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Abstract We consider an f (Q, T ) type gravity model in
which the scalar non-metricity Qαμν of the space-time is
expressed in its standard Weyl form, and it is fully deter-
mined by a vector field wμ. The field equations of the theory
are obtained under the assumption of the vanishing of the
total scalar curvature, a condition which is added into the
gravitational action via a Lagrange multiplier. The gravita-
tional field equations are obtained from a variational prin-
ciple, and they explicitly depend on the scalar nonmetricity
and on the Lagrange multiplier. The covariant divergence of
the matter energy-momentum tensor is also determined, and
it follows that the nonmetricity-matter coupling leads to the
nonconservation of the energy and momentum. The energy
and momentum balance equations are explicitly calculated,
and the expressions of the energy source term and of the extra
force are found. We investigate the cosmological implica-
tions of the theory, and we obtain the cosmological evolu-
tion equations for a flat, homogeneous and isotropic geom-
etry, which generalize the Friedmann equations of standard
general relativity. We consider several cosmological models
by imposing some simple functional forms of the function
f (Q, T ), and we compare the predictions of the theory with
the standard �CDM model.
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1 Introduction

The birth of general relativity as a result of the works by
Einstein and Hilbert [1–3] had a tremendous impact not only
on physics and cosmology, but also on mathematics. In their
works Einstein and Hilbert made an extensive use in their
work of the Riemannian geometry [4], in which a space-
time can be endowed with a metric and an affine structure,
determined by a metric tensor gμν and a connection �α

μν ,
respectively. The geometric and gravitational properties of
the space time are described by the curvature tensor Rμ

νσλ
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and its contraction, from which the Einstein tensor is con-
structed.

Very soon after the emergence of general relativity, Weyl
[5] did propose in 1918 an extension of Riemannian geom-
etry, which he used for physical applications to develop the
first unified theory of gravity and electromagnetism, in which
the nonmetricity of the spacetime generated the electromag-
netic field. Weyl’s unified theory was severely criticized by
Einstein, leading essentially to its abandonment for more than
a half century. In the meantime another important develop-
ment took place in differential geometry, and it was based
on the introduction of the concept of torsion [6]. This led
to an important extension of general relativity [7–9], which
is called the Einstein–Cartan theory [10]. From a physical
point of view in the Einstein–Cartan theory the torsion field
Tμ

σλ �= 0 is identified with the spin density of the matter [10].
A third independent mathematical and physical develop-

ment of the gravitational field theories was initiated by the
work of Weitzenböck [11], who introduced some geometri-
cal structures that are known presently as the Weitzenböck
spaces. A Weitzenböck space is described by the properties
∇μgσλ = 0, Tμ

σλ �= 0, and Rμ
νσλ = 0, respectively. The

Weitzenböck space reduces to a Euclidean manifold when
Tμ

σλ = 0. On the other hand in a Weitzenböck manifold Tμ
σλ

takes different values in different regions of the manifold.
Since the Riemann curvature tensor identically vanishes in
a Weitzenböck manifold, these geometries have the key fea-
ture of distant parallelism, known also as teleparallelism or
absolute parallelism. In physics Einstein was the first to apply
Weitzenböck type space-times by proposing a unified telepar-
allel theory of gravitation and electromagnetism [12].

The basic idea in the teleparallel formulation of gravity
is to substitute the metric gμν of the space-time manifold,
representing the basic geometrical variable describing the
gravitational field, by a set of tetrad vectors eiμ. Then one can
use the torsion tensor, generated by the tetrad fields, to com-
pletely describe gravitational phenomena, with the curvature
replaced by the torsion. Hence this approach leads to the so-
called teleparallel equivalent of General Relativity (TEGR),
which was proposed initially in [13–15], and presently it is
also known as the f (T) gravity theory, where T is the tor-
sion scalar. The basic property of teleparallel, or f (T) type
theories, is that torsion exactly balances curvature, with the
important result that the space-time turns into a flat manifold.
Another important property of the f (T) type gravity theo-
ries is that the gravitational field is described by second order
differential equations, a situation essentially different from
other modified gravity theories, where, like, for example, in
f (R) gravity, the field equations in the metric approach are of
fourth order [16]. A detailed analysis of teleparallel theories
is presented in [17]. f (T) gravity theories had been inten-
sively used for the study of the cosmological evolution and of
the astrophysical processes. They can provide a physical and

geometrical explanation for the late-time accelerating expan-
sion of the Universe, without the necessity of introducing a
cosmological constant, or the dark energy [18–37].

The Weyl geometry did not attract much attention in its
first 50 years of existence. However, this situation changed
after 1970, with the physicists beginning to gradually explore
its interesting physical and mathematical consequences at
both microscopic and macroscopic levels (for a very detailed
description of the applications of Weyl geometry in physics
see [38].

An interesting extension of Weyl gravity was proposed by
Dirac [39,40]. With the use of a real scalar field β of weight
w(β) = −1, and by constructing the electromagnetic field
tensor Fμν from the Weyl curvature, Dirac adopted as the
gravitational Lagrangian the expression

L = −β2R + kDμβDμβ + cβ4 + 1

4
FμνF

μν, (1)

where k = 6 is a constant. This Lagrangian is confor-
mally invariant. The cosmological implications of a slightly
modified Dirac model were investigated in [41]. In [42] the
evolution of a Universe described by the Weyl–Dirac type
Lagrangian

L = W λρWλρ − β2R + σβ2wλwλ + 2σβwλβ,λ

+(σ + 6)β,ρβ,λg
ρλ + 2�β4 + Lm, (2)

was considered, where Wμν is the Weyl length curvature
tensor, constructed from the Weyl connection vector wμ, β is
the Dirac scalar field, while σ and � are constants. It turns out
that in this model matter is created by Dirac’s gauge function
at the beginning of the Universe, while in the dust dominated
period Dirac’s gauge function gives rise to dark energy that
causes the late time cosmic acceleration.

Weyl’s geometry can be extended naturally to include tor-
sion. The corresponding geometry is called the Weyl–Cartan
geometry, and it was extensively studied from both physical
and mathematical points of view [43–51]. For a review of the
geometric properties and of the physical applications and of
the Riemann–Cartan and Weyl–Cartan space-times see [52].

