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Abstract General relativity (GR) extensions based on
renormalization group (RG) flows may lead to scale-dep-
endent couplings with nontrivial effects at large distance
scales. Here we develop further the approach in which RG
effects at large distance scales are fully encoded in an effec-
tive action and we apply it to cosmology. In order to evaluate
the cosmological consequences, our main assumption is the
use of a RG scale such that the (infrared) RG effects only
appear at perturbative order (not at the background level).
The emphasis here is on analytical results and qualitative
understanding of the implied cosmology. We employ com-
monly used parametrizations for describing modified grav-
ity in cosmology (as the slip parameter). From them, we
describe the dynamics of the first order perturbations and
estimate bounds on the single dimensionless parameter (ν)
introduced by this framework. Possible impacts on dark mat-
ter and dark energy are discussed. It is also shown here that
the ν parameter effects to f σ8 are stronger at low redshifts
(z < 1.5), while different values for ν do not appreciably
change f σ8 at higher redshifts, thus opening a window to
alleviate an issue that is currently faced by �CDM.

1 Introduction

Renormalization group (RG) effects to gravity at large dis-
tances (astrophysical or cosmological) are not a novelty
and are being considered from different approaches (e.g.,
[1–17]). They include approaches within quantum gravity
(like asymptotically safe gravity), quantum field theory in
curved spacetime (QFTCS), and phenomenological ones that
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emphasize the constraints from the observational data and
classical symmetries. Being more specific, in the context of
QFTCS, the Einstein-Hilbert action needs to be supple-
mented by higher derivative terms, in order for properly
quantizing the matter sector. These higher derivative terms
are dynamically relevant at small distance scales, but their
importance decreases as one moves towards larger scales.
Their couplings can be shown to have trivial RG flows in
the infrared, (i.e., they become true constants) [18,19]. This
behaviour is similar to the quantum electrodynamics (QED)
case, where in the infrared limit the coupling can be shown to
become a constant (see e.g., [20,21]). However, the two other
couplings of gravity, G and �, do not need to have the same
behaviour and may run in the far infrared (in this context, see
e.g., [8]). Although they may run within different contexts,
it is not settled how they run. The two pertinent unknowns
are the β-functions, which set how the couplings depend on
a RG scale μ, and the relation of the latter to other physical
quantities, the scale setting (e.g, [3,4,22–24]).

Considering the possible running of G and � at astro-
physical or cosmological distances, here we use two main
hypothesis: (i) at large distances, there must exist an effective
description that is fully in the classical framework. In partic-
ular, there must be a complete classical action capable of
effectively describing the complete large scale RG effects.1

(ii) We consider a RG scale that is essentially a measurement
of the spacetime perturbations. This scale was presented in
covariant form in Ref. [14], which can be seen as a covari-

1 It is an extension of the improved action approach described in Ref.
[3]. The relevant information is put in a classical action, including the
meaning of the RG scale. See also Ref. [24]. Another well studied
possibility is implementing the RG effects at the level of the GR field
equations (see e.g., [3,12,25,26]). For the latter case, a complete action
is not considered, and it may even fail to exist. We add that Ref. [27]
starts from an action and finds field equations similar to the case where
the run of G and � are implemented at the field equations level. To this
end, an external field that implements a conformal symmetry is used.
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ant extension of a Newtonian potential-based scale [13,28],
which in turn extends other cases towards continuous matter
distributions (e.g., [3,4]). It is the first time that this covariant
scale is applied to cosmology.

For cosmology, we distinguish two classes of scales: those
based on the cosmological time t and those based on the
perturbations wavenumber k. The former class in particular
includes scales that are functions of the Hubble parameter
[29] (see also Refs. [4,5,30]). The latter class is the class that
receives especial attention here. We remark that, for dealing
with phenomena close to the singularity, it seems natural to
consider the effects of the scales based on time (and hence
that change the cosmological background). However, espe-
cially for late-time cosmology, scales based on k may have a
relevant role. For selecting it, we also considered that: a) this
scale is explicitly spacetime covariant (it is a scalar), which is
a welcome property for inserting it in the effective action and
for dealing with cosmological perturbations; b) it leads to a
dynamical picture that is different from GR and well-known
modified gravity theories like f (R) (e.g., Refs. [23,31] show
that setting the Ricci scalar as the RG scale can lead to f (R));
c) phenomenologically, considering the overall success of the
standard cosmological picture, it is reasonable that possible
departures are at the perturbative level.

With this setting described above, we show that a consis-
tent dynamical picture within cosmology requires the use of
a second RG scale (multiscale RG methods are not a novelty
[32–34]). This second scale is, however, fixed from dynam-
ical consistency.

In what follows, we start by reviewing the action presented
in Ref. [14] and extending it towards an arbitrary number
of RG scales. In Sect. 3, the consequences for gravity at
cosmological scales are presented, showing that the second
scale is a function of the energy–momentum tensor trace.
Section 4 considers cosmological constraints and discuss the
physical consequences. In Sect. 5, we present our conclusions
and perspectives.

2 Infrared renormalization group effects in gravity at
the action level

Here we briefly review the approach developed in Ref. [14],
which is especially based on Refs. [3,4,13,35]. It presents
an approach in which the relevant information for imple-
menting infrared RG effects for gravity are fully encoded
in the action, instead of appending them at the field equa-
tions level (see also [24] for a related approach). To put all
the relevant information in the action is important for under-
standing the system dynamics and symmetries (which are,
independently on the underlying microphysics, seen as effec-
tively classical at large distance scales, as explained in the
introduction). Appending information at the level of the field

equations is not in general equivalent to insert the informa-
tion in the action and proceeding with the full variation (e.g.,
constrained systems). In a closed (effectively) classical envi-
ronment, the existence of a complete action is expected. Also,
the usefulness of an incomplete action is limited, in particu-
lar the dynamical consequences of the action diffeomorphism
invariance become obscure.

In Refs. [3,4,6,13,35,36], it is argued in favour of the
following action capable of enclosing the large scale Renor-
malization Group effects for gravity,

S[g] = 1

16π

∫
R − 2�

G

√−gd4x . (1)

In the above, G and � are not constants, they are external
scalar fields (that is, no variation with respect to either G
or � should be considered in this action), whose running is
determined from β-functions. Clearly, although this simple
action has some interesting properties (e.g., [3,4,13]), not all
relevant physical information is included in it. The depen-
dences of G and � on the RG scale are not explicit, also the
physical meaning of the RG scale (the scale setting) is not in
this action, these informations are appended at the level of
the field equations.

To achieve scale setting at the action level, and without
recourse to external scalar fields, we use [14],

S =
∫ [

R − 2�(μ)

16πG(μ)
+ λ [μ − f (g, �)]

]√−g d4x + Smatter.

(2)

In the above, S = S[g, μ, λ,�], Smatter = Smatter[g, �], �

represents any additional fields, G and � are not external
fields, both depend on the RG scale μ, and the latter is seen
as a fundamental field (i.e., the variation with respect to μ

is considered to find the field equations). It should be noted
that μ only enters in the action (2) as an auxiliary field: it
can be completely removed by solving μ − f (g, �) = 0,
as detailed in Appendix A of Ref. [14]. We remark that this
is also in agreement with RG framework expectations, in
the sense that the RG scale must not be a new independent
field with its own dynamics. See also Ref. [24] for similar
arguments.

