, respectively, with local
Poincaré translations and Lorentz rotations. Regarding the
third term, since on the mass shell ∇ea = −εabchbhc this
term can be associated with an εaZ variation of ea . There-
fore, on the mass shell, the local Poincaré translations are a
redundant symmetry and can be completely substituted with
the 3d diffeomorphisms, while off the mass shell the local
Poincaré translations can be used to set φa = 0. Note that
once this is done the flat space one-forms (2.11) are obtained
from (2.20) by simply setting ea = dxa and ha = 0.

We are now ready to generalize the actions (2.15)–(2.17)
to describe gauge-invariant couplings of the Goldstone field
Aa(x) to the spin-2 fields ea , ha and ωa by replacing Ea

0
and Ha

0 with Ea and Ha defined in (2.20). We thus get the
following symmetry breaking action

Ssym.br. = 1

2

∫
M3

εabc

(
�0

3
EaEbEc + β̃EaEbHc

+α̃EaHbHc + ρ̃

3
HaHbHc

)
, (2.25)

where �0, β̃, α̃ and ρ̃ are arbitrary coupling constants whose
dimensions are determined by appropriate powers of the
symmetry breaking parameter f . Note that the first Volkov–
Akulov-like term in (2.25) generates a cosmological con-
stant. Note also that, in contrast to (2.17), the last two terms
in (2.25) are not total derivatives.

We will now show that the theory described by the sum
of the actions (2.8) and (2.25) contains the Minimal Massive
Gravity of [1]. The MMG and HMCSG actions are related
to each other by a linear transformation of the three spin-2
fields when certain parameters in the latter are set to zero.

3 From spontaneously broken HMCSG to MMG

The action (2.25) contains the Goldstone fields φa and Aa

which, as usual, can be gauge fixed to zero by the correspond-

ing local symmetry transformations (2.21) with the parame-
ters εaP = −φa and εaZ = −Aa . In this (unitary) gauge the
one-forms E A and Ha reduce, respectively, to ea and ha , and
we get the gauge-fixed action

SHMCSG = 1

2

∫
M3

(−σ (2ea Ra + ha∇ha)

+ 1

m
(ωadωa + 1

3
εabcω

aωbωc)

)

+1

2

∫
M3

εabc

(
�0

3
eaebec + β̃ eaebhc

+α̃eahbhc + ρ̃

3
hahbhc

)
, (3.1)

whose residual symmetries are the 3d local Lorentz transfor-
mations and the diffeomorphisms.

On the other hand, in our conventions and notation the
MMG action [1] has the following form

SMMG = 1

2

∫
M3

(
− 2σea Ra + 2 ha∇ea

+ 1

m

(
ωadωa + 1

3
εabcω

aωbωc
))

+1

2

∫
M3

εabc

(
�0

3
eaebec + α eahbhc

)
, (3.2)

where again σ = ±1, and m, �0 and α are arbitrary
(dimensionful) parameters, and the spin-2 fields are formally
denoted in the same way as in (3.1) to simplify notation,
though now ha is dimensionless. Note that when α = 0
in (3.2), the action reduces to the first-order action for the
Topologically Massive Gravity (TMG) [34,35] for which the
requirement of positive energy of the massive spin-2 mode
singles out the sign σ = −1, while for General Relativity
σ = 1 (see the discussion in [1]).

The difference between the actions (3.1) and (3.2) is obvi-
ous. However, we will now show that the MMG action is a
particular case of (3.1) with three independent parameters.
To this end, it is useful to notice that the actions are of a
Chern–Simons-like type [1,2,4], i.e. they can be written in
the following form

S =
∫
M3

(
1

2
grsa

r · das + 1

6
frst a

r · as × at
)

, (3.3)

whereara = (ea, ha, ωa) (i.e. r = 1, 2, 3 stand, respectively,
for r = e, h, ω), and grs and frst are symmetric tensors with
constant components. In (3.3) we used the convenient 3d
Lorentz-vector algebra notation [2]

(ar × as)a = εabcarba
s
c, ar · as = ηabaraa

s
b . (3.4)

In the case of (3.1) grs and frst have the following non-
zero components

geω = −σ, gωω = 1

m
, ghh = −σ,
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feee = �0, fωωω = 1

m
, fhhh = ρ̃,

feeh = β̃, feωω = −σ, fehh = α̃, fωhh = −σ,

(3.5)

while for MMG (3.2)

geω = −σ, gωω = 1

m
, geh = 2,

feωω = −σ, fωωω = 1

m
, fehω = 1 ,

feee = �0, fehh = α. (3.6)

The matrix of the linear transformation of the fields

ã p = T p
qa

q , (3.7)

which relates (modulo a total derivative) the HMCSG tensor
gpr in (3.5) to the MMG one in (3.6)

gMMG = T T gHMCSG T, (3.8)

has the following form

T p
q =

⎛
⎜⎝

1 − 1
m 0

0 1√−mσ
0

0 −σ 1

⎞
⎟⎠ . (3.9)

Note that the form of the matrix T requires mσ to be nega-
tive. This is related to the sign of ghh = −2σ in the HMCSG
case. This sign can be flipped by performing the parity trans-
formation ea → −ea and σ → −σ in the HMCSG action
(3.1).

