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Abstract Spin oscillations of neutrinos, gravitationally
scattered off a black hole (BH), are studied. The cases of
nonrotating and rotating BHs are analyzed. We derive the
analytic expressions for the transition and survival probabil-
ities of spin oscillations when neutrinos interact with these
gravitational backgrounds. The obtained transition probabil-
ities depend on the impact parameter, as well as the neutrino
energy and the particle mass. We find that there is a possibil-
ity of spin oscillations of ultrarelativistic neutrinos scatter-
ing off a rotating BH. Then, considering the neutrino scat-
tering off BH surrounded by background matter, we derive
the effective Schrödinger equation for spin oscillations. The
numerical solution of this equation is obtained in the case
of a supermassive BH with a realistic accretion disk. Spin
effects turn out to be negligible in the neutrino scattering in
the Schwarzschild metric. In the Kerr metric, we find that the
observed neutrino fluxes can be reduced almost 10% because
of spin oscillations when ultrarelativistic neutrinos experi-
ence gravitational scattering. The neutrino interaction with
an accretion disk results in the additional modification of the
intensities of outgoing neutrino fluxes. We consider the appli-
cations of the obtained results for the neutrino astronomy.

1 Introduction

The recent successful studies of oscillations of accelerator [1]
and atmospheric [2] neutrinos demonstrate that the masses
of these particles are nonzero and there is a mixing between
different neutrino flavors. This fact is the direct indication
to the physics beyond the standard model. One can study
transitions between neutrinos belonging to different flavors,
or neutrino flavor oscillations. This type of oscillations is the
most plausible solution of the solar neutrino problem [3].

However, in the present work, we shall concentrate on neu-
trino spin oscillations, which were first proposed in Ref. [4].
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Neutrinos are left polarized particles in the standard model.
If such a neutrino changes its polarization under the action
of some external backgrounds, it cannot be observed since
right neutrinos are sterile particles. This process leads to the
suppresion of the emitted flux of left neutrinos. The study
of neutrino spin and spin-flavor oscillations in various exter-
nal fields can provide a valuable information about neutrino
magnetic moments [5].

The neutrino interactions with external fields, e.g., the
electroweak interaction with background matter [6], are
known to influence the process of neutrino oscillations. The
neutrino interaction with gravitational fields of astrophys-
ical objects, despite of its weakness, can also change the
dynamics of neutrino oscillations. Earlier, we examined qua-
siclassically neutrino spin oscillations under the influence of
external fields in curved spacetime in Refs. [7–9], where both
static metrics and time dependent backgrounds, like a gravi-
tational wave, were studied. The quantum description of the
fermion spin evolution in curved spacetime was developed
in Ref. [10].

We should make a remark on the studies of neutrino spin
oscillations in gravitational fields in Refs. [7,8,11,12]. In
these works, neutrinos were supposed to be gravitationally
captured by a massive object, like a black hole (BH). In this
case, the effect of spin oscillations is not observable since
a neutrino detector is typically outside the BH region. Thus
one has to consider neutrino spin oscillations in the neutrino
gravitational scattering, when one can potentially measure
the helicities of both incoming and outgoing particles. Note
that flavor oscillations of neutrinos gravitationally scattered
off BH were studied in Refs. [13,14].

Before the recent observation of the event horizon silhou-
ette of a supermassive BH (SMBH) [15], which is the main
motivation for the present work, all the experimental mani-
festations of the general relativity, including the direct detec-
tion of gravitational waves [16], corresponded to the weak
field limit. The bright halo around this silhouette is formed
by photons emitted by the accretion disk around SMBH. The
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size of the event horizon silhouette, computed in Ref. [17],
turns out to be in the agreement with the prediction of the
general relativity.

However, besides photons, a significant flux of neutrinos is
expected to be emitted by dense and hot matter of an accretion
disk. These neutrinos were found in Ref. [18] to modify the r -
process nucleosynthesis in the vicinity of BH surrounded by
an accretion disk. The spin of emitted neutrinos can precess
in the gravitational field of a central BH. In this work, we
shall examine how a strong gravitational field of BH and the
neutrino interaction with an accretion disk can cause their
helicity change.

The neutrino gravitational scattering was studied recently
[19], in order to compute the size and the shape of the BH
shadow formed by these particles [20]. In our work, we shall
study neutrino spin oscillations in the gravitational scatter-
ing. This process is expected to suppress the flux of particles
measured with a terrestrial neutrino telescope.

It was found in Ref. [21] that photons, which form a bright
halo around the event horizon silhouette of BH, interact with
both its gravitational field and plasma which surrounds BH.
This interaction with plasma leads to the modification of the
size and the shape of the BH shadow. In the present work, the
role of the neutrino interaction with background matter, e.g.,
with an accretion disk, for the detected flux of gravitationally
scattered neutrinos is examined.

In this our work, we continue our studies of neutrino spin
oscillations in Refs. [7–9]. We start in Sect. 2 with the analysis
of the neutrino spin evolution when a particle gravitationally
scatters off BH. We find the general expressions for the tran-
sition and survival probabilities. Then, we apply our results
for the description of spin oscillations in the neutrino scat-
tering off a nonrotating BH in Sect. 2.1 and a rotating one in
Sect. 2.2. In Sect. 3, we formulate the effective Schrödinger
equation for neutrino spin oscillations in the scattering off
BH surrounded by background matter. We study astrophys-
ical applications in Sect. 4. In particular, we consider the
effect of spin oscillations on the measured neutrino fluxes
when particles scatter off SMBH with a realistic accretion
disk. The situations of nonrotating and rotating BHs are stud-
ied. Finally, in Sect. 5, we discuss our results. We remind
how a scalar particle moves in the Schwarzschild metric in
Appendix A and in Kerr metric in Appendix B.

2 Neutrino spin evolution in gravitational scattering

In this section, we study how the spin of a neutrino evolves
when a particle scatters off BH. First, we derive the gen-
eral expressions for the transition and survival probabili-
ties. Then, we apply this result for spin oscillations in the
Schwarzschild and Kerr metrics. In case of the Kerr metric,
we study the neutrino motion in the equatorial plane only. In

these situations, one can analytically solve the spin evolution
equation and obtain the probabilities for spin oscillations in
quadratures.