In the geometric and physical framework of the Weyl–
Dirac theory torsion was included in [53–55], leading to a
Lagrangian of the type

L = WμνWμν − β2R + β2(k − 6)wμwμ

+2(k − 6)βwμβ,μ + kβ,μβ,μ + 8β�α
[λα]β,λ

+β2(2�α
[μλ]�

λ[
μα

] − �α
[σα]�

ω

[σω] + �α
[μλ]�

ω[
μλ

]gαω

+8�α
[σα]w

σ ) + 4Wμν;α�α[
μν

] + 2�β4 + Lmatter , (3)

where the torsion tensor �λ
[ μν] → �

λ

[ μν] = �λ
[ μν] is gauge

invariant, from which one can also construct a gauge covari-
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ant (in the sense of Weyl) general relativistic massive elec-
trodynamics.

An extension of the teleparallel gravity models, called
Weyl–Cartan–Weitzenböck gravity, was proposed in [56].
The action of this model can be formulated in terms of the
dynamical variables

(
gμν,wμ, T λ

μν

)
as

S =
∫

d4x
√−g

(
R + TμανTμαν + 2TμανTναμ

−4TμT
μ − 1

4
WμνWμν + β∇μT∇μT − 6wμwμ

+8wμT
μ + Lm

)
, (4)

where β is a constant, and Wμν = ∇νwμ − ∇μwν , respec-
tively. In the Weyl–Cartan–Weitzenböck theory, the condi-
tion of the vanishing of the sum of the curvature and torsion
scalar,

R + TμανTμαν + 2TμανTναμ − 4TμT
μ = 0, (5)

is imposed in a background Weyl–Cartan type space-time,
and it leads to a gravitational action of the form

S =
∫

d4x
√−g

(
− 1

4
WμνWμν + β∇μT∇μT − 6wμwμ

+8wμT
μ + Lm

)
. (6)

An important difference with respect to the standard
teleparallel theories is that the model is not formulated in a flat
Euclidean geometry, but in a four-dimensional curved space-
time. From the Weyl–Cartan–Weitzenböck theory a purely
geometrical description of dark energy can be obtained, lead-
ing to a cosmological model in which the late time acceler-
ation of the Universe is fully determined by the geometrical
properties of the space-time. The Weyl–Cartan–Weitzenböck
and the teleparallel gravity was extended in [57], with the
Weitzenböck condition in a Weyl–Cartan geometry inserted
into the gravitational action via a Lagrange multiplier. The
action for this theory is

S = 1

κ2

∫
d4x

√−g

[
− κ2

4
WμνW

μν − 6wνw
ν + 8wνT

ν

+ (1 + λ)
(
R + TμανTμαν + 2TμανTναμ − 4TμT

μ
)

+ β∇μT∇μT + αTμνT
μν + κ2Lm

]
, (7)

where α and β are constants, and λ is the Lagrange multiplier.
Both decelerating and accelerating cosmological models can
be obtained from the theory.

The above theoretical investigations suggests that general
relativity can be represented in (at least) two mathematically
equivalent geometric formalisms: the curvature formulation
(in which the torsion and the nonmetricity identically vanish),

and the teleparallel formulation, in which the curvature and
the nonmetricity vanish identically, respectively.

But a third equivalent geometric representation of general
relativity is also possible. In this formulation the properties of
the gravitational interaction are described geometrically by
the nonmetricity Q of the metric, which defines the variation
of the length of a vector during the parallel transport around
a closed loop. This approach is called the symmetric telepar-
allel gravity, and it was initially developed in [58]. Generally,
the connection describing the geometry can be decomposed
into the Levi-Civita connection, and a deformation one form,
�α

β = �
{}α

β−Aα
β , where Aαβ = Kαβ−Qαβ/2−Qγ [αβ]θγ ,

where Kαβ is the contorsion, while Qαβ is the nonmetricity
defined as Qαβ = −Dgαβ . By adopting a teleparallel frame
in which � vanishes, and by imposing the condition of the
vanishing of the torsion, it turns out that Qμνλ = −gμν,λ,
and the deformation tensor takes the form of the Christoffel
symbol γ α

βγ , Aα
βγ = γ α

βγ . The corresponding gravitational

action takes the form Lg = √−ggμν
(
γ α
βμγ

β
να − γ α

βαγ
β
μν

)
,

which is equivalent to the Hilbert–Einstein Lagrangian.
Moreover, the associated energy-momentum density in sym-
metric teleparallel gravity is the Einstein pseudotensor, which
in this geometric formulation becomes a true tensor. For a
review of teleparallel gravity see [59].

The symmetric teleparallel gravity approach was fur-
ther extended into the f (Q) gravity theory (also called
coincident general relativity) in [60]. After introducing
the quadratic nonmetricity scalar Q = −QαβμQαβμ/4 +
QαβμQβμα/2 + QαQα/4 − Qα Q̄α/2, where Qμ = Q α

μ α ,

and Q̃μ = Q μα
α , defining the nonmetricity conjugate

Pα
μν as Pα

μν = c1Qα μν + c2Q α
(μ ν) + c3Qαgμν +

c4δ
α
(μ Q̄ν)+(c5/2)

(
Q̃αgμν + δα

(μQν)

)
, and defining the gen-

eral quadratic form Q as Q = Q μν
α Pα

μν , the gravitational
action of the theory can be written down as [60]

S =
∫

dnx

[
−1

2

√−gQ + λ βμν
α Rα

βμν + λ μν
α T α

μν

]
. (8)

Such gravitational theories based on nonmetricity may
also be called nonmetric gravity. Different physical and geo-
metrical properties of symmetric teleparallel gravity have
been investigated in the past in a number of studies, with
the interest for this type of theoretical approach to gravity
rapidly increasing recently [61–70,70–81].

In the so-called “newer general relativity” class theories
the propagation velocity of the gravitational waves around
Minkowski spacetime and their potential polarizations were
considered in [69]. For symmetric teleparallel spacetimes
the exact propagator for the most general infinite-derivative,
even-parity and generally covariant theories was obtained
in [70]. For different extensions of symmetric teleparallel
gravity the propagation of gravitational waves was studied
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in [73], and it was found that the speed and the polarization
of the gravitational waves are the same as in general relativ-
ity. In the framework of Symmetric Teleparallel Geometry
an approach based on the Noether Symmetry was applied
to classify all possible quadratic, first-order derivative terms
of the non-metricity tensor in [74]. The cosmological impli-
cations of the f (Q) theory and its observational constraints
were investigated in [75,76], respectively. In this geomet-
ric theory the accelerating expansion of the Universe is an
intrinsic property, and there is no need to introduce the dark
energy. The evolution of the cosmological perturbations in
f (Q) gravity was analyzed in [80].