Fixing the dependence of � andG on μ corresponds to fix-
ing their β-functions. In general the action above imposes a
relation between these two β-functions [14] (see also [3,4]),
this relation is indirectly related to diffeomorphism invari-
ance and energy–momentum conservation [14]. If for one
of them the β-function is settled considering natural argu-
ments from the RG group, this is sufficient for fixing the
other, which is found from the field equations (i.e., from the
requirement that there is a consistent classical picture).

In general, RG effects need not to depend on a single
scale and multiscale RG methods can be found [32–34]. As
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shown in the next section, the application of the action (2)
to cosmology may demand more than one scale, they are
labeled μp. In this case, that action can be straightforwardly
extended as

S[g, μ, λ,�] = Smatter[g, �] + 1

16π

∫ [
R − 2�(μ)

G(μ)

+
∑
p

λp
[
μp − f p(g, �)

]] √−g d4x .

(3)

When writing the dependences of functions or function-
als, we omit the indices, thus in the above �(μ) =
�(μ1, μ2, . . .).

From the above action, the field equations are

Gαβ + �gαβ + fαβ = 8πGTαβ, (4)

1

16π

∑
p

∫
λ′
p

δ f ′
p

δ�

√−g′ d4x ′ = δSmatter

δ�
, (5)

μp − f p = 0, (6)

2
∂

∂μp

�

G
− R

∂

∂μp
G−1 = λp, (7)

where a prime indicates dependence on x ′, instead of x , and

Gαβ ≡ Gαβ + G�G−1gαβ − G∇α∇βG
−1 , (8)

fαβ ≡ − G√−g

∑
p

∫
λ′
p

δ f ′
p

δgαβ

√−g′ d4x ′ , (9)

Tαβ ≡ − 2√−g

δSmatter

δgαβ
. (10)

To express the field equations above, we used functional
derivatives. In particular, for some field φ and function
f = f (φ, ∂φ),

δφ′

δφ
≡ δφ(x ′)

δφ(x)
= δ(4)(x − x ′), (11)

δ f ′

δφ
= ∂ f

∂φ
(x) δ(4)(x − x ′) + ∂ f

∂(∂αφ)
(x) ∂ ′

αδ(4)(x − x ′) .

(12)

From the diffeomorphism invariance of Smatter (e.g., [37]),

0 = δξ Smatter[g, �]

=
∫ (

− 1

2
Tαβ

√−g∇αξβ + δSmatter

δ�
δξ�

)
d4x

=
∫ (

1

2
∇αTαβ

√−g ξβ+

+ 1

16π

∑
p

∫
λ′
p

δ f ′
p

δ�

√−g′ d4x ′ δξ�

)
d4x, (13)

where δξ represents an infinitesimal change of coordinates,
given by a Lie derivative along the vector ξα . Hence, a viola-
tion of energy–momentum tensor conservation requires that
some λp’s are not zero.

In Ref. [14], simpler systems were considered than cos-
mology with perturbations. There, a single scale was suf-
ficient and the selected RG scale was such that the single
Lagrangian multiplier (λ) was zero at the field equations
level, thus implying ∇αT αβ = 0. As it will be shown, for
cosmology a modest violation of energy–momentum con-
servation will appear, since we will find λ2 �= 0.

3 Gravity and matter at cosmological scales

3.1 Spacetime metric

Similarly to standard cosmology, it is assumed that space-
time can be foliated and that the universe at large scales can
be described by a spatially homogeneous and isotropic met-
ric, added by non-homogenous perturbations. Only scalar
perturbations are considered here, since they are the most
relevant for the large scale structure. For clarity, considering
that the main purpose of the present work is to establish the
cosmological framework, the spatial slices are taken to be
flat. Hence, the line element in the Newtonian gauge can be
written as

ds2 = −a2(η)(1+2ψ)dη2+a2(η)(1−2φ)δi j dx
i dx j , (14)

where η is the conformal time, a is the scale factor, ψ and φ

are the first order metric perturbations.
The cosmological background is written as

(0)gαβ = a2(η) ηαβ, (15)

where ηαβ is the Minkowski metric.

3.2 The main RG scale

We consider, as commented in the introduction, a RG scale
that can be written as a scalar, such that it is possible to
explicitly insert it in the action, and we consider the case
in which the scale is directly connected to the cosmological
perturbations (i.e., to the wavenumber scale k). This choice is
motivated from three considerations: i) there is already a can-
didate for such scale that satisfies these conditions, which is
the scale proposed in Ref. [14] and detailed further below; i i)
it is a possibility less explored in cosmology, which we think
deserves further attention; i i i) �CDM is facing some diffi-
culties but it has already achieved relevant success on a large
class of cosmological and astrophysical phenomena. There-
fore, cosmological models whose background field equations
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are the same of �CDM, but with differences at the perturba-
tive level, sounds worth to investigate.

Although the proposal from Ref. [14] can be seen as an
extension of various other proposals, in particular of the pro-
posal for galaxies in Refs. [4,13,35], the cosmological model
of Ref. [4], and some other works with similar field equa-
tions (e.g., [26,27]), is different from the one proposed here.
Bounds from other cosmological models, independently on
the β-function adopted forG, do not apply to the present case.
As an example, big bang nucleosynthesis (BBN) bounds
were evaluated for a cosmological model with RG effects
in Ref. [26], but these bounds do not apply to the present
case since here the background equations are not sensitive to
RG effects.

The matter content is taken to be a perfect fluid whose
4-velocity is denoted by Uα .

The main RG scale (μ1) is set to be equal to a function of
the scalar W . This scalar was introduced in Ref. [14] and is
a function of Uα , the metric gαβ and certain tensor denoted
by γαβ , as follows:

μ1 = f1(W ), (16)

W ≡ UαUβ(gαβ − γαβ). (17)

One can note thatW is a scalar measurement of the difference
gαβ − γαβ and γαβ provides the reference geometry to that
difference. To fulfill this interpretation as a reference, γαβ

should not have a kinetic term and it should only appear
inside W , which is assumed henceforth. These steps are all
in accordance with Ref. [14].

The equations above particularize the general dependence
of f1 from f1 = f1(g, �) into f1 = f1(W (g,U, γ )). Since
the setting of μ1 is done at the action level, the field equa-
tions depend in general on the variation of f1 with respect
to the � fields (4, 5, 9). This feature is absent from other
RG implementations in which the scale setting is done at the
field equations level, but we understand it as a necessity if
one looks for an action with all the dynamical information in
it (including the scale setting).

The tensor γαβ enters the action (3) as a fundamental field,
being one of the fields that compose the � set of fields (Uα

is another field that is also part of �). Before continuing,
we display here the current structure of the action. Let γαβ

be a field that only appears inside f1; and let �̂ be a set
of fields that include all the � fields except for γαβ (i.e.,
δ�̂/δγαβ = 0). Therefore, the action (3) can be rewritten as

S[g, μ, λ, γ, �̂] = Smatter[g, �̂] + 1

16π

∫ [
R − 2�(μ)

G(μ)

+ λ1 [μ1 − f1(W )] +
∑
p=2

λp

×
[
μp − f p(g, �̂)

] ] √−g d4x . (18)

We stress that W is not a fundamental field in this action, it
a function of gαβ , γαβ and Uα (i.e., W = W (g,U, γ )), and
Uα is one of the fields that is part of the set �̂.

A relevant consequence of using γαβ as a fundamental
action field, instead of an external one, is that, the variation
with respect to γαβ implies that λ1 = 0 (at the level of the field
equations). This is shown explicitly in the next subsection.
This implies that setting either the scale at the level of the
action or at the level of the field equations leads to the same
field equations. The latter statement is valid for the scale μ1.
This is why the field equations of Ref. [14], which considers
a scale setting at the level of the action, are compatible with
Ref. [13] equations.