In Refs. [7,8], we found that the neutrino invariant spin
ζ , defined in a locally Minkowskian frame, evolves in an
external gravitational field as

dζ

dt
= 2(ζ × �g), (1)

where t is the time in world coordinates and �g is the vector
accounting for the gravity contribution. If a neutrino interacts
with a Schwarzschild or Kerr BH, �g in Eq. (1) has only one
nonzero component [7,8], �g = (0,�2, 0).

We are interested in neutrino spin oscillations, i.e. in the
change of the neutrino helicity, h = (ζu)/|u|, where u is
the spatial part of the neutrino four velocity in the locally
Minkowskian frame. Therefore, besides the study of the neu-
trino spin in Eq. (1), we should account for the evolution of
u.

In principle, we can avoid simultaneous tracking of both
ζ and u. However, we should fix the initial and final neutrino
polarizations. As we shall see in Sects. 2.1 and 2.2, at r → ∞,

u(t → ±∞) = u±∞ =
(
± [

E2 − m2
]1/2

/m, 0, 0
)

, where

r is the distance between the BH center and a neutrino, E is
the neutrino energy, which is the integral of motion in the
considered metrics, and m is the neutrino mass. Thus the
asymptotic neutrino motion happens along the first axis in
the locally Minkowskian frame. In this frame, an incoming
neutrino (t → −∞) propagates oppositely the first axis. An
outgoing particle (t → +∞) moves along this axis.

Since only �2 �= 0, the nonzero neutrino spin components
are ζ1,3 �= 0, and ζ2 = 0. It is convenient to represent

ζ1 = cos α, ζ3 = sin α, (2)

where α is the angle between ζ and the positive direction of
the first axis in the locally Minkowskian frame. Now we have
to specify the initial condition for Eq. (1). We suppose that,
initially, at r → ∞, an incoming neutrino is left polarized,
i.e. the helicity is negative, h−∞ = (ζ−∞u−∞)/|u−∞| =
− 1. Accounting for the expression for u−∞ above, we get
that ζ−∞1 = 1 and ζ−∞3 = 0, or α−∞ = 0 in Eq. (2).

The helicity of an outgoing neutrino has the form, h+∞ =(
ζ+∞u+∞

)
/|u+∞|, where ζ+∞ = (cos α+∞, 0, sin α+∞)

and u+∞ is given above. Using Eq. (2), we get that h+∞ =
cos α+∞. The transition PLR and survival PLL probabilities
for neutrino spin oscillations are

PLR,LL = 1

2
(1 ± cos α+∞) , (3)

where the upper sign stays for PLR and the lower one for
PLL.
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2.1 Schwarzschild metric

First, we study the neutrino motion in the field of a nonrotat-
ing BH. Using the spherical coordinates (r, θ, φ), the interval
in this case has the form [22, p. 284],

dτ 2 =
(

1 − rg
r

)
dt2 −

(
1 − rg

r

)−1
dr2 − r2 (

dθ2 + sin2 θdφ2) ,

(4)

where rg = 2M is the gravitational radius, and M is the BH
mass. Since the Schwarzschild metric in Eq. (4) is spheri-
cally symmetric, we can take that a neutrino moves in the
equatorial plane with θ = π/2, i.e. dθ = 0.

The nonzero component of �g in the Schwarzschild met-
ric has the form [7],

�2 = L

2Er2

×
(

1 − rg
r

) (
−

√
1 − rg

r
+ Ut

1 +Ut
√

1 − rg/r

rg
2r

)
,

(5)

where L is the conserved angular momentum of a neutrino. In
Eq. (5), Ut = dt/dτ = E(1 − rg/r)−1/m is the component
of the four velocity Uμ in world coordinates.

The expression for u in the Schwarzschild metric was also
obtained in Ref. [7],

u =
(

± 1

m

[
E2 − m2

(
1 − rg

r

) (
1 + L2

m2r2

)]1/2

, 0,
L

mr

)
,

(6)

where the signs ± stay for outgoing and incoming neutrinos
respectively [see Eq. (33)]. Using Eq. (6) at r → ∞, we
obtain the expression for u±∞ proposed above.

Then we use Eqs. (1), (5), and (33) to determine the evo-
lution of α in Eq. (2). It obeys the equation,

dα

dr
= ± L

mr2

E
m

(
3rg
2r − 1

)
− (

1 − rg
r

)3/2

E
m + (

1 − rg
r

)1/2

×
[
E2

m2 −
(

1 − rg
r

) (
1 + L2

m2r2

)]−1/2

, (7)

where the signs ± stay for outgoing and incoming neutrinos.
Now, accounting for the initial condition α−∞ = 0 and the
fact that α+∞ is twice the angle corresponding to the minimal
distance between a neutrino and BH, we get that α+∞ reads,

α+∞ =
∫ ∞

xm
FS(x)dx,

FS(x) = y

x
√

(x − 1)RS(x)

× (3 − 2x)
√
x − 2γ −1(x − 1)3/2

√
x + γ −1

√
x − 1

, (8)

where y = b/rg , b = L/E
√

1 − γ −2 is the impact parame-
ter, γ = E/m in the Lorentz factor at the infinity, and xm is
the maximal root of the equation

RS(x) = x3 + γ −2

1 − γ −2 x
2 − y2(x − 1) = 0. (9)

Note that y > y0, where

y0 = 1

2
√

2(1 − γ −2)

×
[

9(3 +
√

9 − 8γ −2) − 4γ −2(9 + 2
√

9 − 8γ −2) + 8γ −4
]1/2

.

(10)

for a neutrino not to fall to BH (see Appendix A). For ultra-
relativistic neutrinos with γ � 1, we obtain the well known
result, y0 = 3

√
3/2.