Thus, upon performing the transformation (3.7) one brings
the action (3.1) to the following form (in which, for simplic-
ity, we remove ‘tilde’ over the redefined fields)

SHMCSG = 1

2

∫
M3

(
−2σea Ra + 2 ha∇ea + 1

m
(ωadωa

+1

3
εabcω

aωbωc)

)

+1

2

∫
M3

εabc

(
�0

3
eaebec + α eahbhc + β eaebhc

+ρ

3
hahbhc

)
, (3.10)

where

β = β̃√−mσ
− �0

m
, α = − 2β̃

m
√−mσ

− α̃σ

m
+ �0

m2 −σ ,

ρ = − ρ̃σ

m
√−mσ

+ 3β̃

m2
√−mσ

+ 3α̃σ

m2 − �0 + m2σ

m3

(3.11)

and the values of grs and frqs are

geω = −σ, gωω = 1

m
, geh = 1,

feωω = −σ, fωωω = 1

m
, fehω = 1 ,

feee = �0, fehh = α, feeh = β , fhhh = ρ .

(3.12)

The action (3.10) reduces to the MMG action (3.2) when
β = ρ = 0.

The equations of motion which follow from (3.10) are

−2σ R + 2∇h + �0 e × e + αh × h + 2β e × h = 0,

2∇e + 2αe × h + βe × e + ρh × h = 0,

−2σ∇e + 2

m
R + 2e × h = 0. (3.13)

Note that in order to have three independent dynamical equa-
tions, the coefficient of the gravitational Chern–Simons term,
i.e. 1/m, should be non-zero. A linear combination thereof
brings the above equations to the form

2R + 2m(1 + σα)e × h + σmβe × e + σmρ h × h = 0,

2∇h + 2(mσ(1 + σα) + β) e × h

+(mβ + �0)e × e + (mρ + α)h × h = 0,

2∇e + 2αe × h + βe × e + ρh × h = 0. (3.14)

Upon the redefinition of the connection

� = ω + αh + β

2
e, (3.15)

we have

2R(�) + C1e × e + C2 e × h + ρ

2
C3 h × h = 0,

2∇(�)h + C3e × h + (�0 + mβ)e × e + (mρ − α)h × h = 0,

2∇(�)e + ρh × h = 0, (3.16)

where

C1 = 1

4
(β + 2mσ)2 + α(�0 + mβ) − m2,

C2 = 2
(
α (β + 2mσ) + m(1 + α2)

)

C3 = (β + 2mσ) + 2mα. (3.17)

Note that in (3.16) and (3.17) β always appears in the combi-
nations �0+mβ and β+2mσ . So effectively β shifts �0 and
promotes σ = ±1 to a fully-fledged continuous parameter
that cannot be scaled away and may take zero value.

Taking the covariant derivative of these equations and
comparing the results one finds that for consistency either

α (β + 2mσ) + m(1 + α2) − ρ(�0 + mβ) = 0, (3.18)

or

h · e = 0. (3.19)

The latter implies that haμe
a
ν is a symmetric tensor as in the

MMG theory [1], for which the first option (3.18) reduces to

1 + ασ = 0 . (3.20)
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For ρ = 0 the equations (3.16) take the form

2R(�) + C1e × e + C2 e × h = 0,

2∇(�)h + C3e × h + (�0 + mβ)e × e − αh × h = 0,

2∇(�)e = 0, (3.21)

Note that now among the five coefficients Ci (i = 1, 2, 3),
� + mβ and α only four are functionally independent and
expressed in terms of four independent parameters �0 +mβ,
α, β + 2mσ and m.

We see that when ρ = 0 the geometry is torsionless and,
in addition, the first equation can be solved for h as in MMG
(provided that C2 = α(β + 2mσ) + m(1 + α2) �= 0 and
hence (3.19) is satisfied), but in our case there is still one
more independent coupling constant β like in [36] [equations
(A5)–(A8) therein].8 Alternatively, if we would like to treat
h as the dreibein, we can arrive at the torsionless condition by
modifying the connection starting from the second equation
in (3.14) and setting �0 = 0.

As in the MMG case [1], solving the first equation in (3.21)
for h we get

hμν = haμe
b
νηab = − 2

C2

(
Sμν + C1

2
gμν

)
,

gμν = eaμe
b
νηab, (3.22)

where Sμν = Rμν − 1
4gμνR is the 3d Schouten tensor. Sub-

stituting this solution into the second equation of (3.21) and
expressing �a through ea by solving the torsionless condi-
tion in (3.21) we get

Cμν +
(
C3

2
+ αC1

C2

)
Gμν

−1

2

(
C3C1 − (�0 + mβ)C2 + αC2

1

C2

)
gμν = 2α

C2
Jμν,

(3.23)

where Gμν is the Einstein tensor, Cμν = 1√−det g
ε

τρ
μ ∇τ Sρν

is the Cotton tensor and Jμν = 1
2 det g ε

ρσ
μ ε

τη
ν Sρτ Sση. The

above equation has the same form as the MMG metric field
Eq. [1] containing three coefficients, which are now com-
posed of four continuous parameters �0 + mβ, α, m and
β + 2mσ .