In the context of local structures (e.g., solar system, a
galaxy…), a natural choice for γαβ would be the Minkowski
metric (ηαβ ), such that, far from the system gαβ asymptot-
ically becomes Minkowski and W asymptotically becomes
zero. Hence, in this context and in a comoving frame with the
system, W can be written as the metric time-time component
perturbation, W

∗= U 0U 0(g00 − η00) ≈ g00 − η00. There-
fore, W is the Newtonian potential computed in a comoving
frame (apart from a factor 2 and higher order corrections).
Such Newtonian potential choice was used in the context
of galaxies and the solar system [13,28,38–40] (besides a
star-like case [14]). It also constitutes an extension of some
others scale settings considered in the context of a point par-
ticle (e.g., [3,4,35]).

In a cosmological context, and in accordance with the
motivation of using a RG scale mainly based on the
wavenumber k of the perturbations, instead of the time t
scale (Sect. 1), we consider solutions in which γαβ is the
cosmological background, i.e.,

γαβ = (0)gαβ. (19)

Therefore, using the line element (14),2

W
∗= 1

a2 (g00 − (0)g00) = −2ψ. (20)

This is the same scale used in the other works cited above,
being in essence the Newtonian potential.

In the approach that we are dealing here, it will not be
necessary specify the function f1 further, the important step
is to state its dependence, as in Eq. (16). With this setting,
RG effects will be sensitive and change the cosmological
perturbations, but the background field equations will not
depend on them.

2 To stress that the computation is done in a particular coordinate sys-
tem, the comoving frame (defined by Ui = 0), we use the symbol
“

∗=”.
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3.3 Background equations

If W = 0 in a given spacetime region, then G and � should
have no RG corrections, that is they should be constants in
that region. Hence, let

G|W=0 = G0 and �|W=0 = �0. (21)

The above will be used as boundary conditions that lead to
unique solutions in vacuum.

Since the action dependence on γαβ is only through f1
(16), this implies, from the field equations, that λ1 = 0 at the
level of the field equations [14]. Indeed, using γαβ in place
of � in Eq. (5), the right hand side is zero, therefore,

0 =
∫

λ′
1

δ f ′
1

δγαβ

√−g′d4x ′ = λ1
∂ f1
∂W

UαUβ√−g. (22)

Since we assume ∂ f1
∂W �= 0 and since the other quantities

cannot be zero, the solution is

λ1 = 0. (23)

Using hαβ to denote the metric perturbations,

hαβ ≡ gαβ − (0)gαβ, (24)

the background equations can be found by neglecting all
the contributions of first or higher orders on hαβ . In this
regime, Eq. (7) with Eqs. (21, 23) imply that all the Lagrange
multipliers are zero at background level (λp ≈ 0). Conse-
quently, the matter field equations, Eq. (5), becomes simply
δSmatter/δ� ≈ 0. Moreover, since fαβ ≈ 0 and Gαβ ≈ Gαβ ,
Eq. (4) becomes Einstein field equations. This completes the
verification that at background level there are no RG cor-
rections in this framework (in the sense that the form of
the equations is the same of GR at background level). We
stress that to achieve this result we used the scalar W as the
RG scale. It is also relevant to stress that this result has no
dependence on how G and � depend on the scales μp (the
β-functions), neither on the precise form of the functions f p
(scale settings), apart from μ1 = f1(W ). A second RG scale
will also be necessary, but it will not (and cannot) change this
result.

Below, we write down the background equations, which
are Friedmann equations with background energy density
(0)ε and pressure (0) p,

3H2 − �0a
2 = 8πG0 a

2 (0)ε, (25)

2H′ + H2 − �0a
2 = −8πG0 a

2 (0) p, (26)

where H ≡ a′(η)/a(η) is the Hubble parameter in confor-
mal time. A prime here denotes derivative with respect to
conformal time.

3.4 The relation between G and � in vacuum

The framework, as presented up to this point, is sufficient
for deriving this relation. The generalization towards many
RG scales, as done in this work, does not change the rela-
tion derived in [14] (which assumes a single RG scale). The
explicit form of theG an � relation, to be shown below, opens
a possible interpretation as a consequence of the existence of
a IR fixed point in the RG flow, as commented below.

Since at background level GR is valid, then, in vacuum
(Tαβ = 0),

(0)R = 4�0. (27)

For any quantity X , (0)X means the background value of X .
Therefore, from Eq. (7) and up to the first order on hαβ ,

∂

∂μ1
� = �0G0

∂

∂μ1
G−1. (28)

The general solution of the above equation, with (21) as the
boundary conditions, reads

� = �0G0G
−1. (29)

Inserting the above solution back into Eq. (7), but considering
other values for p, one only concludes that, in vacuum, λp =
0. Hence, without changes to the above solution.

3.5 The relation between G and � in the presence of matter

Here the presence of an energy–momentum tensor Tαβ will
be considered. From Eq. (7), and using the background equa-
tions, up to the first perturbative order,

∂μp� = ξG0∂μpG
−1 + 1

2
G0λp, (30)

with

ξ ≡ �0 − 4πG0
(0)T . (31)

As defined above, ξ is a background quantity. Since μ1 is
a function of W (which is a spacetime function), while ξ

only depends on time, they are independent. On the other
hand, � cannot be simply written as a function of μ1 and
time η, it should only depend on μp. Otherwise, it would
not be compatible with the action (3). In order to be able to
express � as a μp function, Eq. (30) is showing that p cannot
assume a single value, additional RG scales beyond the first
one will be necessary. For p = 1, recalling that λ1 = 0
and recalling the boundary condition (21), it is possible to
integrate Eq. (30) and find

� = �0 + ξ δG, (32)
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with

δG ≡ G0G
−1 − 1. (33)

Inserting the result above back into Eq. (30), with p = 2,
one finds that

ξ∂μ2δG + δG ∂μ2ξ = ξ∂μ2δG + 1

2
G0λ2. (34)

Therefore,

λ2 = 2G−1
0 δG∂μ2ξ. (35)

The above indicate that μ2 should be seen as a function of
the background quantity ξ . Thus, we let

μ2 = f2(ξ ). (36)

Equivalently, one could state that μ2 is a function of (0)T . It
will be shown shortly that the precise form of the f2 function
is irrelevant, the important statement is that f2 is a function
of ξ alone.

Since all the μp RG scales are assumed to be independent
among themselves (e.g., ∂μ3μ2 = 0), from Eqs. (35, 30) one
concludes that

λp = 0 ∀ p �= 2. (37)

Although it is not impossible to introduce new indepen-
dent scales, Eq. (32) is a clear statement that two scales are
sufficient in this context.

In conclusion, the solution for the relation between � and
G is given by Eq. (32), which shows that in general � is not
a function of G alone: it also depends on the matter fields
through (0)T . The set of scales μ1 and μ2, Eqs. (16, 36) is
sufficient for a consistent derivation of the � and G running.
Here the general solution for all the Lagrange multipliers λp

was also found.