First, let us analyze α+∞ in the limit γ � 1. Equation (8)
takes the form,

α+∞ = y
∫ ∞

xm

dx(3 − 2x)

x
√

(x − 1)RS(x)
, (11)

where RS(x) → x3 − y2(x−1). Basing on Eq. (11), one can
argue that α+∞ = −π for any 3

√
3/2 ≤ y < ∞. Hence,

using Eq. (3), we get that PLR = (1 + cos α+∞)/2 = 0 at
E � m for the arrbirtary impact parameter. It means that
there is no spin flip of ultrarelativistic neutrinos when they
scatter off a Schwarzschild BH. This fact is in agreement
with the results of Ref. [23].

Now we can correct the result of Ref. [24], where the
nonzero transition probability for spin oscillations of ultra-
relativistic neutrinos scattering off a Schwarzschild BH was
obtained. That incorrect result is a consequence of the extra
factor 1/Ut in Eq. (1) used in Ref. [24]. The vector �g in
Eq. (1) already accounts for the change of the proper time τ

to the world time t .
At the end of this section, we return to the case of the finite

neutrino energy. Considering the situation y = y0, the roots
of Eq. (9) have the form,

x0 = x1 = 3 + √
9 − 8γ −2 − 4γ −2

4(1 − γ −2)
,

x2 = −9(3 + √
9 − 8γ −2) − γ −2(27 + 5

√
9 − 8γ −2) + 4γ −4

(1 − γ −2)(9 + 3
√

9 − 8γ −2 − 4γ −2)
.

(12)

When these x0,1,2 in Eq. (12) are used in Eq. (8), the value
of α+∞ turns out to be infinite. Thus one cannot express
α+∞ as a power series of γ −1 at y = y0. It means that the
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neutrino spin makes infinite revolutions with respect to the
neutrino velocity when a particle asymptotically approaches
a nonrotating BH.

In Fig. 1, we show the transition probabilities of spin oscil-
lations of massive neutrinos scattered off a nonrotating BH
versus the impact parameter. The maximal transition proba-
bility is reached when y → y0. One can see that the greater
γ = E/m is the smaller PLR is. This behavior of PLR con-
firms our result that there are no spin oscillations in scattering
of massless neutrinos in the Schwarzschild metric.

2.2 Kerr metric

Now we study spin evolution of neutrinos scattered off a
rotating BH. The space-time in this case is described by the
Kerr metric. In Boyer-Lindquist coordinates (t, r, θ, φ), this
metric has the form [25],

dτ 2 =
(

1 − rrg



)
dt2 + 2

rrga sin2 θ



dtdφ − 


�
dr2

−
dθ2 − �



sin2 θdφ2, (13)

where

� = r(r − rg) + a2, 
 = r2 + a2 cos2 θ,

� =
(
r2 + a2

)

 + rrga

2 sin2 θ. (14)

The parameter a in Eqs. (13) and (14) can be in the range,
0 < a < rg/2. The angular momentum of BH is J = Ma.

We study a neutrino moving in the equatorial plane of a
Kerr BH with θ = π/2 and dθ = 0. As in the Schwarzschild
case, we also have two integrals of motion: the energy E
and the neutrino angular momentum L . However, we should
consider two cases L > 0 and L < 0 in the Kerr metric.

The vector �g has the nonzero component [8],

�2 = 1

2Ut

(
b2 + e3u1 − e1u3

1 + u0

)
. (15)

where

b2 = −
√
r(r − rg) + a2

2r2
√
r
[
r3 + a2(r + rg)

]
[
(2r3 − rga

2)Uφ + rgaU
t ] ,

e1 = rg
2r2

[
a(3r2 + a2)Uφ − (r2 + a2)Ut

]
√
r [r3 + a2(r + rg)]

,

e3 = arg
2r

(3r2 + a2)Ur

[
r3 + a2(r + rg)

] √
r(r − rg) + a2

, (16)

are the components the gravi-magnetic and gravi-electric
fields,

u0 = Ut

√
r [r(r − rg) + a2]

√
r3 + a2(r + rg)

,

u1 = rUr

√
r(r − rg) + a2

,

u3 = (r3 + ra2 + rga2)Uφ − argUt

√
r [r3 + a2(r + rg)]

, (17)

are the components of the neutrino four velocity ua =
(u0, u1, 0, u3) in the locally Minkowskian frame, and Uμ =
(Ut ,Ur , 0,Uφ) = dxμ/dτ is the neutrino four velocity in
the world coordinates. For example,

Ut =
[
r3 + a2(r + rg)

]
E − aLrg

mr
[
r(r − rg) + a2

] . (18)

The expressions for Ur and Uφ can be found on the basis of
Eqs. (18) and (35).

Equations (2) and (3) are valid for the motion in the equa-
torial plane of a Kerr BH. Using Eqs. (16)–(18) and applying
the similar technique as in Sect. 2.1, we get the expression
for the angle α+∞, which determines the probabilities of spin
oscillations, in the form,

α+∞ =
∫ ∞

xm
FK(x)dx, (19)

FK(x) = 1

x
√

(1 − γ −2)RK(x)[x(x − 1) + z2]

×
{

− 2x2(x − 1)y
√

1 − γ −2 + 3zx2 − z2y
√

1 − γ −2 + z3
√
x3 + z2(x + 1) − yz

√
1 − γ −2

+
√

1 − γ −2[x3 + z2(x + 1)]−1/2

×
(
x3 + z2(x + 1) − yz

√
1 − γ −2

+ γ −1
√
x[x(x − 1) + z2][x3 + z2(x + 1)]

)−1

×
[
xy

(
x4 − zx(3x − 2)y

√
1 − γ −2

− 2z2x(1 − x) − z3y
√

1 − γ −2 + z4)

+ z(3x2 + z2)

√
1 − γ −2RK(x)

]}
, (20)

where z = a/rg and xm is the maximal root of the equation,

RK(x) = x3+ γ −2

1 − γ −2 x
2+(z2−y2)x+

(
y − z√

1 − γ −2

)2

= 0.