In [72] an extension of symmetric teleparallel gravity was
considered by introducing a new class of theories where
the nonmetricity Q is nonminimally coupled to the matter
Lagrangian. The action of the theory is given by

S =
∫

d4x
√−g

[
1

2
f1(Q) + f2(Q)Lm

]
, (9)

where f1 and f2 are arbitrary functions of Q, and Lm is the
matter Lagrangian. This nonminimal coupling between mat-
ter and geometry implies the nonconservation of the energy-
momentum tensor, and to the generation of an extra force in
the geodesic equation of motion. The cosmological solutions
obtained for some specific functional forms of the functions
f1(Q) and f2(Q) lead to accelerating evolutions at late times.

The most general extension of the symmetric teleparallel
gravity, in which the gravitational Lagrangian L is given by
an arbitrary function f of the non-metricity Q and of the
trace of the matter-energy-momentum tensor T , with action

S =
∫ [

1

16π
f (Q, T ) + Lm

] √−gd4x, (10)

was studied in [81]. Cosmological models constructed by
using some simple functional forms of the function f (Q, T )

were investigated in detail, and it was shown that for all
considered cases the Universe experiences an accelerating
expansion, ending with a de Sitter type evolution. Geom-
etry - matter couplings do appear in some semiclassical
approaches to quantum gravity, where, for example, one can
consider an action containing a geometry-quantum matter
coupling of the form

∫
RF (〈 f (φ)〉)�

√−gd4x , where �

is the wave function, F and f are arbitrary functions, and
(〈 f (φ)〉)� = 〈�(t)| f [φ(x)] |�(t)〉 [82]. By assuming that
the quantum metric can be decomposed into the sum of a
classical and of a fluctuating part, of quantum origin, respec-
tively, the resulting theories also lead at the classical level
to modified gravity models with geometry-matter coupling
[83–86],

It is the main goal of the present investigation to con-
sider a particular implementation of the f (Q, T ) gravity
theory, which is based on the nonminimal coupling between
the nonmetricity Q and the trace T of the matter energy-

momentum tensor. More exactly, we will go to the frame-
work of the proper Weyl geometry, and adopt for the non-
metricity Q the explicit expression that follows from the
non-conservation of the divergence of the metric tensor in
this geometry, ∇λgμν = −wλgμν . This approach allows the
representation of the nonmetricity in terms of a vector field
wμ, and the metric tensor. With the help of the vector wμ one
can construct an electromagnetic type tensor associated to it.
In Weyl geometry the nonmetricity is completely determined
by the magnitude of wμ. In order to obtain a full dynamical
description of the gravitational field we need to add to the
gravitational action two terms related to the energy and the
mass of the vector field. Moreover, in order to follow the
essence of the teleparallel approach to gravity, we will also
consider the flat geometry constraint, by requiring that the
scalar curvature in the Weyl geometry vanishes. This con-
straint is added to the gravitational action via a Lagrange
multiplier.

Once the gravitational Lagrangian and the geometric
action are constructed, we can obtain the gravitational field
equations in the usual way. By varying the action with respect
to the metric tensor we obtain the general field equations
describing gravitational phenomena in the Weyl geometry
in the presence of a massive vector field, coupled to the
matter energy-momentum tensor, in a globally flat geome-
try. By varying the action with respect to the vector field
we obtain the By considering the covariant derivative of the
field equations we obtain the divergence of the matter energy-
momentum tensor does not vanish in the present approach to
the gravitational interaction. The cosmological implications
of the f (Q, T ) theory are investigated for three classes of
specific models. The obtained solutions describe both accel-
erating and decelerating evolutionary phases of the Universe,
and they indicate that the Weyl type f (Q, T ) gravity can
be considered as an alternative and useful approach for the
description of the early and late phases of cosmological evo-
lution.

The present paper is organized as follows. The gravita-
tional action and the field equations of the Weyl type f (Q, T )

theory are obtained in Sect. 2. The energy and momentum
balance equations are derived in Sect. 3. The cosmological
evolution equations for a flat Universe geometry and their
implications are considered in Sect. 4. Specific cosmologi-
cal models corresponding to different choices of the func-
tional form of f (Q, T ) are investigated in Sect. 5. We dis-
cuss and conclude our results in Sect. 6. The mathematical
details of the derivation of the field equations are presented in
Appendix a. The alternative representation of the field equa-
tions is described in Appendix B.

123



Eur. Phys. J. C (2020) 80 :449 Page 5 of 22 449

2 Field equations of the Weyl type f (Q, T ) theory

In the present section we briefly review the basic concepts
of the Weyl geometry, we introduce the variational principle
of the Weyl type f (Q, T ) theory, and we write down the
corresponding gravitational field equations. The divergence
of the energy-momentum tensor is also calculated, and the
energy and momentum balance equations of the theory are
obtained.

2.1 Weyl geometry in a nutshell

In Riemannian geometry, if we parallelly transport a vector
v along an infinitesimal loop, the variation of its component
is given by [56]

δvμ = vκ Rμ
κσνs

σν, (11)

where sσν is the area encircled by the loop. Since Rμνλρ is
anti-symmetric with respect to the first two indices, the length
of this vector is preserved, so that

δ
(
gμνv

μvν
) = 2vκvνRνκσρs

σρ = 0 (12)

In order to describe the simultaneous change of direction
and length, Weyl generalized the Riemannian geometry by
introducing an intrinsic vector field wμ and a semi-metric
connection,

�̄λ
μν ≡ �λ

μν + gμνw
λ − δλ

μwν − δλ
ν wμ, (13)

where �λ
μν is the Christoffel symbol constructed with respect

to the metric gμν . The curvature of this semi-metric connec-
tion has a symmetric part as well as an anti-symmetric part,

R̄μναβ = R̄(μν)αβ + R̄[μν]αβ, (14)

where:

R̄[μν]αβ = Rμναβ + 2∇αw[μgν]β + 2∇βw[νgμ]α
+ 2wαw[μgν]β + 2wβw[νgμ]α − 2w2gα[μgν]β,

(15)

and

R̄(μν)αβ = gμνWαβ, (16)

respectively, where

Wμν = ∇νwμ − ∇μwν, (17)

is the field strength tensor of the vector field, while Rμναβ

is the Riemann curvature tensor associated to the metric gμν

[56].
From Eq. (12) we immediately see the geometric meaning

of Wμν ,

δ|v| = |v|Wσρs
σρ, (18)

where |v| denotes the length of the vector. The first contrac-
tion of the Weyl curvature tensor is given by,

R̄μ
ν ≡ R̄αμ

αν = Rμ
ν + 2wμwν + 3∇νwμ − ∇μwν

+ δμ
ν

(
∇αwα − 2w2

)
,

(19)

where Rμ
ν is the Ricci tensor constructed from Riemann ten-

sor and the Levi-Civita connection. The scalar curvature is

R̄ ≡ R̄α
α = R + 6

(
∇μwμ − w2

)
. (20)

In Riemannian geometry, the Levi-Civita connection is
compatible with the metric, i.e., ∇αgμν = 0. This is not the
case for the semi-metric connection in Weyl geometry, where
we have [56]

Q̄αμν ≡ ∇̄αgμν = ∂αgμν − �̄ρ
αμgρν − �̄ρ

ανgρμ

= 2wαgμν.
(21)

The scalar non-metricity plays a central role in our theory,
and it is given by

Q ≡ −gμν
(
Lα

βνL
β
να − Lα

βαL
β
μν

)
, (22)

where Lλ
μν is defined as,

Lλ
μν = −1

2
gλγ

(
Qμγ ν + Qνγμ − Qγμν

)
. (23)

Plugging Eq. (21) into the expression above, we obtain the
important relation

Q = −6w2. (24)

2.2 The variational principle and the field equations

With all the geometric preliminaries in place, we can move
on to discuss the field theory itself. We consider the following
action

S =
∫

d4x
√−g

[
κ2 f (Q, T ) − 1

4
WμνW

μν

− 1

2
m2wμwμ + Lm

]
.

(25)
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In Eq. (25) κ2 ≡ 1/16πG, m is the mass of the particle
associated to the vector field, while Lm is the matter action.
The second and third terms in the action are the ordinary
kinetic term and mass term of the vector field, respectively.
The dynamics of the gravitational field is characterized by
this action together with a flat geometry constraint, through
which we impose the vanishing of the total curvature of the
Weyl space,

R̄ = 0. (26)

We impose this constraint by adding a Lagrange multiplier
in the gravitational action, which becomes

S =
∫

d4x
√−g

[
κ2 f (Q, T ) − 1

4
WμνW

μν

− 1

2
m2wμwμ + λ(R + 6∇αwα − 6wαwα) + Lm

]
.

(27)

Varying the action with respect to the vector field, we
obtain the generalized Proca equation describing the field
evolution,

∇νWμν − (m2 + 12κ2 fQ + 12λ)wμ = 6∇μλ. (28)

Comparing this equation with the standard Proca equation,
we see that the effective dynamical mass of the vector field
is given by

m2
eff = m2 + 12κ2 fQ + 12λ. (29)

We can also see that the Lagrange multiplier field generates
an effective current for the vector field. From quantum field
theory, we know that the mass detected in experiments may
deviate from the bare mass due to the existence of interaction.
Eq. (29) shows that in the Weyl type f (Q, T ) gravity, this
deviation can also originate from the nontrivial structure of
the spacetime.

Variation with respect to the metric field gives the follow-
ing field equation (see Appendix a for the calculation details),

1

2

(
Tμν + Sμν

) − κ2 fT
(
Tμν + �μν

) = −κ2

2
gμν f

−6κ2 fQwμwν + λ
(
Rμν − 6wμwν + 3gμν∇ρwρ

)

+3gμνw
ρ∇ρλ − 6w(μ∇ν)λ + gμν�λ − ∇μ∇νλ, (30)

where we have defined,

Tμν ≡ − 2√−g

δ(
√−gLm)

δgμν
, (31)

and

fT ≡ ∂ f (Q, T )

∂T
, fQ ≡ ∂ f (Q, T )

∂Q
, (32)

respectively. Also, we have introduced the quantity �μν ,
defined as

�μν ≡ gαβ δTαβ

δgμν

= gμνLm − 2Tμν − 2gαβ δ2Lm

δgμνδgαβ
.

(33)

In the field equation above, Sμν is the rescaled energy
momentum tensor of the free Proca field,

Sμν = −1

4
gμνWρσW

ρσ + WμρW
ρ

ν

− 1

2
m2gμνwρwρ + m2wμwν.

(34)

In terms of the Einstein tensor Gμν = R|muν − gμνR/2
the field equations become

Rμν − 1

2
Rgμν = 1

2λ

(
Tμν + Sμν

) − κ2

λ
fT

(
Tμν + �μν

)

+ κ2

2λ
gμν f + 6

κ2

λ
fQwμwν − 3

λ
gμνw

ρ∇ρλ + 6

λ
w(μ∇ν)λ

− 1

λ

(
gμν�λ − ∇μ∇νλ

) + 6wμwν − 3gμνw
2. (35)

Alternatively, the gravitational field equations can be
reformulated in the form

1

2

(
Tμν + Sμν

) − κ2 fT
(
Tμν + �μν

) = −κ2

2
gμν f

− 6κ2 fQwμwν + gμν∇ρDρλ − ∇νDμλ

+ gμνwρD
ρλ − wμDνλ − 3wνDμλ

+ λ
(
Rμν + 2wμwν − 2gμνw

2 + gμν∇ρwρ + 2∇νwμ

)
,

(36)

where we have denoted Dμ = ∇μ + 2wμ (for the derivation
of Eq. (36) see Appendix B).