3.6 Field equations and perfect fluids

With the above, we have found solutions for � and λp. These
can be inserted in the field equations (4, 5) to yield

Gαβ + (�0 + ξ δG)gαβ − 2√−g∫
δ′
G

∂ξ ′

∂μ′
2

δ f ′
2

δgαβ

√−g′ d4x ′ = 8πGTαβ, (38)

δSmatter

δ�
= 1

8πG0

∫
δ′
G

∂ξ ′

∂μ′
2

δ f ′
2

δ�

√−g′ d4x ′. (39)

The primes inside integrals denote spacetime dependence
on x ′, instead of x . Since f2 is a function of (0)T , in gen-
eral it can depend on both the matter fields and the metric.
However, for the perfect fluid case ξ is simply a function of
the energy density and the pressure, thus the term δ f ′

2/δg
αβ

is zero. Moreover, f2(ξ) has no dependence on spacetime
derivatives, hence δ f ′

2/δ� = ∂ f2/∂� δ(x − x ′). Therefore,
for the perfect fluid case,

Gαβ + (�0 + ξ δG)gαβ = 8πGTαβ, (40)

δSmatter

δ�
= 1

8πG0
δG

∂ξ

∂�

√−g. (41)

In the above, there is no dependence on the form of the f2
function, we only used that f2 is a (differentiable) function
of ξ .

At background level there are no RG correction in this
framework, hence, for a perfect fluid, (0)T = − (0)ε+3 (0) p,
where (0)ε and (0) p are the energy density and the pressure
at background level. This implies that, adopting a thermo-
dynamic description based on the mass density n and the
specific entropy s, then ξ is at most a function of n and s:

ξ = ξ(n, s). (42)

In particular, for a dust-like fluid, ξ only depends on n, while
for a radiation fluid ξ depends on neither of them and it is a
constant.

Since ∂ξ/∂� can be different from zero, the energy–
momentum tensor derived from the matter part alone will
not be conserved. This is a well-known possibility in the
context of varying G and � (e.g., [12,41]). Nonetheless, as
it will be shown, for the present case it is an especially mild
type of violation.

In order to better understand the consequences of this
approach in the presence of matter, we consider a specific
matter action which models an arbitrary relativistic perfect
fluid [42],

Sfluid =
∫ [−ε(n, s) + η1(1 +UαUα) + η2∇α(nUα)

+η3U
α∇αX + η4U

α∇αs
] √−g d4x . (43)

In the above, Sfluid = Sfliud[g,U, n, s, ηm, X ], n is the fluid
mass density, s the rest specific entropy, ηm stands for the
four Lagrange multipliers and ε(n, s) is the energy density.
The quantity X is relevant for the description of fluids with
rotational flow [42]. There are other equivalent action formu-
lations capable of describing an arbitrary perfect fluid, but we
find the action above suitable for this application since in this
formulation Uα enters as a fundamental action field.
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The energy–momentum tensor (10) of this fluid is directly
found as

Tαβ = 2η1UαUβ + gαβ(−nUα∂αη2 − ε). (44)

In the above, some of the constrains inferred from the action
(43) variation with respect to ηm were used.

From Eqs. (41, 43) and using either n or Uα in place of
�, one finds respectively

∂nε +Uα∂αη2 = − 1

8πG0
δG ∂nξ = 1

2
δG ∂n

(0)T, (45)

2η1Uα − n∂αη2 = 0. (46)

Using the constraint UαUα = −1, the above equations
can be used to eliminate η1 and η2, leading to

Tαβ =
(
n∂nε − 1

2
δG n∂n

(0)T

)
UαUβ

+ gαβ

(
n∂nε − 1

2
δG n∂n

(0)T − ε

)

= (εeff + peff)UαUβ + gαβ peff , (47)

where

peff = p + 1

2
δG n∂n(

(0)ε − 3 (0) p), (48)

εeff = ε, (49)

with p = n∂nε − ε [42].
The effective (“eff”) quantities are such that the position

that they occupy in Tαβ are the usual ones. The dynamical
impact of these quantities are analysed in the next subsection.

3.7 Equations of motion in the presence of a relativistic
fluid

For GR, diffeomorphism invariance implies that ∇αTαβ = 0,
and this vector equation determines the equations of motion.
For the present context with G and � running, diffeomor-
phism invariance of the matter action imply the general rela-
tion presented in Eq. (13). For the relativistic perfect fluid
case, using Eqs. (31, 35, 37, 42), it can be expressed as

∇αTαβ = − 1

4πG0
δG

(
∂ξ

∂n
∂βn + ∂ξ

∂s
∂βs

)

= δG
∂ (0)T

∂n
∂βn. (50)

In the above, it was also used that δξ� = ξα∂α� (for �

equal to either n or s) and that (0)T do not depend on s. As
an example, for a pressureless fluid at the background level
(which implies (0)ε ∝ (0)n), the above expression becomes,
up to first order,

∇αTαβ = − δG ∂β
(0)ε. (51)

In general, and up to the first order, one can write Eq. (50)
as

∇αT
αβ = Qβ, (52)

where Qβ is a first order quantity whose single non-null
component is the zeroth one.

In a frame that is comoving with the fluid at background
level, the fluid equations can be written in a form that is
independent from Qβ , up to the first order, as we show below.
The previous equation, for an effective perfect fluid, can be
written as

∇α

(
(εeff + peff)U

αUβ + gαβ peff
) = Qβ. (53)

Multiplying by Uβ ,

− ∇α

[
(εeff + peff)U

α
] + Dpeff

Dτ
= UβQ

β = U0Q
0, (54)

where, for any quantity X , DX/Dτ ≡ Uα∇αX . Inserting
this result into Eq. (53),

Uβ Dpeff

Dτ
+(εeff + peff )

DUβ

Dτ
+∇β peff = Qβ +UβU0Q

0.

(55)

The above equation is the same one that can be found from
GR for a fluid with energy density εeff and pressure peff , apart
from the limit Qβ → 0. However, the previous limit is not
even necessary, since the right hand side is already zero up to
the first order. This can be directly checked by considering
the cases β = 0 and β = i . Therefore, up to the first order,

(εeff + peff)
DUβ

Dτ
+ ∇β peff +Uβ Dpeff

Dτ
= 0, (56)

just like a standard relativistic fluid. In particular, for peff =
0, one finds the geodesic equation DUβ/Dτ = 0. It is impor-
tant to stress that these are first order results which hold in
any frame that is comoving with the fluid at the background
level.

The results above show that dynamically, in a comoving
frame, εeff and peff have the same role of ε and p in theo-
ries with ∇αT αβ = 0. Hence, in systems in which the fluid
equation of state is fixed from the phenomenology, only εeff

and peff are relevant, since the difference between p and
peff cannot be measured independently. Whereas, in phys-
ical situations in which the equation of state is assumed to
be known independently from gravitational effects, the rela-
tion between ε and p is known beforehand thus the pressure
change (48) should be considered. Independently on the case,
for a radiation fluid the effective and the fundamental pres-
sure are always equal.

In the following, taking in consideration clarity and sim-
plicity, we develop cosmology based on the effective pres-
sure, not the fundamental one. That is, a dust fluid is such
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that peff = 0. It would be interesting to look as well for the
case based on the fundamental pressure p, but we let this case
for a future work. Since only the effective quantities will be
used, to simplify the notation the “eff” with ε and p will no
longer be used: εeff → ε and peff → p.

4 Cosmology and physical bounds

4.1 Equations for the scalar perturbations and the slip
parameter

In order to proceed towards cosmology, it will be relevant to
particularize the β-function of G, which states G as a func-
tion of the scale μ1, and the scale setting which express μ1

as a function of other physical quantities. Instead arguing
in favour of particular realizations of each step individually,
we consider an approach that includes a relevant class of
functions for exploring this framework for small W values.
Namely, we consider that the combination of the two previ-
ous steps leads to an analytical function about W = 0, thus
implying that

G0G
−1(W ) = 1 + νW + O(W 2), (57)

where ν is a dimensionless constant that can be either positive
or negative and parametrizes the amplitude of the running of
G. We point out that the expression (57) is quite general for
small W values in the sense that we only demanded G(W )

to be compatible with a linear expansion about W = 0.
Nonetheless, there is a relevant case that is not explicitly
included in the expansion above, which will be commented
latter on.