(21)
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Fig. 1 The transition
probability PLR of spin
oscillations versus the
dimensioless impact parameter
y for neutrinos scattering off a
Schwarzschild BH for different
neutrino energies. a E = 10 m,
b E = 100 m
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One can check that, at z → 0, FK(x) → FS(x) and
RK(x) → RS(x), i.e., using Eqs. (20) and (21), we repro-
duce the spin evolution in the Schwarzschild metric, studied
in Sect. 2.1.

It should be noted that, while studying the scattering off
a rotating BH, we should distinguish the cases of the direct
scattering with L > 0 and the retrograde one L < 0 (see
Fig. 9 in Appendix B). We can formally suggest that the
impact parameter is positive in the retrograde scattering, but
consider the expressions similar to Eqs. (20) and (21), where
all terms with odd powers of y have opposite signs.

As in Sect. 2.1, it is interesting to study the case of ultra-
reletivistic particles. Using Eqs. (20) and (21) in the limit
γ � 1, we get that

FK(x)

→ 1

x
√
RK(x)[x(x − 1) + z2][x3 + z2(x + 1) − yz]

×
{

− 2x2(x − 1)y − 3zx2 + z2y − z3

+ [x3 + z2(x + 1)]−1/2[x3 + z2(x + 1) − yz]−1/2

× [
x5y + zx2(3x3 + 5y2 − 6xy2) + 2z2yx2(x − 4)

+ z3(4x3 − 2xy2 + 3x2 + y2) + z4y(x − 2) + z5(x + 1)
]}

,

(22)

and

RK(x) → x3 + (z2 − y2)x + (y − z)2. (23)

The simultaneous solution of the equations RK(x) = 0
and R′

K(x) = 0 gives one the critical impact parameter,

y0 = 4 cos3
[

1

3
arccos(∓2z)

]
± z, (24)

where the upper signs stay for the direct scattering and the
lower ones for the retrograde scattering. Note that, we made
that both y0 in Eq. (24) are positive. If y < y0, a neutrino
asymptotically falls to BH.

The transition probability of spin oscillations PLR =
(1 + cos α+∞)/2, computed on the basis of Eqs. (19), (22),
and (23) turns out to be nonzero. It means that there is a pos-
sibility of transitions between left and right polarized ultra-
relarivistic neutrinos interacting with a rotating BH. The cor-
responding transition probabilities are shown in Fig. 2.

Putting z = 0 in Eqs. (19), (22), and (23), one reproduces
Eq. (11). Thus, using the results of Sect. 2.1, one gets that
the transition probability of spin oscillations is vanishing at
a small angular momentum of BH. The same feature results
from the comparison of Fig. 2a and b with c and d.

3 Neutrino gravitational scattering accounting for the
matter interaction

In this section, we formulate the neutrino spin evolution equa-
tion in background matter under the influence of a gravita-
tional field when a neutrino scatters off BH. Then, we derive
the effective Schrödinger equation for spin oscillations of
scattered neutrinos.

Using the forward scattering approximation, one gets that
the neutrino interaction with background matter is described
by the following effective Lagrangian in the Minkowski
spacetime [26]:

Lmatt = − GF√
2
ν̄γ μ

(
1 − γ 5

)
νGμ, (25)

where ν is the neutrino bispinor, γ μ and γ 5 are the Dirac
matrices, and GF = 1.17 × 10−5 GeV−2 is the Fermi
constant. The four vector Gμ is the linear combination of
the hydrodynamic currents and polarizations of background
fermions. It depends on the chemical composition of matter
and the type of a neutrino. The explicit form of Gμ can be
found in Ref. [27].

Basing on Eq. (25), the influence of the neutrino interac-
tion with background matter on its spin evolution in curved
spacetime was studied in Refs. [8,9]. It results in the appear-
ance of the additional components of the vector �g in Eq. (5):
�g → � = �g+�matt, where the vector �matt has the form,
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Fig. 2 The transition
probability PLR of spin
oscillations versus the
dimensioless impact parameter
y for ultrarelativistic neutrinos
scattering off a Kerr BH for
different angular momenta J of
BH. a and c correspond to the
direct scattering; b and d to the
retrograde scattering. a and b
J = 0.1Mrg ; c and d
J = 0.5Mrg (y − y0)/y0
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�matt = GF√
2Ut

[
u

(
g0 − (gu)

1 + u0

)
− g

]
, (26)

where ga = (g0, g) = eaμG
μ is the four vector of the

effective neutrino interaction with background matter in
the locally Minkowskian frame with coordinates xa , eaμ =
∂xa/∂xμ are the vierbein vectors, and Gμ is the analogue of
the four vector in Eq. (25) given in curved spacetime.

If we study the neutrino interaction with nonrelativistic
unpolarized matter, only G0 = neffUt

f �= 0, where Ut
f is

the time component of the four velocity of plasma. For spin
oscillations of electron neutrinos in the electrically neutral
hydrogen plasma one has neff = ne, where ne is the elec-
tron number density. The expressions for neff for other neu-
trino oscillations channels and various types of background
fermions can be found in Ref. [27].

Instead of dealing with Eq. (1) for the spin precession, it is
convenient to study the neutrino polarization density matrix,
ρ = 1

2

[
1 + (σζ )

]
, which obeys the equation, iρ̇ = [H, ρ],

where H = −(σ�) and � includes both the gravity and
matter contributions in Eqs. (5) or (15), and (26). Here σ are
the Pauli matrices.

Since the Liouville–von Neumann equation for the den-
sity matrix is rather complicated for the analysis, we can
use the Schrödinger equation, iψ̇ = Hψ . As we men-
tioned in Sect. 2, neutrinos move along the first axis in the
locally Minkowskian frame at r → ∞. Hence, it is conve-
nient to use this axis for the spin quantization. It mean that
we should replace the Hamiltonian H → U2HU†

2 , where

U2 = exp(iπσ2/4). This procedure brings the meaning to
the effective wave function ψ . As in Sects. 2.1 and 2.2, it
is convenient to rewrite the Schrödinger equation using the
normalized radial coordinate x = r/rg ,

i
dψ

dx
= Hxψ, Hx = −U2(σ�x )U†

2 , (27)

where �x = rg�dt/dr . Now we are ready to write down
the effective Hamiltonian Hx for both the Schwarzschild and
Kerr metrics.