8 Also, when ρ is non-zero, one can make a shift e → e + ch (with an
appropriate constant c) such that for a certain range of the parameters
the term h × h disappears from the first equation of (3.16). Thus, one
can solve it for h, but the geometry, in general, remains torsionful, due
to the structure of the last two equations in (3.16). So it is not possible,
in general, to solve these equations for � in terms of the dreibein e. Still,
as we will see below, also in the case with ρ �= 0 the theory has a single
propagating bulk degree of freedom and can be studied perturbatively
around an AdS3 vacuum, like the MMG.

4 SL(2, R)× SL(2, R)× SL(2, R) CS theory as a
degenerate case of MMG and HMCSG

Though the main subject of this paper is the massive gravity
theory whose fields satisfy the consistency condition (3.19),
in this section we would like to elucidate the structure of the
model for which the Eq. (3.18) holds, so the model has only
five independent parameters. Then the Eqs. (3.14) or (3.16)
are integrable in the sense that their covariant derivatives
are identically zero without imposing the additional con-
straint (3.19) on the fields. This means that (3.14) become
the Maurer–Cartan equations for the one-forms ea , ha and
ωa which should thus be the components of a Cartan form
associated with a gauge group of rank 9. This group is semi-
simple and should contain the 3d Lorentz group SL(2, R)

as a subgroup. As such, the most reasonable candidate is
SL(2, R)× SL(2, R)× SL(2, R). A Chern–Simons gravity
based on this group was considered in [37–39].

To show that this is indeed so, let us consider a simpler case
in which ρ = 0. Then in Eq. (3.14), in which the remaining
parameters satisfy the condition (3.18), we redefine the fields
ea and ωa as follows

h → 1

α
h + m

α

(
α2 − 1

) (
4�0α3 − m2(1 + ασ)3(3ασ − 1)

)−1/2
e,

ω → ω + 2m(1 + ασ)
(

4�0α3 − m2(1 + ασ)3(3ασ − 1)
)−1/2

e − h,

e → 2α(4�0α3 − m2(1 + ασ)3(3ασ − 1))−1/2e , (4.1)

where we assume, without loss of generality, that the expres-
sion under the square root is positive. Then the Eq. (3.14)
[with ρ = 0 and β = −m

α
(1 + σ α)2] take the following

form

R + 1

2
e × e = 0,

∇e = 0,

∇h − 1

2
h × h + 1

2
e × e = 0. (4.2)

As one can easily check, these are the Maurer–Cartan equa-
tions for the one-form A = ωa Ja + ea Pa + ha Za associated
with the following linear combinations of the three sets T1,
T2 and T3 of the generators of SL1(2, R) × SL2(2, R) ×
SL3(2, R), respectively:

J = T1 + T2 + T3, P = T1 − T2, Z = −T3 . (4.3)

In the general case (i.e. when ρ �= 0) the transformation of
the fields to the form which results in Eq. (4.2) is much more
cumbersome and we will not give it here.

We have thus found that the action (3.10) which produce
the equations of motion (3.14) with the parameters satisfying
the condition (3.18) is similar to that of [39]. Therefore in
this case all the bulk degrees of freedom are pure gauge, as
e.g. in the case of Gravity based on SL(2, R) × SL(2, R).
Here we just have an additional SL(2, R) field. Of course,
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the physical content of the theory depends on the bound-
ary conditions which can be imposed on the components
of A. These boundary conditions determine for us which is
the true dreibein and connection and asymptotic symmetries.
For instance, we can associate them with those belonging to
SL1(2, R) × SL2(2, R) and then the third SL3(2, R) gauge
field completely decouples (see [37–39] for more details).

In summary, the particular choice of the parameters (3.18)
in the HMCSG action does not break the Hietarinta/Maxwell
symmetry but deforms it to SL(2, R)×SL(2, R)×SL(2, R).
This is similar to how the Poincaré symmetry gets deformed
to the (A)dS symmetry by adding the cosmological term
to the Einstein gravity action. On the other hand, since the
Hietarinta/Maxwell algebra is a contraction of the sl(2, R)×
sl(2, R) × sl(2, R) algebra, the HMCS action (2.5) can
be obtained as the contraction limit of the SL(2, R) ×
SL(2, R) × SL(2, R) Chern–Simons action.

5 Hamiltonian analysis

We shall now sketch, following [1–3], the Hamiltonian anal-
ysis of the system described by the action (3.1) and show that
it has one propagating degree of freedom as in the particular
case of the MMG model.

Let us assume that the manifold M3 on which the theory
is defined can be presented as the product R × �, where �

is a two-dimensional manifold with boundary parametrized
by the coordinates xi , i = 1, 2, while R defines the temporal
direction parametrized by x0. Upon this splitting the general
Chern–Simons-like action (3.3) takes the following form

S =
∫
R

dx0

∫
�

d2xεi j
[
grs ȧ

r
i · asj + ar0 ·

(
grs∂i a

s
j

+1

2
frst a

s
i × atj

)]
, (5.1)

where dot denotes the derivative with respect to x0 and ε0i j ≡
εi j .

From the form of this action we see that the canonical
momenta piar associated to aari are constrained to be linear
combinations of the fields themselves

piar = εi j grsa
as
j .