Therefore, using Eqs. (20, 33), in a comoving reference
frame,

G0G
−1(W )

∗= G0G
−1(ψ) = 1 − 2νψ + O(ψ2), (58)

δG
∗≈ −2νψ. (59)

There are several works that consider β-functions that lead
to logarithmic running for G(μ1) (e.g., [4,27,43–45]). Some
of these realizations can be captured by the linear expansion
above. For instance, let

G ln(μ1) ≡ G0

1 + 2ν ln μ1
, (60)

From this particular G(μ1) realization, the choice μ1 = W is
not viable, since G ln would not be finite at background level
(W = 0), thus the condition (21) would not be possible.
Equations (57, 58) can be found from the setting μ1 = 1 +
1
2W

∗= 1 − ψ and up to first order on ψ . Any other linear
relation between μ1 and W (with non-zero constant term) is

viable, and they differ by a straightforward rescaling on the
ν and G0 constants. Quadratic or higher order corrections
on W can be assumed, but they are irrelevant for the linear
cosmological perturbations. Considerations about using μ =
1 − ψ together with G ln can also be found in Refs. [40,46].
We stress that all the results here presented do not depend
on Eq. (60), this equation appears here just as a relevant
particular case.

See also Ref. [40] for a similar expression. There are,
nonetheless, interesting cases not covered by the expression
above, which will be commented latter.

From Eqs. (31, 32, 59), � is found to be

� = �0 + δ� = �0 +
(

4πG0
(0)T − �0

)
2νψ. (61)

For the energy–momentum tensor, we use a perfect fluid
with

T αβ = (0)T αβ + δT αβ = εUαUβ + p(gαβ +UαUβ). (62)

The spatial velocity perturbations are written as ϑ i , and the
energy density and pressure are expanded as ε = (0)ε + δε

and p = (0) p + δp.
From the above expression for G and Tαβ , considering

the line element (14) and field equations (40), the first order
differential equations for the perturbations read

3H(φ′ + νψ ′) − ∇2(φ + νψ) + 3H2ψ + δ�a2

2
= 4πG0a

2(δT 0
0 + 2νψ (0)T 0

0 ), (63)

∂i
[
φ′ + νψ ′ + Hψ(1 − ν)

] = −4πG0a
2δT 0

i , (64)[
φ′′ + νψ ′′ + H(ψ ′ + 2φ′ + νψ ′)

+1

2
∇2(ψ − φ − 2νψ) + ψ

(
2H′ + H2

)
+ δ�a2

2

]
δij

− 1

2
∂ j∂

i (ψ − φ − 2νψ) = 4πG0a
2(δT i

j + 2νψ (0)T i
j ).

(65)

In the above, a prime denotes derivative with respect to the
conformal time η, we are no longer using “

∗=” to emphasize
the use of a particular reference frame, and all the compu-
tations are assumed to be up to the first perturbative order,
even though there are no “O(ψ2)” or “≈” being used. All
the computations will be exact on ν, unless otherwise stated.
This is important to uncover theoretical bounds for ν and for
completeness. We also remark that the limit ν → 0 leads to
GR.

From the non-diagonal part of Eq. (65), one infers the
gravitational slip parameter as [47–49]

φ

ψ
= 1 − 2ν. (66)
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Using this result, the field equations can be written in the
Fourier space as

3H(1 − ν)ψ ′ + 3H2ψ + 8πG0
(0)εa2 ν ψ + k2(1 − ν)ψ

+ δ�a2

2
= −4πG0a

2δε, (67)

(ψ ′ + Hψ)(1 − ν) = 4πG0a
2( (0)ε + (0) p)

θ

k2 , (68)

(1 − ν)ψ ′′ + 3H(1 − ν)ψ ′ + (2H′ + H2)ψ−

− 8πG0a
2 (0) pν ψ + δ�a2

2
= 4πG0a

2δp. (69)

In the above, Eq. (68) is the divergence of Eq. (64) and it was
introduced θ ≡ ∂ iϑi . These equations also show that ν = 1
is a very special case, as it will be further detailed latter.

4.2 Scalar perturbations solutions for particular cases

The perturbative solution for a universe with �0 = 0 and
with either dust or radiation can be presented in analytical
form. From Eqs. (67, 69) with p = wε and constant w, one
finds

[
ψ ′′ + 3H(1 + w)ψ ′] (1 − ν)

+
[
wk2(1 − ν) + (1 + 3w)H2 + 2H′+

+ (1 + w)ν�0a
2 − 3ν(1 + w)(H′ + H2)

]
ψ = 0. (70)

One can directly check that for ω = 1/3 and negligible
�0 there will be no RG effects on ψ , that is, for radiation
fluid the solution for ψ is the same of GR. The φ solution
will also be equal to the GR solution, apart from a constant
factor, which comes from the slip parameter.

For the case of a universe with dust only, with w = 0 and
�0 = 0, Eq. (70) becomes

(
ψ ′′ + 3Hψ ′) (1 − ν) − 3

2
νH2ψ = 0, (71)

where it was used that H′ = − 1
2H2. The solution reads

ψ = C1 ην̃ + C2 η−ν̃−5, (72)

where C1 and C2 are integration constants with respect to η,
they depend on the wavenumber k, and

ν̃ ≡ 1

2

(√
1 + 24

1 − ν
− 5

)
. (73)

The constant ν̃ is a shorthand notation and it is such that ν = 0
implies ν̃ = 0. It is also a monotonous crescent function in
the domain −∞ < ν < 1, such that −2 < ν̃ < ∞. The ψ

term that depends on C2 necessarily decays with time. The
GR solution (i.e., ψ = C1 + C2η

−5) is reproduced in the

limit ν → 0. The above solution is exact on ν and puts an
upper bound on it, namely

ν < 1. (74)

The case ν > 25 also provides real results for ψ , but it has
no GR limit and will not be further considered here.

Considering an expansion on ν up to its first order, Eq. (72)
becomes especially simple

ψ ≈ C1

(
1 + 6

5
ν ln η

)
+ C2

η5

(
1 − 6

5
ν ln η

)
. (75)

Hence, apart from the decaying mode (proportional to C2),
for a universe that is dust dominated, the first nontrivial RG
correction is the introduction of a logarithm time dependence
in the Newtonian potential, contrasting to the GR case of
constant Newtonian potential for dust.

To summarize, for negligible �0 and in a radiation dom-
inated universe (T = 0) we find no corrections on the ψ

solution with respect to GR. For a dust dominated universe
and for |ν| 
 1, the single change in the ψ solution is the
addition of a ln η term (75), thus providing a slow time varia-
tion of ψ in a matter dominated universe. For both cases, the
φ solution is derived immediately from the slip (66), which is
a constant that differs from the GR value of 1. This constant
slip is already a clear difference with respect to both f (R)

and many scalar-tensor theories, including the Brans–Dicke
case, since for the latter the slip parameter is not a constant.

4.3 Density contrast evolution and the Jeans length

This subsection aims to qualitatively explore the G and �

running effects for structure formation. The case of inter-
est here is that of a universe dominated by matter and with
negligible influence of �0.