One has that Ut
f = (1 − rg/r)−1 and U f = 0 for

nonrelativistic plasma near a nonrotating BH. We found
in Ref. [7] that e0

μ = (√
1 − rg/r , 0, 0, 0

)
is the vier-

bein vector in the Schwarzschild metric. Then, in Eq. (26),
g0 = neff(1 − rg/r)−1/2 and g = 0.

Using Eqs. (6) and (33), we obtain all the components of
the vector �x in the form,

�x1 = V x

x − 1
, �x2 = ±1

4
FS(x), �x3 = ± V xy√

RS(x)(x − 1)
,

(28)

where V = GFneffrg/
√

2 is the dimensionless effective
potential, the functions FS(x) and RS(x) are given in Eqs. (8)
and (9), the upper and the lower signs stay for outgoing and
incoming neutrinos.
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In the case of a rotating BH, the four velocity of nonrela-
tivistic matter has the components,

Ut
f = r3 + a2(r + rg)

r [r(r − rg) + a2] , (29)

and U f = 0. The four vector ga was obtained in Ref. [8] in
the form,

ga = neffUt
f

√
r√

r3 + a2(r + rg)

(√
r(r − rg) + a2, 0, 0,−arg

r

)
,

(30)

where we take again that matter is nonrelativistic.
Basing on Eqs. (17), (30), and (35), we obtain the com-

ponents of �x in the Kerr metric as

�x1 = CV

√
x[x3 + z2(x + 1)]
x(x − 1) + z2 , �x2 = ± 1

4
FK(x),

�x3 = ± V√
(1 − γ −2)RK(x)[x(x − 1) + z2] ,

×
[
Cx3/2 y

√
1 − γ −2 + zγ −1

√
x3 + z2(x + 1)√
x(x − 1) + z2

]
,

C = x3 + z2(x + 1) + γ −1
√
x[x(x − 1) + z2][x3 + z2(x + 1)]

x3 + z2(x + 1) − zy
√

1 − γ −2 + γ −1
√
x[x(x − 1) + z2][x3 + z2(x + 1)] ,

(31)

where the functions FK(x) and RK(x) are given in Eqs. (20)
and (21).

We revealed in Sect. 2.2 that there is a spin conversion of
ultrarelativistic neutrinos scattered off a Kerr BH. Thus, it is
reasonable to rewrite Eq. (31) for such particles. We get that

�x1 = V
√
x[x3 + z2(x + 1)]3/2

[x3 + z2(x + 1) − zy][x(x − 1) + z2] ,

�x3 = ± V yx3/2[x3 + z2(x + 1)]
[x3 + z2(x + 1) − zy]√RK(x)[x(x − 1) + z2] ,

(32)

when γ � 1. The expression for �x2 straightforwardly
results from Eq. (22). In Eq. (32), the function RK(x) is given
by Eq. (23).

Equation (27) should be supplied with the initial condi-
tion ψT−∞ = (1, 0), which means that all incoming neutri-
nos are left polarized. Since the neutrino velocity u changes
the direction at t → +∞, the transition probability reads
PLR = |ψ(1)

+∞|2, and, correspondingly, the survival probabil-

ity is PLL = |ψ(2)
+∞|2, where ψT+∞ = (ψ

(1)
+∞, ψ

(2)
+∞) is the

asymptotic solution of Eq. (27).
The solution of Eq. (27), with �x in Eqs. (28) or (31), can

be found only numerically because of the nontrivial depen-
dence of �x on x . Moreover, in Sect. 4, we discuss the sit-

uation when neff = neff(r), or V = V (x), which makes the
analysis more complicated.

We also mention, that we cannot integrate Eqs. (27) to the
turn point xm and then automatically reconstruct ψ+∞, as we
made in Sects. 2.1 and 2.2 to find α+∞. In the presence of
the background matter, the neutrino spin precesses around the
axis with nonconstant direction. Moreover, the components
�x2,3 in Eqs. (28) and (31) change the sign at x = xm . Thus,
to obtain ψ+∞, one should integrate Eq. (27), first, in the
interval +∞ > x > xm and, then, for xm < x < +∞,
with the solutions being stitched at xm . While integrating
Eq. (27) in these two intervals, one should account for the
signs of �x2,3. This fact significantly reduces the accuracy
of the numerical simulation compared to Sects. 2.1 and 2.2.

4 Astrophysical applications

In this section, we present the numerical solutions of Eq. (27)
for the neutrino scattering off SMBH surrounded by an accre-
tion disk. We discuss both rotating and nonrotating SMBH,
as well as the cases of ultrarelativistic neutrinos and neutri-
nos having a finite energy. The measurable neutrino fluxes
are obtained.

First we notice, that standard model neutrinos are pro-
duced as left polarized particles. If they gravitationally inter-
act with BH, some incoming left neutrinos become right
polarized after scattering. A neutrino detector can observe
only left neutrinos. Hence, the observed flux of neutrinos is
Fν = PLLF0, where F0 is the flux of scalar particles. The
value of F0 is proportional to the differential cross section,
F0 ∼ dσ/dΩ , which is studied in Appendices A and B.

We assume that the neutrino beam scatters off a SMBH
surrounded by an accretion disk. For example, we can sup-
pose that such a SMBH is in the center of a Seyfert galaxy. We
take that the plasma density in the disk scales as ne ∝ r−β .
The value of β is very model dependent. For example,
β ≈ 0.5 in an advection dominated accretion disk stud-
ied in [28]. If we take that the mass of SMBH in ques-
tion is M ∼ 108M, the plasma density in the vicinity of
SMBH can be up to ne ∼ 1018 cm−3 [29]. Thus, the dimen-
sionless effective potential V (r) = GFne(r)rg/

√
2, reads

V (x) = Vmaxx−β , where x = r/rg .
The plasma motion in an accretion disk is driven not only

by the gravitational interaction with a central BH. It also
depends on the interaction between charged particles. Thus,
the plasma angular velocity can be a complicated function of
r , which is model dependent. We omit this additional factor
in the description of the neutrino spin evolution and assume
that the plasma motion in an accretion disk is nonrelativistic.