Upon solving these constraints, one gets the equal-time Pois-
son (actually Dirac) brackets for the fields aari

{aari (x), abqj (y)} = εi jη
abgrqδ2(x − y) ,

where grq is the inverse of grq .
From the structure of (5.1) we also see that as0 plays the

role of a Lagrange multiplier giving rise to 9 constraints

ϕa
r = εi j

(
grs∂i a

s
j + 1

2
frst a

s
i × atj

)a
.

The corresponding constraint functional for arbitrary fields
χr
a with well defined variation has the following form

ϕ[χ] =
∫

�

d2xχr · εi j
(
grs∂i a

s
j + 1

2
frst a

s
i × atj

)
+

∫
∂�

dxiχr · ar .
(5.2)

The Poisson brackets of these constraints have the following
structure

{ϕ[χ ], ϕ[ξ ]} = ϕ[[χ, ξ ]] +
∫

�

d2xχr
a ξ

s
bPab

rs

−
∫

∂�

dφχr · (grs∂φξ s + frst a
s
φ × ξ t ),

(5.3)

with [χ, ξ ]t = frstχr × ξ s and

Pab
rs = f tq[r fs]ptηab�pq + 2 f tr [s fq]pt V ab,pq ,

V pq
ab = εi j a p

iaa
q
jb, �pq = V pq

ab ηab. (5.4)

The integration variable φ parametrises a (compact) bound-
ary ∂�.

The number of first- and second-class constraints for the
model under consideration can be read off from the rank
of the matrix P , Eq. (5.4), in which one should insert the
explicit expressions (3.12) for the tensors grs and frqs . Note
that in (5.4) the indices are raised with the matrix grs If we
assume that (3.19) holds, we have an additional (secondary)
constraint

�eh = 0. (5.5)

Taking this into account, a straightforward computation
shows that the first term in (5.4) vanishes and P becomes
degenerate

P =
(
αβ − ρ(�0 + mβ) + m(1 + ασ)2

) ⎛
⎝−V hh

ab V he
ab 0

V eh
ab −V ee

ab 0
0 0 0

⎞
⎠ . (5.6)

Now one should also compute the Poisson brackets of the
constraint (5.5) with ϕ(χ). Using a general formula of [2]
one gets

{�eh, ϕ[χ ]} = εi j
(
∇iχ

e · h j − ∇iχ
h · e j

)
+ εi j ei × h j

·
(
mρχh + mσ(1 + ασ)χe

)

−εi j hi × h j ·
(
αχe + ρχh

)
+ εi j ei × e j

·
(
(�0 + mβ + mσ(1 + ασ))χe + βχh

)
(5.7)

with

∇iχ = ∂iχ + ωi × χ. (5.8)

As in the MMG [1] we thus have the (10 × 10) matrix
of the Poisson brackets of 10 constraints, i.e. ϕa

r and �eh ,
which has rank four. This implies that, if the coefficient in
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front of the matrix (5.6) is non-zero, system has 6 first-class
and 4 second class constraints which reduce the number of the
phase-space physical degrees of freedom in aari to 2, i.e the
system has a single bulk degree of freedom in the Lagrangian
formulation.

When the coefficient in (5.6) is zero, which is equivalent
to the choice (3.18), the constraint (5.5) is absent and one
has 9 first-class constraints ϕa

r which reduce the number of
bulk physical degrees of freedom to zero. In this case, as
we discussed in Sect. 4, the considered system reduces to
the Chern–Simons theory with the gauge group SL(2, R) ×
SL(2, R) × SL(2, R).

6 AdS3 background and the central charges of the
asymptotic symmetry algebra

We shall now study properties of the HMCSG theory for field
configurations whose geometry is asymptotically AdS3 and
compute the corresponding centrally extended asymptotic
symmetry algebra which underlies a dual CFT2.

6.1 AdS3 solution of the HMCSG field equations

For the AdS3 background to satisfy the field Eq. (3.16) we
take the following ansatz for the vevs of e, h and �

〈e〉 := ē , 〈h〉 := mCē , 〈�〉 := �̄ − ρm2C2

2
ē ,

(6.1)

where ē and �̄ are AdS3 dreibein and connection, and C is
a real dimensionless parameter.

Substituting this ansatz into Eq. (3.16) we find that, pro-
vided that C satisfies the cubic equation

ρm3C3 − (mρ − α)m2C2 − (β + 2mσ(1 + ασ))mC

−(�0 + mβ) = 0, (6.2)

which always has at least one real root, Eq. (3.16) reduce to
those describing the AdS3 space

R̄(�̄) + l−2

2
ē × ē = 0, ∇̄ ē = 0, (6.3)

where

l−2 ≡ −� = ρ2m4C4

4
+ ρm2C2

2
(β + 2mσ(1 + ασ))

+2mC(βα + m(1 + ασ)2)

+
(

β2

4
+ �0α + mβσ(1 + ασ)

)

= 1

4

(
ρm2C2 + β + 2mσ(1 + ασ)

)2

+2mC(βα + m(1 + ασ)2)

+�0α − m2(1 + ασ)2 . (6.4)

l−2 is assumed to be positive so that the cosmological con-
stant � is negative.9

6.2 Asymptotic symmetries and central charges

In [48] Brown and Henneaux studied asymptotic symmetry
properties of the pure 3d GR with AdS3 boundary conditions.
The local 3d Lorentz symmetry and 3d diffeomorphisms of
GR give rise to six first-class constraints generating these
symmetries. These can be split into two mutually commuting
sets of generators corresponding to the SL(2, R)× SL(2, R)

group of the Chern–Simons formulation of the theory. When
evaluated on an asymptotically AdS3 space, each set was
shown to generate the Virasoro algebra with a nontrivial
central extension. This analysis was generalized to 3D mas-
sive theories of gravity in [1,4,49–51] and to the Maxwell–
Chern–Simons gravity in [52].