Besides the evolution of the perturbation ψ , it is also rel-
evant to understand how matter perturbations evolve. From
the time-time component of the perturbative field equations
(67), and using the ψ solution for dust (72), it is possible to
find an explicit result for the density contrast δε, with

δε ≡ δε

ε
. (76)

Using also the background solution for a dust universe with
�0 = 0 and the solution for � (61), one finds

δε = C1

6
ην̃

[
−12

(
1 + ν

2

)
− k2η2(1 − ν) − 6(1 − ν)ν̃

]

+ C2

6
η−ν̃−5

[
18(1 − 2ν) − k2η2(1 − ν) + 6(1 − ν)ν̃

]
.

(77)
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The integration constants C1 and C2 above are the same that
appear in the ψ solution (72). The GR solution is clearly
recovered in the limit ν → 0 [50]. If one assumes ν to be
small, up to first order, one finds

δε ≈ −C1

6

[
12

(
1 + ν

11

10
+ ν

6

5
ln η

)

+ k2η2
(

1 − ν + ν
6

5
ln η

)]

+ C2

6η5

[
18

(
1 − 8

5
ν − 6

5
ν ln η

)

+ k2η2
(

−1 + ν + 6

5
ν ln η

)]
. (78)

At subhorizon scales, and up to the first order on ν, using
Eq. (75), one can thus write

δε ≈ − k2η2

6

[
C1

(
1 − ν + ν

6

5
ln η

)
+ C2

η5

(
1 − ν − 6

5
ν ln η

)]

≈ −1

6
k2η2(1 − ν)ψ. (79)

The relation between δε and ψ above is the same of GR,
apart from the correction proportional to ν. It could also be
found from Eq. (77) without the small ν approximation. At
small scales, this 1 − ν factor is also found from a Jeans
length analysis, as shown below. In the end, one can spot two
corrections at small scales and up to the first order on ν: (i)
the presence of the gravitational coupling correction 1 − ν

and (ii) the logarithmic dependence on η of ψ and δε.
To find the Jeans length, the first step we adopt is to find

a second order differential equation for δε. Using ∇αT αβ =
Qβ , p = wε (with constant w), δp = c2

s δε, and since Q0 is
a first order quantity while Qi is zero, one finds, up to first
order,3

δ′
ε + 3H(c2

s − w)δε = (1 + w)(3φ′ − θ) − Q0
(0)ε

, (80)

θ ′ + H(1 − 3w)θ = k2
(

ψ + c2
s

1 + w
δε

)
. (81)

From Eq. (51) and using that (0)ε′ + 3H (0)ε = 0,

Q0 = − δG
(0)ε′ = 6νψH (0)ε. (82)

By deriving Eq. (80) and combining it with Eqs. (26, 66,
81, 82), it is possible to find a second order equation that
governs the density contrast dynamics. Such equation, in a
matter dominated universe, takes the form

3 Apart from the Qβ term, see for instance Ref. [51].

δ′′
ε + Hδ′

ε +
(

3

2
H2 + k2

)
c2
s δε

= 3(1 − 2ν)ψ ′′ + 3(1 − 4ν)Hψ ′ − (k2 + 3νH2)ψ.

(83)

In the above, we used w = 0 and c2
s 
 1.

For computing the Jeans length, we are interested in the
subhorizon limit and without neglecting cs . Recalling that,
in the subhorizon limit, Eq. (68) implies ψ ′ = −Hψ , then
Eq. (83) can be written as

δ′′
ε + Hδ′

ε +
(
k2c2

s − 4πG0

1 − ν
a2 (0)ε

)
δε = 0. (84)

Therefore, the Jeans length is

λJ ≡ 2πa

kJ
= cs

√
(1 − ν)π

G0
(0)ε

. (85)

Hence, for small scales and for 0 < ν < 1, the RG effects
reduce λJ and enhance the collapse of structures, while ν < 0
decreases structure formation. Thus, the “force” that acts on
test particles is enhanced for ν > 0, similarly to [13,40].

4.4 Modified gravity parametrizations

Besides the slip parameter, another relevant parameter for
describing cosmological models comes from the cosmolog-
ically extended Poisson equation (67), and it is sometimes
designated by Q(a, k), where Q is such that [47,52,53]

− k2φ = 4πG0Q(a, k) a2ε �ε, (86)

with

�ε ≡ δε + 3(1 + w)Hθ/k2. (87)

If more than one fluid is being considered, then there should
be a sum on δε , w and θ .

From Eqs. (66, 67), one finds

Q(a, k) = 1 − 2ν

1 − ν + ν q(a)/k2 , (88)

with

q(a) = 12πG0(
(0)ε + (0) p)a2. (89)

The result above is independent on the value of �0. We
remark that the found expressions for the gravitational slip
φ/ψ and Q(a, k) are not common ones, in particular they
differ from Brans–Dicke and f (R) gravity expressions.

We stress that (0) p and (0)ε are background values for the
pressure and energy density of the matter fields, they do not
include �0, hence (0) p 
 (0)ε does not impose any limit on
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�0. Thus, for a universe with �0, with matter and negligible
radiation,

q(a)| (0) p
 (0)ε = 12πG0
(0)ε(η0) a

−1 = 9

2a
�m0H

2
0

≈ 1

a
(4 Gpc)−2. (90)

Where (0)ε(η0) is the value of the background energy density
at a time η0 (today). The above estimate for q(a) is based on
the �CDM value for �m0H2

0 with a(η0) = 1. Hence, as a
function of the redshift z,

Q(z, k) ≈ 1 − 2ν

1 − ν + ν(1 + z)/ (4kGpc)2 . (91)

For z ≈ 0, the dependence on k only becomes relevant for
distances of the Gpc order or larger. For ν > 0, and z � 1,
one sees that Q decreases with z. This behaviour indicates
deviations from �CDM for the primordial universe, but only
at the perturbative level. It should be recalled that the above
expression for Q cannot be extended towards arbitrary z val-
ues, since before the matter-radiation equality radiation pres-
sure will not be negligible. And also, as shown in Sect. 4.2,
the ψ solution for a radiation dominated universe is the same
of GR. Although this behaviour of Q(z, k) is interesting and
should be further studied, here we will continue to focus on
the universe at late times. We also stress that the assumption
of analyticity of G(W ) may work as a good approximation
within a given range for W , not necessarily for any W value.

Since the derived gravitational slip is constant, it is trivial
to convert the Q result into an expression for Y , that is, the
analogous quantity with φ replaced by ψ in the left hand side
in Eq. (86). It reads

Y = 1

1 − ν + νq(a)/k2 = Q

φ/ψ
. (92)

And the lensing parameter, relevant for weak lensing and the
integrated Sachs–Wolfe effect, reads [53]

� = 1

2
Q (1 + ψ/φ) = 1 − ν

1 − ν + νq(a)/k2 . (93)

Which shows that at distances smaller than one Gpc and for
z � 1, � does not depend on ν and it satisfies � = 1, which
is the same value of GR.

A set with two of the four parameters (φ/ψ, Q,Y, �) is
sufficient for describing the dynamics of the first order per-
turbations for many modified gravity theories [53]. However,
we are considering here a framework in which the energy–
momentum tensor is not always conserved, hence the matter
perturbations may depend on two of the previous parameters
and the Qβ vector (52).

4.5 Constraining ν from modified gravity parametrizations

The results of Sect. 4.4 will be here used to constrain ν. To this
end, there are two issues to considered: (i) many constraints
that can be found in the literature assume particular time
and k dependencies that do not match those here found; (ii)
energy–momentum conservation is commonly assumed in
the literature, while in this framework it is in general violated.