Taking the trace of both sides of Eq. (36), we obtain first

1

2
(T + S) − κ2 fT (T + �) = −2κ2 f − 6κ2 fQw2

+ 3∇ρDρλ + λ
[
R + 6

(
∇ρwρ − w2

)]
. (37)

Due to the flat geometry constraint, the term proportional
to λ in the above equation vanishes. From Eq. (28), we can
derive the explicit form of the term ∇ρDρλ, and thus we
obtain

1

2
(T + S) − κ2 fT (T + �) = −2κ2 f − 6κ2 fQw2
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− m2

2
∇ρwρ − 6∇ρ( fQwρ). (38)

From the expression of Sμν we obtain S = −m2w2. Hence
we have

1

2
(1 − 2κ2 fT )T − κ2 fT�

= −2κ2 f + κ2Q fQ − 6∇ρ( fQwρ) + m2

2
(w2 − ∇ρwρ)

= −2κ2 f + κ2Q fQ − 6∇ρ( fQwρ) + m2R

12
,

(39)

where to obtain the last line we have used again the flat con-
straint R̄ = 0.

3 The energy and momentum balance equations

After taking the covariant divergence of the metric field equa-
tion (30), and using Eqs. (28) and (29), one can obtain the
conservation equation of the energy-momentum tensor as

∇μTμν = 1

1 + 2κ2 fT

[
2κ2∇ν(p fT ) − κ2 fT∇νT

− 2κ2Tμν∇μ fT − m2
e f f (w

μWνμ − wν∇μwμ)

− 6wν�λ − 6Wνμ∇μλ + Wνμ∇αW
μα

− 12wνw
μ∇μ(λ + κ2 fQ)

]
. (40)

By using the vector field Eq. (28), we obtain

∇μTμν = 1

1 + 2κ2 fT

[
2(∇ν� − �∇ν + Gμν∇μ)λ

+ 6∇νλ(w2 − ∇μwμ) + wν(∇α∇μ∇α − ∇μ�)wμ

+ ∇αwμ(∇αWνμ + ∇μWνα + ∇νWμα)

+ 2κ2∇ν(p fT ) − fT∇νT − 2Tμν∇μ fT
]
. (41)

Now, by simplifying the covariant derivatives and using the
constraint equation Eq. (26), we find

∇μTμν = κ2

1 + 2κ2 fT

[
2∇ν(p fT ) − fT∇νT − 2Tμν∇μ fT

]
.

(42)

It should be noted that the energy-momentum tensor becomes
conserved in the case fT = 0.

We consider the matter content of the gravitating system as
represented by perfect fluid, and we take the energy momen-
tum tensor as

Tμν = (ρ + p)uμuν + pgμν, (43)

where ρ is the total matter energy, and p is the thermody-
namic pressure, respectively. The four-velocity uμ is the tan-
gent vector of a particle’s worldline, parameterized by the
arc length, and hence satisfies the normalization condition
uμuμ = −1. Taking the covariant derivative of Eq. (43), we
obtain first

∇μTμν = (∇μ p + ∇μρ
)
uμuν

+ (p + ρ)
(
uν∇μuμ + uμ∇μuν

) + ∇ν p.
(44)

Multiplying with uν both sides of the above relation, we
obtain the energy balance equation,

uν∇μTμν = −uμ∇μρ − (p + ρ)∇μuμ ≡ −ρ̇ − 3H(p + ρ)

(45)

where we have used the relation uμ∇νuμ = 0, and we have
introduced the Hubble function H , defined as 3H ≡ ∇μuμ.
The dot is defined as uμ∇μ = d/ds, with s being the arc
length along the worldline of the particle.

The energy source S in the gravitating system is given by

S ≡ ρ̇ + 3H(p + ρ) = −uν∇μTμν. (46)

Multiplying with the projection operator hνρ ≡ gνρ +
uνuρ both sides of Eq. (44), we obtain the momentum balance
equation as given by

uμ∇μu
ρ = d2xρ

ds2 + �
ρ
μλ

dxμ

ds

dxλ

ds
= hνρ

p + ρ

(∇μTμν − ∇ν p
)
.

(47)

From the equation above we can see that the quantity

hνρ

p + ρ

(∇μTμν − ∇ν p
)
, (48)

measures the deviation of a particle’s worldline from a
geodesic, and hence it should be interpreted as a general-
ized force,

Fρ = −hνρ∇ν p

p + ρ
+ hνρ∇μTμν

p + ρ
. (49)

Now, using Eq. (42), one can obtain the generalized force
as

Fρ = κ2hνρ

(ρ + p)(1 + 2κ2 fT )

[
− 1

κ2 ∇ν p + 2p∇ν(p fT )

− fT∇νT − 2Tμν∇μ fT
]
. (50)

Finally, we will also discuss briefly the divergence of
energy-momentum tensor Sμν of the Weyl vector field. By
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making use of the generalized Proca equation and of the
Jacobi identity ∇νWρσ + ∇σWνρ + ∇ρWσν = 0, we obtain
immediately

κ2∇μS
μ
ν = 6

[
Wμν∇μλ −

(
m

meff

)2

wν�λ

]
. (51)

It follows that when the Lagrange multiplier λ is a con-
stant, the divergence of the Weyl vector field is zero. By
using Eqs. (29) and (51), we can roughly classify the relation
between space-time geometry and the vector particle into
three categories:

Decoupled phase When f has a trivial dependence on Q,
and λ is zero, the mass of the vector particle is equal to its
bare mass, and the total number of particles is conserved. In
this case, however, the evolution of space-time structure as
well as the dynamic of the Weyl particles are still mutually
dependent. Space-time and the vector particle are not entirely
detached, and there is a mutual influence between them.

Weakly entangled phase When f has a trivial dependence
on Q, and λ is a nonzero constant, the mass of the parti-
cle is shifted but the total particle number is still conserved.
The weakly entangled phase is basically the same as the
decoupled phase, since a constant shift in the mass cannot
be observed experimentally.

Strongly entangled phase When f has a nontrivial depen-
dence on Q, or λ has nontrivial dependence on the space-
time, the effective mass of the particle will not only be dif-
ferent from its bare mass, but may also change with time
and position. More importantly, the vector particles can be
created or annihilated from the space-time continuum.