First, in Fig. 3, we show the ratio of the fluxes of massive
neutrinos, F (g)

ν , scattered off a nonrotating BH and scalar par-
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Fig. 3 The ratio of fluxes of massive neutrinos, obtained using Eq. (8),
and scalar particles in their scattering off a Schwarzschild BH versus
the scattering angle χ normalized by π

ticles F0 of the same mass, with spin oscillations of neutrinos
in the gravitational field being accounted for. These fluxes are
proportional to the differential cross section, F ∼ dσ/dΩ ,
where dΩ = 2π sin χdχ . The calculation of the cross sec-
tion for scalar particles is presented in Appendix A and the
result is shown in Fig. 8. We do not take into account the
neutrino interaction with matter in Fig. 3.

The neutrino energy is E = 10 m in Fig. 3. We have seen
in Sect. 2.1 that neutrino spin oscillations in the scattering in
the Schwarzschild metric are vanishing if E � m. Thus, the
further enhancement of the neutrino energy will result in F (g)

ν

practically coinciding with F0. Consideration of neutrino
energies smaller than in Fig. 3 is inexpedient from the point
of view of possible astrophysical applications accounting for
the current upper bound on neutrino masses in Ref. [30].

One can see in Fig. 3 that F (g)
ν < F0. This fact is owing to

the survival probability PLL < 1, which F (g)
ν is proportional

to, for the gravitational scattering of massive neutrinos. The
maximal difference between the fluxes is for the backward
neutrino scattering at χ = π . However, the maximal devi-
ation of F (g)

ν from F0 is less than 1%. Accounting for the
rather small neutrino energy, it makes difficult to observe
the effect of spin oscillations in the neutrino scattering off a
nonrotating BH.

Now we study the influence of the interaction with an
accretion disk matter on the flux of neutrinos scattered off a
nonrotating SMBH with M = 108M. In Fig. 4, we show
the result of the numerical solution of Eqs. (27) and (28). We
take that n(max)

e = 2×1018 cm−3 at r = rg and β = 0.2. The
flux of scattered neutrinos with E = 10m accounting for the
matter interaction F (disk)

ν , normalized by the flux of scalar
particles, is shown in Fig. 4a. The ratio of F (g)

ν and F (disk)
ν is

presented in Fig. 4b.
One can see in Figs. 3 and 4 that F (g)

ν < F (disk)
ν < F0.

The former inequality results from the fact that the matter
interaction makes neutrino spin oscillations to be out of the
resonance. Hence P(g)

LL < P(disk)
LL . The latter inequality is

a consequence of P(disk)
LL < 1. As in Fig. 3, the maximal

deviations of the neutrino fluxes from F0 in Fig. 4 are at
χ = π , Nevertheless, taking into account the magnitude of
these deviations, one concludes that neutrino spin oscillations
are negligible in the gravitational scattering off a nonrotating
BH.

Now we turn to the consideration of spin oscillations
of neutrinos scattered off a rotating BH. We have revealed
in Sect. 2.2 that ultrarelativistic neutrinos can change their
polarization in this situation. Moreover, using Eqs. (28)
and (31), one gets that the effective Hamiltonian for spin
oscillations in the Kerr metric coincides with that for the
Schwarzschild metric at z → 0. Therefore, to highlight the
manifestation of spin effects in the gravitational scattering
off a Kerr BH, we consider ultrarelativistic neutrinos and a
maximally rotating BH with z = 1/2 or a = M .

In Fig. 5, we show the ratios of the fluxes of gravitation-
ally scattered ultrarelativistic neutrinos F (g)

νd,r and scalar par-
ticles F0d,r in the case of a rotating BH. We present the case
of the direct scattering in Fig. 5a and the retrograde one in
Fig. 5b. As for a Schwarzschild BH, F (g)

νd,r = F0d,r at χ = 0.

However, F (g)
νd,r is about 10% less than F0d,r for backwardly

scattered neutrinos with χ = π .
Now we take into account the neutrino interaction with

an accretion disk. We consider a situation of a maximally
rotating SMBH with M = 108M surrounded by an accre-

Fig. 4 The ratios of fluxes
obtained by the numerical
solution of Eqs. (27) and (28)
versus χ/π . a The flux of
scattered neutrinos, accounting
for the matter interaction,
F (disk)

ν normalized by F0; b the
ratio of F (g)

ν and F (disk)
ν . The

energy of particles E = 10 m
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Fig. 5 The ratios of fluxes of
ultrarelativistic neutrinos, based
on Eqs. (19) and (22), and scalar
particles in their scattering off a
Kerr BH versus χ/π . a Direct
scattering; b retrograde
scattering. Particles are
ultrarelativistic, having E � m.
BH is maximally rotating with
a = M
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Fig. 6 The ratios of fluxes
obtained by the numerical
solution of Eqs. (27) and (32)
versus χ/π . a and b Direct
scattering; c and d retrograde
scattering. a and c The fluxes of
scattered neutrinos, accounting
for the matter interaction, F (disk)

νd,r
normalized by F0d,r ; b and

d the ratios of F (g)
νd,r and F (disk)

νd,r
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tion disk with n(max)
e = 1018 cm−3 at r = rg and β = 0.5.

In Fig. 6, we depict the fluxes of ultrarelativistic neutrinos
F (disk)

νd,r , accounting for the interaction with background mat-

ter normalized by F0d,r , as well as the ratios of F (g)
νd,r and

F (disk)
νd,r . We present the cases of the direct scattering in Fig 6a

and b, and the retrograde one in Fig. 6c and d.
We can see in Fig. 6 that the fluxes F (disk)

νd,r and F0d,r , as

well as F (g)
νd,r and F (disk)

νd,r , differ by about 5%. The maximal

difference is at χ = π . The inequality F (g)
ν < F (disk)

ν <

F0, established for the Schwarzschild metric above, remains
valid for a Kerr BH as well.