Considering the item (ii) above, we note the following par-
ticularities of this specific case: (a) energy–momentum ten-
sor is always conserved at background level; (b) any energy–
momentum with zero trace at background level is conserved
even at the first order; and (c) in a comoving frame with
the cosmological background, particles follow geodesics (as
shown in Sect. 3.7). In particular this implies that, for a
comoving observer and up to the first perturbative order, the
trajectory of light and that of massive isolated particles are
the same of GR for a given metric.

The bounds on the gravitational slip proposed in Refs. [48,
54] are based on a comparison between the potential ψ

inferred from the internal dynamics of clusters of galaxies
with lensing effects from the same clusters. The bounds from
Ref. [54] are not particularly strong, but are sufficient to yield
|1 − φ/ψ | ≤ 0.61 at 2σ level (and apart from systematic
errors), which implies, from (66), that

|ν| ≤ 0.30 (94)

at 2σ level. A forecast considering near future surveys is done
in [48], where it is found the stronger bound |1 − φ/ψ | ≤
0.09, at 2σ level. Consequently,

|ν| ≤ 0.04, (95)

at 2σ level. This is a significant constraint for the perturba-
tions. The test above works in the following way: assuming
that current observations are in agreement with �CDM, it
states what could be the largest gravitational slip deviation
from the fiducial value of 1 that would be still in agreement
with observations.

One can find many other constraints in the literature with
different hypothesis (e.g., [55,56]), whose application to this
framework requires the use of some approximations which
may or may not be reasonable (for instance, on the redshift
dependency). Nonetheless, they imply constraints on ν for
z ≈ 0 about the same order of Eq. (94).

4.6 On the cosmological dark matter and dark energy
interpretation

Can the dynamical change provided by these RG correc-
tions have a direct impact on dark matter at cosmologi-
cal scales? Considering changes of the 10% order on large
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structures (say a dark matter filament or a large cluster
of galaxies) for the current bound (94), there is space for
non-negligible (∼ 10%) changes. These changes, however,
would be present only as constant global enhancements of
the dynamical effects, since the Y parameter can be enhanced
due to ν changes (92). This is also closely related to the Jeans
length rescaling due to ν, as shown in Eq. (85). There would
still be a large need for dark matter at cosmological scales
even without considering the bound from Eq. (94), this since,
apart the constant rescaling of Y , the only scale dependent
effect happens at Gpc scales (90), while dark matter clumps
at smaller scales.

While ν > 0 implies an enhancement of local gravita-
tional attraction, at Gpc distances the q(a) term in the Y
parameter may become relevant, and the effect of the latter
is to decrease Y , thus reducing the gravitational attraction at
large distances for positive ν. Similarly to the dark matter
case, it will not remove the need for �0, but it may have a
non-negligible impact. Since the background equations of
this framework are that of �CDM, the best-fit values of
�0 and H0 will be the same considering background only
observables. For the perturbations, due to the extra parame-
ter ν, larger error bars are expected, but without a complete
numerical analysis, using CMB data, it is not yet possible to
say if the best value for H0 will be closer with respect to the
background one. This framework is in the end a variation with
respect to �CDM, and it may have impact on some �CDM
tensions [57–59]. Further and more detailed tests, using in
particular the CMB data, are necessary and constitute a work
in progress.

4.7 Consequences for f σ8

Since the background field equations of this framework are
the same of �CDM, we have to look for observables sensi-
tive to the perturbations. We did this with the modified grav-
ity parametrizations evaluated in the previous subsections,
which lead to bounds, but no explicit links towards solv-
ing some of the current �CDM anomalies. Although it is
beyond the purpose of this work to do a complete cosmolog-
ical analysis, we consider here f σ8 data, which have shown
discrepancies at low redshift (z � 2) (e.g., [60–62]) with the
�CDM parameters as inferred from thePlanck collaboration
[55].

For a universe with dust and �, the density contrast second
order evolution equation can be written as

δ′′
ε + Hδ′

ε − 4πG0Y (a, k)a2 (0)εδε = 0, (96)

where Y is given by Eq. (92). For distance scales much
smaller than 4 Gpc a−1/2, the term q(a)/k2 inside Y is neg-
ligible, thus Y ≈ 1/(1 − ν). The resulting expression is
exact on ν and it is equivalent to Eq. (84) for negligible c2

s .

Although there is no explicit dependence on �0, its effect is
present in the background quantities.

With respect to the scale factor a and using the physical
time Hubble parameter H , Eq. (96) can be written as [62]
(see also [63,64])

∂2
a δε +

(
∂aH

H
+ 3

a

)
∂aδε − 3H2

0 �m0

2a5H2

1

1 − ν
δε = 0. (97)

In the above, ∂a is a derivative with respect to the scale factor
a, H0 is the value of H today and we have used that Y ≈ (1−
ν)−1. We stress here a particular feature of this framework at
subhorizon scales: we note that it is not the change ofY with z
that allows for a possible tension reduction between the CMB
and “local” measurements of σ8, but the mismatch between
the background gravitational constant (G0) and the effective
gravitational constant (YG0) that act on the perturbations,
this adds a new relevant parameter for the dynamics.

As usual, the Hubble parameter as a function of a is

H2(a) =
(

�m0

a3 + 1 − �m0

)
H2

0 . (98)

For this case, which considers the influence of �0, we do not
know of an explicit analytical solution for δε, but Eq. (97)
can be used to provide a numerical solution.

The main quantity for this test is f σ8(a), which is given
by

f (a) = d ln δε(a)

d ln a
, (99)

σ(a) = σ8
δε(a)

δε(a = 1)
. (100)

f σ8(a) ≡ f (a)σ (a) = σ8

δε(1)
a∂aδε(a). (101)

To solve Eq. (97) numerically, it is important to know the
initial conditions. Considering standard �CDM background,
at z ∼ 103 the universe is dominated by dust, hence using
initial conditions at this z from the dust-only solution (77)
should work as a good approximation in the �CDM context
(i.e., ν = 0, see e.g., [62]). In order to better evaluate the
impact of such approximation to the model under consider-
ation (ν �= 0), we also consider imposing initial conditions
and using Eq. (77) at z = 100. We find that there are no
relevant changes to any of our results using either one of
the cases, the difference on the inferred parameters are about
∼ 10−4.

At subhorizon scales, only the terms that multiply k2η2 are
relevant. The mode proportional to C1 will eventually domi-
nate over the one proportional to C2, hence we only consider
the C1 mode (which, apart from the case ν 
 −1, it is an
increasing mode, while C2 is the coefficient of a decreasing
mode). Neglecting the decreasing mode is commonly done
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(e.g., [62]) since it simplifies considerably the issue of ini-
tial conditions while the approximation is a very good one:
indeed, at z ∼ 100 one is deep in the matter dominated phase,
thus providing sufficient time for the decreasing mode to be
negligible.

For a dust dominated universe a ∝ η2, hence Eq. (77)
yields

δε(a) ∝ a
ν̃
2 +1 and ∂aδε(a) ∝

(
ν̃

2
+ 1

)
a

ν̃
2 , (102)

this in the subhorizon limit and with only the increasing
mode. Since Eq. (97) is invariant under any constant rescal-
ing of δε, only the a dependent term is kept in δε(a), while
for deriving ∂aδε(a) we have not further rescaled δε. Within
GR, for z = 103, one would use the boundary conditions
δε(10−3) = 10−3 and ∂aδε(10−3) = 1.