4 Cosmological evolution of the flat
Friedmann-Robertson-Walker Universe in the Weyl
type f (Q, T ) gravity

In the following we will proceed to the investigation of the
cosmological applications of the Weyl type f (Q, T ) theory.
We assume that the geometry of the Universe is described
by the isotropic, homogeneous and spatially flat Friedmann-
Robertson-Walker metric, given by

ds2 = −dt2 + a2(t)δi j dx
i dx j , (52)

where a is the scale factor. Due to spatial symmetry, the
vector field is taken to be of the form

wμ = [ψ(t), 0, 0, 0]. (53)

Therefore w2 = wμwμ = −ψ2(t), giving Q = −6w2 =
6ψ2(t).

Moreover, we adopt a comoving coordinate system with
uμ = (−1, 0, 0, 0). In this case, uμ∇μ = d/dt and H =
ȧ/a. We also fix the Lagrangian of the perfect fluid to be
Lm = p. As a result, we obtain

Tμ
ν = diag(−ρ, p, p, p),

and

�μ
ν = δμ

ν p − 2Tμ
ν = diag(2ρ + p,−p,−p,−p). (54)

4.1 The generalized Friedmann equations

For the cosmological case the flat space constraint, and the
generalized Proca equation can be represented as

ψ̇ = Ḣ + 2H2 + ψ2 − 3Hψ, (55)

λ̇ =
(

−1

6
m2 − 2κ2 fQ − 2λ

)
ψ = −1

6
m2

effψ, (56)

∂iλ = 0. (57)

From Eq. (30) we obtain the generalized Friedmann equa-
tions as

κ2 fT (ρ + p) + 1

2
ρ = κ2

2
f −

(
6κ2 fQ + 1

4
m2

)
ψ2

− 3λ(ψ2 − H2) − 3λ̇(ψ − H), (58)

− 1

2
p = κ2

2
f + m2ψ2

4
+ λ(3ψ2 + 3H2 + 2Ḣ)

+ (3ψ + 2H)λ̇ + λ̈. (59)

With the use of Eqs. (55) and (56) we eliminate all the
derivatives ofλ, and then we take the sum of the two equations
above. Hence we obtain a simpler set of the cosmological
evolution equations, given by

1

2

(
1 + 2κ2 fT

)
ρ + κ2 fT p = κ2

2
f + m2ψ2

4

+ 3λ
(
H2 + ψ2

)
− 1

2
m2

e f f Hψ, (60)

1

2

(
1 + 2κ2 fT

)
(ρ + p) = m2

e f f

6

(
ψ̇ + ψ2 − Hψ

)

+ 2κ2 ḟQψ − 2λḢ . (61)

By substituting ψ̇ as given by Eqs. (56) in (61) we obtain

1

2

(
1 + 2κ2 fT

)
(ρ + p) = −2λ

(
1 − m2

e f f

12λ

)
Ḣ
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+m2
e f f

3

(
H2 + ψ2 − 2Hψ

)
+ 2κ2 ḟQψ. (62)

The energy balance equation can be obtained as

ρ̇ + 3H(ρ + p)

= 1

1 + 2κ2 fT

[
2κ2(ρ + p) ḟT − fT (ρ̇ − ṗ)

]
. (63)

The generalized Friedmann Eqs. (60) and (61) can be
reformulated in an effective form as

3H2 = 1

2λ

(
ρ + ρe f f

)
, (64)

2Ḣ = − 1

2λ

(
ρ + ρe f f + p + pef f

)
, (65)

where

ρe f f =m2
eff Hψ+2κ2 fT (ρ+p) − κ2 f − m2ψ2

2
− 6λψ2,

(66)

and

pef f = m2
eff

3

(
ψ̇ + ψ2 − 4Hψ

)
+ κ2 f + 4κ2 ḟQψ

+m2ψ2

2
+ 6λψ2, (67)

respectively. In the limiting case f = 0, ψ = 0, and
λ = κ2, the gravitational action (25) reduces to the stan-
dard Hilbert–Einstein form. In this case ρe f f = 0, pef f = 0,
and Eqs. (64) and (65) reduce to the standard Friedmann
equations of general relativistic cosmology, 3H2 = 1/2κ2ρ,
and 2Ḣ = −1/2κ2 (ρ + p), respectively.

In order to describe the accelerated/decelerated nature of
the cosmological expansion we introduce the deceleration
parameter q, defined as

q = d

dt

1

H
− 1 = − Ḣ

H2 − 1. (68)

With the use of the generalized Friedmann equations (64)
and (65) we obtain for the deceleration parameter the expres-
sions

q = ρ + ρe f f + 3
(
p + pef f

)

2
(
ρ + ρe f f

) , (69)

and

q = ρ + 3p + m2
e f f

(
ψ̇ + ψ2 − 3Hψ

) + 2κ2 fT (ρ + p) + 2κ2 f + 12κ2 ḟQψ + m2ψ2 + 12λψ2

ρ + m2
e f f Hψ + 2κ2 fT (ρ + p) − κ2 f − m2ψ2/2 − 6λψ2

,

(70)

respectively.

4.1.1 Dimensionless form of the generalized Friedmann
equations

In order to facilitate the comparison of the theoretical results
with the cosmological observations, instead of the usual time
variable t , we introduce, as independent variable the redshift
z, defined according to

1 + z = 1

a
, (71)

where we have used a normalization of the scale factor by
imposing the condition that its present day value is one,
a(0) = 1. Therefore we can replace the derivatives with
respect to the time with the derivatives with respect to the
redshift according to the relation

d

dt
= dz

dt

d

dz
= −(1 + z)H(z)

d

dz
. (72)

As a function of the cosmological redshift the deceleration
parameter q can be obtained as

q(z) = (1 + z)
1

H(z)

dH(z)

dz
− 1. (73)

In the following we assume that the cosmological matter
satisfies the linear barotropic equation of state p = (γ −1)ρ,
where γ is a constant, and 1 ≤ γ ≤ 2.