Now it is interesting to compare the direct and retrograde
scatterings. We show the ratios of the corresponding fluxes in
Fig. 7. One can see that that the difference between the fluxes
for the retrograde and direct scatterings can be about 20%.

This asymmetry remains valid for both the only gravitational
scattering, shown in Fig. 7a, and when the matter contribution
is accounted for, which is depicted in Fig. 7b.

5 Discussion

In the present work, we have studied spin oscillations in the
neutrino scattering off BHs. Both nonrotating and rotating
BHs have been discussed. The neutrino spin evolution in
curved spacetime has been accounted for quasiclassically
basing on the approach developed in Refs. [7,8]. As an appli-
cation of the obtained results, we have examined the neutrino
scattering off SMBH with a realistic accretion disk.

In Sect. 2, we have derived the general expressions for the
transition and survival probabilities for neutrino spin oscilla-
tions. Then, in Sect. 2.1, we have applied these results for the
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Fig. 7 The ratios of fluxes for
the direct and retrograde
scatterings versus χ/π .
a F (g)

νr /F (g)
νd ; b F (disk)

νr /F (disk)
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neutrino scattering off a nonrotating BH. The expression for
the spin rotation angle, which is valid for the arbitrary neu-
trino energy and the impact parameter, has been presented in
Eqs. (8) and (9). Using this result, we have obtained that an
ultrarelativistic neutrino preserves its helicity while scatter-
ing in the Schwarzschild metric. This feature is valid for any
impact parameter y ≥ y0. This our finding is in agreement
with the results of Ref. [23]. The transition probabilities PLR

of spin oscillations of massive neutrinos in their gravitational
scattering turn out to be nonzero, and are shown in Fig. 1 for
several neutrino energies. However, PLR is rather small for
reasonable Lorentz factors E/m to be observed.

Then, in Sect. 2.2, we have considered spin oscillations
of neutrinos scattered off a rotating BH. As in Sect. 2.1,
we have derived the general formula for the spin rotation
angle in Eqs. (19)–(21). The obtained expressions reproduce
the results of Sect. 2.1 in the limit z → 0. The transition
probabilities of spin oscillations are nonzero even for ultra-
relativistic neutrinos. In Fig. 2, we have shown PLR for the
direct and retrograde scatterings of ultrarelativistic neutrinos
for different angular momenta of BH.

Note that the fact that the helicity of ultrarelativistic, or
even massless, fermions can be changed under the influence
of a gravitational field was noticed earlier in Refs. [31,32].
We have found that spin oscillations of ultrarelativistic neu-
trinos happen only when particles scatter off a rotating BH.
The polarization change of ultrarelativistic particles (pho-
tons) in their gravitational scattering off a rotating star was
studied previously in Ref. [33].

Then, in Sect. 3, we have derived the effective Schrödinger
equation for a neutrino scattering off BH surrounded by back-
ground matter with a nonuniform density. In the case of only
the gravitational scattering, studied in Sects. 2.1 and 2.2, it
was possible to obtain the analytical transition and survival
probabilities for some impact parameters. If, besides gravity,
a neutrino interacts with a background matter, the probabili-
ties can be derived only in the numerical solution of Eq. (27).

The effective Hamiltonians for neutrino spin oscillations
for both the Schwarzschild and Kerr metrics have been
obtained in Sect. 3 in the approximation of a slowly rotating

accretion disk. The effective Hamiltonian for ultrarelativis-
tic neutrinos scattering off a rotating BH surrounded by an
accretion disk has been also derived in Sect. 3.

In Sect. 4, we have considered the astrophysical applica-
tions of our results. In particular, we have studied the effect
of spin oscillations on the neutrino scattering off SMBH sur-
rounded by an accretion disk. We have taken the parameters
of the accretion disk, such as the maximal number density
and the profile of the mass distribution, close to the values
resulting from observations and hydrodynamics simulations.

First, we have studied the case of a nonrotating BH. Using
the numerical solution of Eqs. (27) and (28), we have found
the observed fluxes of outgoing neutrinos for only the grav-
itational scattering and when the neutrino interaction with
the accretion disk is accounted for. The contribution of spin
oscillations to the neutrino fluxes, shown in Figs. 3 and 4,
appears to be negligible for reasonable neutrino energies and
the current upper bound on the neutrino mass.

Greater spin effects have been revealed for neutrinos grav-
itationally scattered off a rotating BH surrounded by an accre-
tion disk. In this situation, we have studied the ultrarelativistic
neutrinos scattering off a maximally rotating SMBH to high-
light the effect of spin oscillations. We have shown in Fig. 5
that the observed fluxes of gravitationally scattered neutri-
nos can be reduced by almost 10%. The contribution of the
neutrino interaction with matter changes the fluxes by about
5%, see Fig. 6.

As one can see in Figs. 3, 4, 5, 6, there is no deviation
of the fluxes for the forward neutrino scattering at χ = 0
if one compares them with the fluxes of scalar particles. It
means that neutrino spin oscillations do not affect the size of
a BH shadow. The major effect of spin oscillations is for the
backward neutrino scattering at χ = π . Thus the intensity
of the glory flux for ultrarelativistic neutrinos is almost 10%
less than for scalar particles in case a rotating BH.

The influence of the plasma interaction on the gravita-
tional scattering of photons was thoroughly studied previ-
ously [21]. The photons propagation in plasma surrounding
a nonrotating BH was examined in Ref. [34], where it was
found that the form of the BH shadow is not changed. How-
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ever its size can be enlarged. The shape of the shadow of a
rotating BH can be deformed [34]. Using Fig. 4b, we con-
clude that there is an asymmetry in the observed neutrino
fluxes depending on the orientation of the neutrino trajec-
tory with respect to a slim accretion disk. This asymmetry is
maximal for the backward neutrino scattering. Unfortunately,
this effect is rather small in the Schwarzschild metric. The
asymmetry in the outgoing neutrino fluxes may well exist for
the Kerr BH surrounded by an accretion disk. Basing on our
results, we cannot quantitatively describe this effect since we
rely on the equatorial neutrino motion only.