Following Ref. [62], our results can be seen in Table 1 and
in Fig. 1. The results show that ν has a relevant impact on f σ8

data, even within the bound (94), and therefore this frame-
work may alleviate possible incompatibilities between σ8 as
inferred from the CMB withσ8 values inferred at low redshift.
In more detail, in Table 1 we show the results for standard
�CDM and consider its extended version with cosmological
RG effects, as here proposed and labeled as �CDM+RG.
The simplest case here considered is that of �CDM with
parameters �m0 and σ8 fixed from the CMB [55], while ν is
allowed to vary to better accommodate the model within the
f σ8 data (the third line in Table 1). Clearly, ν has a relevant
impact on this fit and the result is as good as (considering
the value of χ2

min) the case in which both �m0 and σ8 are
allowed to vary within �CDM. The same table shows the
case in which �m0, σ8 and ν are free to vary, which slightly
further reduces the χ2

min value but the resulting ν value that
is outside the bound (94). By constraining ν to lie within that
bound, the resulting χ2

min changes by only 0.10 while the �m0

and σ8 become close to the �CDM/Planck values (as shown
in the last line of Table 1). As previously commented, the
impact on the amount of dark matter is a small one, it is far
from replacing dark matter at cosmological scales; and actu-
ally these data suggest a slight increase on the dark matter
content, as expected since these dada favour negative values
of ν.

In Fig. 1, we show the curves corresponding to four of
the best-fit results presented in Table 1. We only omit the
case that violates the constraint (94). The plot also explicitly
shows that a change of ν can have a sizable effect on f σ8,
and this especially for low z, even considering the constraint
(94). For larger values of z (i.e., z � 1.5), different ν values
lead essentially to the same predictions. This framework can
be further tested by either extending this analysis towards
full CMB data or by results from future gravitational-slip
bounds. The latter can either further support this approach,

or may render the possible effects of this framework on f σ8

as a minor one, as implied by the forecasted bound (95).
In Ref. [65], the authors find particular Brans–Dicke grav-

ity solutions that can mimic certain RG corrections to grav-
ity [66,67] and alleviate both the H0 and f σ8 tensions.4 In
their case, the background field equations are different from
�CDM, which is different from our case, but, on the other
hand, at subhorizon the main new effect is a rescaling of
the effective gravitational constant. Both models introduce
a departure from GR that favour cosmological perturbations
whose effective gravitational constant is reduced with respect
to that of GR.

5 Conclusions

Here we presented cosmological implications from scale-
dependent couplings G and �, considering that all the infor-
mation on their running is included in the action. This
approach is motivated from possible renormalization group
(RG) effects to general relativity (GR) at large distances,
together with the assumption that there should be an effec-
tive classical action capable of fully describing the dynamics
at cosmological distances. After presenting the full action,
which extends that of Ref. [14] by using an arbitrary num-
ber of possible RG scales, the field equations and conse-
quences for the energy–momentum conservation are eval-
uated. In the context of fluids, we use the same RG scale
proposed in Ref. [14], which is the W scalar (17). The lat-
ter scale extends a number of noncovariant proposals (e.g.,
[3,4,13,35]). This scale always preserves the background
and affects the perturbations. The novelty in the cosmologi-
cal case is that the background itself is dynamical, and hence,
as here found, this property implies that a second RG scale is
necessary. However, there is no second choice to be done, the
field equations fix the second scale as a scalar function of the
energy–momentum tensor trace. No other scales beyond the
second one are necessary. For vacuum (Tαβ → 0), the rela-
tion betweenG and� is the same of Ref. [14] (i.e.,� ∝ G−1)
(see also [2,68,69]). After several dynamical consequences
are detailed, including some exact solutions and the coupling
to fluids at the action level, the evolution of the first order per-
turbations are parametrized using φ/ψ,�,Y and Q, which
are commonly used parametrizations to describe modified
gravity (e.g., [47]). From them, a clearer understanding of
the cosmological effects from this framework is found, and
bounds on the dimensionless ν parameter could be estab-
lished. Our results are not compatible with the removal of
either dark matter or dark energy in place of RG effects, but
this framework can have relevant impact to both of them and

4 The Running Vacuum model, considered in Refs. [66,67], is related
to a class of RG corrections to gravity [12].
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Table 1 Best-fit results for f σ8
data

Model Variation Fitted parameters χ2
min �m0 σ8 ν

�CDM Planck-2018 parameters None 51.34 0.315 0.811 0

�CDM best fit from f σ8 data �m0, σ8 32.40 0.283 0.769 0

�CDM+RG Only ν is fitted ν 32.42 0.315 0.811 − 0.167

�CDM+RG best fit, no constraints �m0, σ8, ν 32.04 0.355 0.981 − 0.769

�CDM+RG best-fit with |ν| ≤ 0.3 �m0, σ8, ν 32.14 0.316 0.855 − 0.300

Fig. 1 f σ8 model comparison. Left: f σ8 curves for four models that
appear in Table 1, only the best fit model without constraints is not
shown (since it violates the bound (94), and since its curve is similar
to the dotted black curve). �CDM/Planck means that the parameters
�m0 and σ8 are those given by the 2018 Planck collaboration [55]. The

bluish region shows the effect of changing the value of ν, within the
allowed bounds (94), while using the values of �m0 and σ8 given by
�CDM/Planck [55]. Right: This plot shows the same curves displayed
in the left plot and it adds the f σ8 observational data (data compiled by
Ref. [62])

possibly to anomalies at cosmological level [57–59]. Numer-
ical analysis on the CMB power spectrum constitute a rele-
vant piece of information for addressing this issue, which is
a work in progress. Further developments on the theoretical
side, as a Hamiltonian formulation (e.g., [70]), are also being
considered.

Our analysis on f σ8 (Sect. 4.7) shows that this frame-
work can improve �CDM in this context if negative ν values
are considered. This can appreciably reduce the f σ8 values
for low redshift (z < 1.5), while essentially preserving the
�CDM f σ8 results for higher redshifts (Fig. 1). Hence, it
has the potential of alleviating tensions that are present in
�CDM (e.g., [60–62]). Further analyses that consider more
observational data together are still necessary.

The results here presented are not restricted by too specific
assumptions on a β-function realization. The assumption is
that G(μ1(W )) = G(W ) can be approximated by a linear
function about W = 0 (higher order corrections are possible,
but do not change our results). One particularly relevant case,
which includes a logarithm term, was discussed in detail in
Sect. 4.1.

There are different frameworks on scale-dependent cou-
plings � and G at cosmological level. The majority con-

siders the implementation of RG-like effects at the level
of the field equations, or partially at the action level, (e.g.,
[3,12,25,26,71,72]).5 Here we presented a framework in
which all the relevant information come from the action,
including the scale settings, and applied it to cosmology;
leading to a picture that is different from both GR and well
known modified gravity theories, as f (R). Contrary to sev-
eral approaches within RG effects at the field equations level,
in the proposed framework, one cannot choose if eitherG will
vary, or � will, or both of them (e.g., [12,26]). This freedom
appear in such theories since there the complete action is
neither used nor known, hence ∇αT αβ is not fixed and may
either be zero or it may depend on the running of G or �.
In the framework here proposed (like that in Ref. [14]) there
is no such freedom, once the RG scales are fixed, ∇αT αβ is
also fixed. This is in accordance with Eq. (13), which is a
consequence of diffeomorphism invariance of the action.
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