To simplify the mathematical representation of the gen-
eralized Friedmann equations we introduce a set of dimen-

sionless variable
(
τ, h, r,�,�, Q̃

)
, defined as

τ = H0t, H = H0h, ρ = 6κ2H2
0 r, T = 6κ2H2

0 T̃ ,

λ = κ2�,ψ = H0�, Q = H2
0 Q̃, f = H2

0 F (74)

where H0 represents a fixed value of the Hubble function,
which may correspond, for example, to the present age of
the Universe, or to the end of the inflationary phase of the
early Universe. Moreover, Q̃ = 6�2. Then from Eqs. (56),
(57), (60) and (61), the equations describing the cosmological
evolution in the Weyl type f (Q, T ) gravity take the form

d�

dτ
= dh

dτ
+ 2h2 + �2 − 3h�, (75)

d�

dτ
= −

(
M2

6
+ 2FQ̃ + 2�

)
� = −1

6
M2

e f f �, (76)
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dh

dτ
= 1

1 − M2
e f f /12�

[
− γ

2

(
3 + FT̄

) r

�
+ �

�

dFQ̃

dτ

+M2
e f f

6�

(
h2 + �2 − 2h�

) ]
, (77)

r = 1

2
(
3 + γ FT̃

)
[
F + M2�2

2

+6�
(
h2 + �2

)
− M2

e f f h�

]
, (78)

where we have denoted

M2
e f f = M2 + 12FQ̃ + 12�, (79)

with M2 = m2/κ2.

4.2 The de Sitter solution

Before we consider more complicated cosmological models,
we first investigate a simpler problem, namely, the existence
of a de Sitter type vacuum solution of the cosmological field
equations. The de Sitter solution corresponds to ρ = p = 0
and H = H0 = constant, respectively, implying r = 0, and
h = constant, respectively. In this case Eq. (75) can be solved
exactly for �(t), giving

Q̃ (τ ) = 6h2
[

1 + h − �0

(�0 − 2h) eh(τ−τ0) + (h − �0)

]2

,

(80)

where �0 ≡ �(τ = τ0).
The simplest possibility of obtaining a de Sitter type solu-

tion that satisfies all the field equations is to assume that
M2

e f f = 0. Then Eq. (76) immediately gives � = �0 =
constant, while from Eq. (79) we obtain for F the simple
differential equation

FQ̃ = − 1

12

(
M2 + 12�0

)
, (81)

with the general solution

F
(
Q̃, T̃

)
= − 1

12

(
M2 + 12�0

)
H2

0 Q̃ + g(T̃ ), (82)

where g(T̃ ) is an arbitrary integration function of the trace
of the energy-momentum tensor. For this functional form of
F Eq. (77) is identically satisfied, while Eq. (78) reduces
to g(T̃ ) + 2�0h2 = 0, which implies that the function

g
(
T̃

)
must be a constant. Hence, a time varying scalar non-

metricity Q as given by Eq. (80) can trigger a de Sitter type
accelerated expansion of the Universe. In the limit of large
times τ → ∞, Q̃ → 6h2, thus becoming a constant.

5 Particular cosmological models

In the present Section we will investigate some specific cos-
mological models in the Weyl type f (Q, T ) gravity theory,
models that correspond to different choices of the function
f (Q, T ), describing the nonminimal coupling between the
scalar nonmetricity and matter. We will also perform a com-
parison of the behavior of the geometric and physical cosmo-
logical quantities in the Weyl type f (Q, T ) gravity with the
standard �CDM model, which is based on the observational
discovery of the accelerating expansion of the Universe [87–
91].

High precision cosmological data have been obtained
from the recent study of the Cosmic Microwave Background
Radiation by the Planck satellite [92–94]. In our analysis
we will adopt the simplifying assumption that the late Uni-
verse contains dust matter only, having negligible thermody-
namic pressure. Then the standard general relativistic energy
conservation equation ρ̇ + 3Hρ = 0 gives for the varia-
tion of matter energy density the expression ρ = ρ0/a3 =
ρ0(1 + z)3, where ρ0 is the present day matter density. The
variation of the Hubble function can be obtained as a function
of the scale factor in the form [92]

H = H0

√
(�b + �DM ) a−3 + ��, (83)

where �b, �DM ,and �� are the density parameters of the
baryonic matter, of the cold (pressureless) dark matter, and
of the dark energy (interpreted as a cosmological constant),
respectively. The three density parameters satisfy the impor-
tant relation �b+�DM +�� = 1, indicating that the geom-
etry of the Universe is flat. In a dimensionless form and as a
function of the redshift the Hubble function H(z) = H0h(z)
can be written as

h(z) =
√

(�DM + �b) (1 + z)3 + ��. (84)

The deceleration parameter can be obtained as a function
of the redshift in the form

q(z) = 3(1 + z)3 (�DM + �b)

2
[
�� + (1 + z)3 (�DM + �b)

] − 1. (85)

In our analysis for the density parameters we will adopt
the numerical values �DM = 0.2589, �b = 0.0486, and
�� = 0.6911 [92], respectively, obtained from the Planck
data. For the total matter density parameter �m = �DM+�b

we find the numerical value �m = 0.3089. These numerical
values of the cosmological parameters give for the present
day value of the deceleration parameter q(0) = −0.5381,
indicating an accelerating expansion of the Universe. In the
standard �CDM cosmological model the variation of the
dimensionless matter density with respect to the redshift is
given by the expression r(z) = �m(1+z)3 = 0.3089(1+z)3.
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In the following we will restrict our investigations to the
case of a dust Universe with γ = 1.

5.1 f (Q, T ) = αQ + β

6κ2 T

As a first example of a cosmological model in the Weyl type
f (Q, T ) gravity we will consider the case in which the func-
tion f (Q, T ) can be represented as

f (Q, T ) = αQ + β

6κ2 T, (86)

where α and β are constants. After rescaling the variables we

obtain for the dimensionless function F
(
Q̃, T̃

)
the expres-

sion F
(
Q̃, T̃

)
= α Q̃ + β T̃ . Hence FQ̃ = α, and FT̃ = β,

respectively. For this form of the coupling function the grav-
itational field Eqs. (75)–(78) take the form

−(1 + z)h(z)
d�(z)

dz
= −(1 + z)h(z)

dh

dz
+ 2h2(z)

+ψ2(z) − 3h(z)ψ(z), (87)

(1 + z)h(z)
d�(z)

dz
= 1

6
M2

e f f (z)�(z), (88)

−(1 + z)h(z)
dh(z)

dz
= 1

1 − M2
e f f (z)/12�(z)

×
{

− γ

2
(3 + β)

r(z)

�(z)
+ Mef f (z)2

6�(z)

[
h2(z) + �2(z)

−2h(z)�(z)

]}
, (89)

with

M2
e f f (z) = M2 + 12α + 12�(z), (90)

and

r(z) = �(z) [�(z) − 2h(z)] M2
e f f (z)

2(β + 6)
+ 6h2(z)�(z)

β + 6
, (91)

respectively. The system of differential equations Eqs. (87)–
(89) must be integrated with the initial conditions h(0) = 1,
�(0) = �0, and �(0) = �0. The model depends on three
free parameters M2 (the mass of the Weyl field), and α and β,
respectively, indicating the strengths of the Weyl geometry-
matter coupling.