We have found that spin oscillations in the gravitational
scattering off a rotating BH are sizable for ultrarelativistic
neutrinos. Thus our results are of interest for the neutrino
astronomy [35], which is a rapidly developing area of the
cosmic rays physics. It is known that neutrinos with ener-
gies in the PeV range were detected [36]. Moreover, several
sources of ultrahigh energy neutrinos can be identified with
with some astronomical objects such as active galactic nuclei
[37]. We have demonstrated in our work that, if the incoming
flux of cosmic neutrinos experience the gravitational lensing,
in some cases, the observed flux can be reduced by down to
10%, compared to its initial value, because of neutrino spin
oscillations.

There is another possible application of the obtained
results. The r -process nucleosynthesis in the vicinity of BH,
surrounded by an accretion disk, was found in Ref. [18] to
be affected by the neutrino radiation of the accretion disk. To
influence the weak nuclear reactions, which the nucleosyn-
thesis is based on, emitted neutrinos should be active. In the
present work, we predict the significant conversion of left
active neutrinos to right sterile particles in the neutrino scat-
tering off a rotating BH. Thus the nucleosynthesis near such
BHs is further modified because of the neutrino gravitational
interaction. Note that the effect of active to sterile neutrinos
oscillations on the dynamics of the supernova explosion was
studied in Ref. [38].
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Appendix A Particle motion in the Schwarzschild metric

In this Appendix, we briefly remind how to describe the
motion of a scalar particle interacting with a nonrotating BH,
as well as how to calculate the differential cross section of
the gravitational scattering. These problems were studied in
details in Refs. [22, pp. 287-290] and [23].

The energy E and the angular momentum L are the con-
served quantities for a particle with the mass m moving in
the Schwarzschild metric in Eq. (4). The equation of motion
and the trajectory are defined by

dr

dt
= ± m

E

(
1 − rg

r

) [
E2

m2 −
(

1 − rg
r

) (
1 + L2

m2r2

)]1/2

,

dφ

dr
= ± L

mr2

[
E2

m2 −
(

1 − rg
r

)(
1 + L2

m2r2

)]−1/2

, (33)

for a particle moving in the equatorial plane. In Eq. (33), the
minus signs stay for incoming particles and the plus ones for
outgoing particles.

The angle corresponding to the minimal distance between
a particle and BH is

φm = y
∫ ∞

xm

dx√
x RS(x)

, (34)

where y = b/rg , b = L/E
√

1 − γ −2 is the impact parame-
ter, RS(x) is given in Eq. (9), and xm is the maximal root of
Eq. (9). The parameter y > y0, where y0 is given in Eq. (10).
Otherwise a particle falls to BH.

While computing the differential cross section, dσ/dΩ ,
where dΩ = 2π sin χdχ , we should take into account that
a particle, before being scattered off, can make multiple rev-
olutions around BH, both clockwisely and anticlockwisely.
One should account for this fact in the determination of the
angle χ , fixing the position of a detector, which is in the range
0 < χ < π .

In Fig. 8, we present the result of the numerical compu-
tation of the cross section. While building this plot, we take
that y0 < y < 30y0 and account for up to two revolutions
of a particle around BH in both directions. This our result is
used in Sect. 4 when we study the neutrino scattering off a
realistic BH surrounded by an accretion disk.
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Fig. 8 The differential cross section of the gravitational scattering of
scalar particles off a nonrotating BH, normalized by r2

g , versus χ/π .
The particle energy is E = 10 m

B Particle motion in the Kerr metric

In this Appendix, we describe the motion of a scalar particle
in the gravitational field of a rotating BH.

The trajectory of a particle in the Kerr metric, given in
Eqs. (13) and (14), is rather complicated in the general case.
However, if we consider the particle motion in the equato-
rial plane, the trajectory and the equation of motion can be
expressed in the relatively simple form (see, e.g., Ref. [25]),

dt

dr
= ±

√
r

r(r − rg) + a2

× [r3 + a2(rg + r)]E − aLrg√
[r3 + a2(rg + r)]E2 − 2aLErg − (r − rg)L2 − m2r [r(r − rg) + a2]

,

dφ

dr
= ±

√
r

r(r − rg) + a2

× (r − rg)L + aErg√
[r3 + a2(rg + r)]E2 − 2aLErg − (r − rg)L2 − m2r [r(r − rg) + a2]

,

(35)

where one has two integrals of motion: the particle angular
momentum L and its energy E .

Analogously to Eq. (34), we get the expression for φm ,

φm =
∫ ∞

xm

√
xdx

x(x − 1) + z2

(x − 1)y
√

1 − γ −2 + z√
(1 − γ −2)RK(x)

, (36)

where RK(x) is given in Eq. (21), and xm is the maximal root
of Eq. (21).

There is an important difference between the particle scat-
tering in the Schwarzschild and Kerr metrics. We can take
that L > 0 in the Schwarzschild metric. In the Kerr metric,
the cases L > 0 and L < 0 are different. It can be illus-
trated in Fig. 9. One can call the situation, when the position
of a detector is bent towards the BH rotation direction, as
the direct scattering. It is shown in Fig. 9a. The opposite
situation, depicted in Fig. 9b can be called the retrograde
scattering. The corresponding quantities for the retrograde

Fig. 9 The illustration of the particle scattering off a rotating BH.
a Direct scattering; b retrograde scattering

scattering can be obtained by replacing the signs in all terms
with odd powers of y.

Of course, the total flux of, e.g., directly scattered particles
contains contributions with L < 0. Indeed, despite 0 < χ <

π in Fig. 9a, particles, which make one full revolution around
BH, move oppositely the BH rotation, i.e. they have L < 0.
This fact should be accounted for while computing the total
flux of scattered particles.

The calculation of the differential cross section of the grav-
itational scattering of scalar particles off a Kerr BH is anal-
ogous to the Schwarzschild metric studied in Appendix A.
Thus we omit the details.
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