We will now carry out the computation of the centrally
extended asymptotic symmetry algebra for the HMCSG the-
ory, following closely the steps explained in detail in [49] and
[1]. Consider the following combination of the constraints
(5.2)

L±[χ ] = ϕe[χμeμ] + ϕh[χμhμ] + a±ϕω[χμeμ], (6.5)

in which the parameters in the brackets are field-dependent
and χμ(x) are associated with the parameter of 3d diffeo-
morphisms.

For convenience we have defined ϕω for the spin con-
nection ω in (3.10). The constant parameters a± should be
properly tuned in order to make the Poisson bracket of L+
and L− vanish. It can be shown that (6.5) are a combination
of the first-class constraints, corresponding to the local 3d
Lorentz transformations and diffeomorphisms [1,49]. Using
the general formula (5.3) one finds that for the AdS3 solution
(6.1) the Poisson bracket of L+ and L− reduces to

{L+[χ ], L−[η]} = ϕω[[χ, η]]
(
a+a− + 2m2C(1 + ασ)

+mβσ + m3C2ρσ
)

+ (ϕe[[χ, η]] + mCϕh[[χ, η]]) (a+ + a− + 2αmC

+β + m2C2ρ
)

. (6.6)

9 A more general class of vacuum solutions in MMG including those
with a positive cosmological constant were considered e.g in [40–47],
in particular at a specific point called “merger point”. The merger point
is a point in the space of the parameters of the theory at which for all
values of C defined by the Eq. (6.2) the cosmological constant � (6.4)
has a unique value. It would be of interest to study a similar class of
vacuum solutions also in the HMCSG context.
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Note that on the AdS3 solution (6.1) the second term in (5.3)
vanishes. Also the boundary contribution [the last term in
(5.3)] vanishes. To see this, one should take into account the
linear redefinition which relates � with ω (3.15), the vacuum
value of the � spin connection (6.1), and the corresponding
AdS3 asymptotic symmetry parameters χ and η (see [49] for
details). Requiring that the Poisson bracket (6.6) vanishes, we
find that the parameters a± should have the following values

a± = ±1

l
− αmC − β

2
− C2m2ρ

2
, (6.7)

where l is the radius of the AdS3 background defined in (6.4).
Using the general expression (5.3) once again, one also finds

{L±[χ ], L±[η]} = ±2

l
L±[[χ, η]]

±2

l

(
σ ± 1

ml
+ αC + β

2m
+ mρC2

2

)∫
∂�

dφχ

·
(

∂φη + �̄φ × η ± 1

l
ēφ × η

)
, (6.8)

where in order to get the boundary term expressed via the
AdS3 spin connection �̄, we made use of (3.15) and (6.1).
After expanding the asymptotic symmetry parameters η and
χ in Fourier modes, the commutation relations above repre-
sent two copies of the Virasoro algebra with central charges

c± = 3l

2G

(
± 1

ml
+ σ + β

2m
+ αC + mρC2

2

)
, (6.9)

where to be in agreement with the Brown–Henneaux cen-
tral charge expression [48] we have included the Newton’s
constant by restoring 1/16πG in the action (3.10).

For the boundary CFT associated with (6.8) to be unitary
both central charges should be positive, which implies

σ + β

2m
+ αC + mρC2

2
− 1

|ml| > 0 . (6.10)

For certain choices of the parameters α, β, ρ and σ = ±1,
the above expressions reduce to those of pure GR [48], TMG
[49] and MMG [1].

7 Linearized theory around an AdS3 background

We shall now study, following [1,53], the conditions on the
parameters of our model for which the propagating mode is
neither a tachyon nor a ghost. To this end let us consider
perturbations around the AdS3 vacuum solution which are
convenient to take as follows

e = ē + k, � = �̄ − ρm2C2

2
(ē + k) − mCρ p + v,

h = mC(ē + k) + p, (7.1)

where k, v and p denote infinitesimal excitations of the fields.
Then, using the relation (6.2) and the definition (6.4) of l−2

we get the linearized equations for (3.16) as

∇̄v + l−2 ē × k + ē × p
(
βα + m(1 + ασ)2 − ρ(�0 + mβ)

)
= 0,

∇̄ p + M ē × p = 0,

∇̄k + ē × v = 0, (7.2)

where 10

M = 1

2

(
β + 2mσ(1+ασ)+2mC(mρ − α) − 3m2C2ρ

)
.

(7.3)

The integrability condition (3.19) for the above equations
reduces to

ē · p = 0.

Making the redefinition (assuming that |�M | �= 1)

f± = ±l−1k + βα + m(1 + ασ)2 − ρ(�0 + mβ)(±l−1 − M
) p + v,

(7.4)

one diagonalizes two of the Eq. (7.2) and gets

∇̄ f± ± l−1ē × f± = 0,

∇̄ p + Mē × p = 0. (7.5)

The first two equations in (7.5) describe the linearized 3d
Einstein gravity with a cosmological constant and the third
equation describes the propagation of the spin-2 mode p with
the mass M given by

M2 = M2 − l−2.

In accordance with the general Hamiltonian analysis we thus
see that the HMCSG model has exactly the same field content
as the MMG. The no-tachyon condition is [1]

M2 − l−2 > 0. (7.6)

Let us now find the form of the action (3.10) up to the second
order in perturbations. Upon taking into account the form of
the transformation (3.15), the excitations (7.1) and the linear
redefinition (7.4) one gets

S2 =
∫
M3

λ+
(
f+∇̄ f+ + l−1ē · f+ × f+

)

+λ−
(
f−∇̄ f− − l−1ē · f− × f−

)

+
∫
M3

1

m(1 − 2C)

(
p∇̄ p + Mē · p × p

)
, (7.7)

10 Note that in the MMG case (i.e. when β = ρ = 0) the value M = 0
defines the merger point [40] for the values of the cosmological constant.
This, however, is not the case anymore for ρ �= 0.
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where

λ± = 1

2m
∓ l

4m

(
2mσ + β + 2mCα + m2C2ρ

)
. (7.8)

The first two terms are two linearized SL(2, R) Chern–
Simons terms. Comparing (6.9) with (7.8) we see that c± =
±3λ∓/G.

The product of λ+ and λ− is

λ+λ− = − l2

4
(1 − 2C). (7.9)

If the product is negative, the first two terms describe the
linearized pure GR as the difference of two SL(2, R) Chern–
Simons terms. In the general case, however, the product may
also have the positive sign, then the resulting theory can be
interpreted as a kind of “exotic” GR with additional terms.11

However, −λ+ and λ− (7.8) are proportional to the central
charges c+ and c− (6.9) in the asymptotic algebra and if
we require both central charges to be positive (6.10), then
the product of λ+ and λ− (7.9) must be negative and hence
(1 − 2C) > 0. Note that at the chiral point of the theory, at
which one of the boundary central charges vanishes, 1−2C =
0 and Eq. (7.7) becomes singular.

The last term in (7.7) describes the propagating massive
spin-2 mode. The no-ghost condition implies (see [1] for
details)

(1 − 2C)mM < 0. (7.10)

We shall now consider in more detail three particular cases
in which the values of the parameters differ from the original
MMG.

7.1 C = 0

In this case the Eq. (6.2) reduces to the following relation

�0 + mβ = 0 ⇒ �0 = −mβ, (7.11)

while (6.4) and (7.3) respectively simplify to

l−2 = 1

4
(β2 + 4mβσ) = m2

(
β

2m
+ σ

)2

− m2 > 0 ,

(7.12)

and

M = m

(
β

2m
+ σ + α

)
. (7.13)

11 Note that the CS action for GR corresponds to the SO(2, 2) bilinear
form 〈Ja, Pa〉 = 〈Ja+, Ja+〉−〈Ja−, Ja−〉 = ηab, where Ja± are two copies
of SO(1, 2) generators, related to that of SO(2, 2) as Ja = Ja+ +
Ja− and Pa = Ja+ − Ja−. One can use the additional bilinear form of
the SO(2, 2) algebra given by 〈Ja, Ja〉 = 〈Pa, Pa〉 = c ηab with a
constant c to extend the GR action by the topological and torsion terms
c(ωdω + 1

3 ω3) + ce∇e. At the linearized level the sign of the product
(7.9) depends on the value of the constant parameter c.

From (7.12) we have

β

2m
+ σ > 1 or

β

2m
+ σ < −1 . (7.14)

The no-tachyon condition (7.6) takes the form

2α

(
β

2m
+ σ

)
+ 1 + α2 > 0. (7.15)

In the action (7.7) we now have λ+λ− = −l2/4 < 0.
Hence, the first two terms are the difference of two linearized
SL(2, R) Chern–Simons terms describing the linearized 3d
Einstein gravity. The last term describes the propagating mas-
sive spin-2 mode whose no-ghost condition (7.10) requires

mM < 0 ⇒ β

2m
+ σ + α < 0. (7.16)

The positive central charge condition in the case C = 0 is

σ + β

2m
− 1

|ml| > 0. (7.17)

Now we would like to analyze consequences of the con-
ditions (7.14)–(7.17). From (7.17) we see that σ + β

2m > 0
which is compatible with the first choice in (7.14). Then
(7.16) and (7.15) require that

α < −1,

(
α + β

2m
+ σ

)2

>

(
β

2m
+ σ

)2

− 1 . (7.18)

So finally, the range of the parameters which satisfies the
conditions (7.14)–(7.17) is

β

2m
+ σ > 1, α < −

√(
β

2m
+ σ

)2

− 1 −
(

β

2m
+ σ

)
,

�0 = −mβ, (7.19)

and ρ is arbitrary.

7.2 ρ = 0

In this case we have

αm2C2 − (β + 2mσ(1 + ασ))mC − (�0 + mβ) = 0,

l−2 = 2mC(αβ + m(1 + ασ)2) +
(

β2

4
+ α�0 + mβσ(1 + ασ)

)
,

M = β

2
+ mσ(1 + ασ) − mαC. (7.20)

The solution for C is (assuming α �= 0)

C = β + 2mσ(1 + ασ)

2mα

∓
√

�0 + mβ

m2α
+ (β + 2mσ(1 + ασ))2

4m2α2 , (7.21)

so

M = ±mα

√
�0 + mβ

m2α
+ (β + 2mσ(1 + ασ))2

4m2α2 . (7.22)
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and

l−2 = −m2(1 − 2C)

(
αβ

m
+ (1 + ασ)2

)
+ M2 > 0 ,

The no-tachyon condition is

M2 − l−2 = m2(1 − 2C)

(
αβ

m
+ (1 + ασ)2

)
> 0, (7.23)

and the no-ghost condition is as in (7.10). Note that C is real
iff M2 ≥ 0. Hence, the no-tachyon condition also guarantees
C to be real. For M = 0, the C equation (7.20) has a double
root, but this case is un-physical since the no-tachyon con-
dition is violated. Also note that unlike the original MMG,
for which β = 0, the no-tachyon condition does not in gen-
eral imply (1 − 2C) > 0 which is, however, required by the
positivity of the asymptotic central charges.

Collecting the positive central charge, the no-tachyon and
the no-ghost conditions together we have

αC + σ + β

2m
− 1

|ml| > 0 ⇒ 1 − 2C > 0;
αβ

m
+ (1 + ασ)2 > 0, mM < 0. (7.24)

The positivity of l−2 in (7.23) also requires that

0 < 1 − 2C <
M2

m2
(

αβ
m + (1 + ασ)2

) .

Due to the definition of M in (7.20), the condition mM < 0
is the same as

α(C − 1) − β

2m
− σ > 0, (7.25)

which when summed up with the first condition in (7.24)
gives

α(1 − 2C) + 1

|ml| < 0 ⇒ α < − 1

|ml|(1 − 2C)
< 0 .

From (7.25) and the fact that α is negative it follows, that in
the solution (7.21) we should choose the minus sign in front
of the square root and plus one in (7.22).

We have thus identified a range of the parameters compat-
ible with the conditions (7.24). One can proceed further with
the analysis and specify this range in more detail. Namely,
from the third condition in (7.24), as in the case C = 0, it
also follows that(

β

2m
+ σ + α

)2

>

(
β

2m
+ σ

)2

− 1. (7.26)

• Iff | β
2m + σ | ≥ 1, we have

α < −
√(

β

2m
+ σ

)2

− 1 −
(

β

2m
+ σ

)
or

α >

√(
β

2m
+ σ

)2

− 1 −
(

β

2m
+ σ

)
.

These are compatible with α < 0 iff β
2m + σ ≥ 1.

• Another brunch of (7.26) is

−1 <
β

2m
+ σ < 1, −1 < α < 0 ,

for which a particularly simple case is β
2m + σ = 0.

• One more simple case is �0 = −mβ for which either
C = 0 and we are back to Sect. 7.1, or αC =
2

(
β

2m + σ + α
)

and hence, due to (7.25) and (7.23),

β

2m
+ σ + α > 0, −1 < α < 0.

Let us now consider the case in which α = 0 (but β �= 0).
Then we have

C = − �0 + mβ

m(β + 2mσ)
, M = β

2
+ mσ ,

�−2 = −2m(�0 + mβ)

β + 2mσ
+ β2

4
+ mσβ . (7.27)

So, the no-tachyon condition is

m2 + 2m(�0 + mβ)

β + 2mσ
> 0 , (7.28)

and the no-ghost condition is
(
m + 2(�0 + mβ)

β + 2mσ

)
(β + 2mσ) < 0 . (7.29)

From (7.28) and (7.29) we see that

β

2m
+ σ < 0 . (7.30)

Note that if β = 0, the model under consideration (3.10)
is TMG [34,35] for which the above no-ghost condition
requires σ = −1.

We will now show that also when β �= 0, the model with
α = ρ = 0 is equivalent to the TMG [34,35]. Indeed, upon
making the redefinition of the connection (3.15) in the action
(3.10) with α = ρ = 0, we get

S = 1

2

∫
M3

(
−2mσ + β

m
ea Ra + 1

m
(�ad�a

+1

3
εabc�

a�b�c)

)

+1

6

∫
M3

(
�0 − β3

8m

)
εabc eaebec

+1

2

∫
M3

(
2h + β2 + 4mβσ

4m
ea

)
∇ea . (7.31)
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This coincides with the first-order action for the topolog-
ical massive gravity upon the redefinition h̃a = ha +
1
2

(
β2

4m + βσ
)
ea and appropriate rescalings of ea and h̃a .

7.3 α̃ = β̃ = ρ̃ = 0

Let us now consider the case in which in the action (3.1) we
have α̃ = β̃ = ρ̃ = 0. This is the situation in which the
spontaneous breaking of the Hietarinta/Maxwell symmetry
occurs only due to the contribution associated with the classi-
cal lower-derivative Volokov–Akulov-like Goldstone (“cos-
mological”) term (2.15). In this case the parameters (3.11) in
the MMG-like action (3.10) are

β = −�0

m
, α = �0

m2 − σ, ρ = −�0 + m2σ

m3 .

(7.32)

Hence, similar to the case of Sect. 7.1 we have �0 +mβ = 0
but with particular expressions for α and ρ in terms of �0

and m. Then the Eq. (6.2) for C reduces to

C
[
(�0 + m2σ)C2 − 2�0C + �0

]
= 0. (7.33)

For the solution C = 0 of this equation from (6.4) and (7.3)
we get

�−2 = �0
2

4m2 − �0σ, M = �0

2m
.

We see that to satisfy the no-tachyon (7.6) and the no-ghost
(7.10) conditions together with the requirement �−2 > 0 we
need σ = −1 and �0 < −4m2 which are in agreement with
(7.19). Note that if �0 = 0, then C = 0 and hence this
possibility is ruled out by the last inequality. Actually, in this
case the background is flat not AdS, while the model reduces
to the Chern–Simons theory with the unbroken Hietarinta
(2.8) or Maxwell symmetry (2.9).

When ρ = 0, i.e. �0 = −m2σ , then from (7.33) we
see that either C = 0 or C = 1/2. In the both cases the
no-tachyon condition (7.6) is not satisfied.

Finally, let us consider the case in which C �= 0, �0 �= 0
and ρ �= 0. Then from (7.33) we get

C = �0 ± √−�0σm2

�0 + m2σ
(7.34)

So the existence of the real solutions (associated with AdS3

vacua) requires that

�0σ < 0 . (7.35)

In this case from (6.4) and (7.3) we find

�−2 = m2C2, M = �0(C − 1)

m
.

Note that C = 1 is not a solution of (7.33). The no-tachyon
condition (7.6) becomes

−(�0σ + m2)C2 > 0 ⇒ �0σ < −m2 ,

and the no-ghost condition (7.10) using (7.33) implies

(�0 + m2σ)(1 − C) < 0 .

Combining the last two inequalities we see

σ(1 − C) > 0 , (7.36)

which shows that we should take the plus sign in the solution
of C in (7.34).

From (7.9) the positivity of the central charges implies
1 − 2C > 0 and since −�0σ > 0, the no-ghost condition
takes the form

�0(C − 1) < 0 ⇒ σ(−�0σ)(1 − C) < 0 ⇒ σ(1 − C) < 0 ,

which is incompatible with (7.36). Therefore, for the choice
of the parameters considered in this Subsection the no-
ghost and no-tachyon conditions, and the positivity of central
charges are satisfied only for C = 0.

8 Conclusion

In this paper we have shown that both the TMG [34,35] and
the MMG [1] can be treated as spontaneously broken phases
of the Chern–Simons theory based on the Hietarinta/Maxwell
algebra. In general, the spontaneous symmetry breaking in
the HMCSG theory leads to a more general class of minimal
massive gravities propagating a single massive spin-2 mode
and having two more coupling parameters with respect to the
MMG. For a certain range of the parameters these models
have neither tachyons nor ghosts and their asymptotic alge-
bra has positive central charges thus giving rise to unitary
boundary CFTs. A further more detailed analysis of these
models in the AdS/CFT context might be of interest.

As a generalization of the results of this paper, it would
be interesting to identify the group-theoretical structure of
Chern–Simons theories whose symmetry breaking gives rise
e.g. to “New”, “General” [54,55], “Zwei-Dreibein” [51,56]
and “Exotic” Massive Gravities [36,57,58], for more ref-
erences see [4]. And of course the most challenging issue
is to find an Englert–Brout–Higgs–Guralnik–Hagen–Kibble
mechanism which might lead to such a symmetry breaking.

Another interesting direction is to look for a relation of
the HMCSG to a “simple” theory of 3d massive gravity con-
structed and studied in [59,60]. The simplicity of this model
is due to the fact that it contains only two one-form fields,
a dreibein and a would-be Lorentz spin connection, but the
local Lorentz symmetry in this model is broken. For a cer-
tain choice of the parameters in the letter its field equations
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reproduce those of the MMG. A question is whether for a
more general range of the parameters the simple massive
gravity may also reproduce the equations of motion of the
HMCSG theory constructed in this paper [upon solving for
ha in (3.16)].

It might also be of interest to consider supersymmetric
and higher-spin extensions of these models elaborating on
the constructions obtained e.g. in [27–30,38,61–64].

Regarding supersymmetric generalizations, let us make
the following final remark. The simplest extension of the
Maxwell algebra (1.2) by a two-component Majorana spinor
generator Qα [65] is such that [Qα, Pa] = [Qα, Za] = 0
and {Qα, Qβ} = 2γ a

αβ Za , i.e. the anti-commutator of Q
can only close on Z due to Jacobi identities. Hence, this
simplest super-Maxwell algebra is not an extension of the
conventional N = 1, D = 3 super-Poincaré algebra. On the
contrary, the similar supersymmetric extension of the Hietar-
inta algebra (1.1) is the extension of the simple 3d super-
Poincaré algebra since in this case the Jacobi identities allow
{Qα, Qβ} = 2γ a

αβ Pa . This gives one more evidence to the
fact that the physical models based on the two versions of
the same algebra are a priori different.
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