The variations as a function of redshift of the Hubble func-
tion, of the deceleration parameter, of the Weyl vector field,
and of the Lagrangian multiplier are represented in Figs. 1,
2, 3 and 4. To obtain the figures we have fixed the numer-
ical value of the dimensionless mass M2 of the Weyl field,
and the initial conditions for the Weyl vector �, and of the
Lagrangian multiplier �. Moreover, we have fixed the value
of the parameter α, and varied only the parameter β in the
geometry-matter coupling function F .

Fig. 1 Variation as a function of the redshift of the dimension-
less Hubble function h(z) for the geometry-matter coupling function

F
(
Q̃, T̃

)
= α Q̃ + β T̃ for α = −1.95, M = 0.95, and for differ-

ent values of β: β = −2.64 (dotted curve), β = −2.78 (short dashed
curve), β = −2.91 (dashed curve), β = −3.07 (long dashed curve),
and β = −3.24 (ultra-long dashed curve). To integrate the system of
cosmological evolution equations we have used the initial conditions
h(0) = 1, �(0) = 0.555, and �(0) = 0.568. The solid curve rep-
resents the evolution of the Hubble function in the standard �CDM
cosmological model

As one can see from Fig. 1. the Hubble function is a mono-
tonically increasing function of the redshift (a monotonically
decreasing function of time). The evolution ofh(z) is strongly
dependent on the model parameters, as well as of the initial
conditions for � and �. For the chosen set of parameters
the model is basically equivalent with the standard �CDM
model for a redshift range of the order of z ∈ (0, 1.25).
However, at higher redshifts z > 1.25 significant differences
between the behavior of the Hubble function in the Weyl
type f (Q, T ) gravity and in the standard �CDM model do
appear, with the f (Q, T ) model having much higher numer-
ical values, corresponding to a faster expansion rate.

The deceleration parameter q(z), represented in Fig. 2,
shows also a significant dependence on the numerical val-
ues of the model parameters. While in the redshift range
z ∈ (0, 0.5) the model can reproduce well the results of the
standard �CDM model, for higher redshifts the deceleration
parameter takes much larger positive values as compared to
the �CDM case, indicating a decelerating evolution followed
by a quicker transition to the accelerating phase. However,
both models enter in the accelerating phase with q < 0 at the
same redshift z ≈ 0.5, a numerical value that is roughly inde-
pendent on the numerical values of the considered particular
Weyl type f (Q, T ) gravity model.

The Weyl vector �, whose evolution is depicted in Fig. 3,
shows a complex evolution during the cosmological expan-
sion. For redshifts in the range z ∈ (0, 1), as a function of the
redshift the Weyl vector monotonically decreases (increases
in time), reaching a minimum value at a redshift of around 1.
For z > 1 the Weyl vector becomes an increasing function
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Fig. 2 Variation as a function of the redshift of the deceleration param-

eter q(z) for the geometry-matter coupling function F
(
Q̃, T̃

)
=

α Q̃ + β T̃ for α = −1.95, M = 0.95, and for different values of β:
β = −2.64 (dotted curve),β = −2.78 (short dashed curve),β = −2.91
(dashed curve), β = −3.07 (long dashed curve), and β = −3.24 (ultra-
long dashed curve). To integrate the system of cosmological evolution
equations we have used the initial conditions h(0) = 1, �(0) = 0.555,
and �(0) = 0.568. The solid curve represents the evolution of the
deceleration parameter in the standard �CDM cosmological model

Fig. 3 Variation as a function of the redshift of the Weyl vector com-

ponent �(z) for the geometry-matter coupling function F
(
Q̃, T̃

)
=

α Q̃ + β T̃ for α = −1.95, M = 0.95, and for different values of β:
β = −2.64 (solid curve), β = −2.78 (dotted curve), β = −2.91
(short dashed curve), β = −3.07 (dashed curve), and β = −3.24 (long
dashed curve). To integrate the system of cosmological evolution equa-
tions we have used the initial conditions h(0) = 1, �(0) = 0.555, and
�(0) = 0.568

of the redshift (a decreasing function of time). The evolution
of � is strongly dependent on the model parameters, and a
large variety of behaviors are possible. The beginning of the
transition towards an accelerating phase of the Universe at a
redshift of around z ≈ 1 is due to the change in the behav-
ior of the Weyl vector, which, after decreasing in time in the
early stages of the expansion of the Universe, experiences a
transition to an increasing phase, thus triggering the recent
cosmological acceleration.

Fig. 4 Variation as a function of the redshift of the Lagrange multiplier

�(z) for the geometry-matter coupling function F
(
Q̃, T̃

)
= α Q̃+β T̃

for α = −1.95, M = 0.95, and for different values of β: β = −2.64
(solid curve), β = −2.78 (dotted curve), β = −2.91 (short dashed
curve), β = −3.07 (dashed curve), and β = −3.24 (long dashed curve).
To integrate the system of cosmological evolution equations we have
used the initial conditions h(0) = 1, �(0) = 0.555, and �(0) = 0.568

The Lagrange multiplier �, portrayed in Fig. 4, is a mono-
tonically decreasing function of the redshift, and thus an
increasing function of the cosmological time. For low red-
shifts in the range (0, 0.5) the evolution of � is basically
independent on the model parameters. However, at higher
redshifts, �(z) strongly depends on the numerical values
of the model parameters, and for z > 0.5 it takes negative
numerical values.

5.2 f (Q, T ) = α

6H2
0 κ2 QT

As a second example of a cosmological model in the Weyl
type f (Q, T ) gravity we assume that the function f (Q, T )

can be represented as f (Q, T ) = (
α/6H2

0 κ2
)
QT , where

α is a constant. Then we obtain successively F
(
Q̃, T̃

)
=

α Q̃T̃ , FT̃ = α Q̃ = 6�2, and f Q̃ − αT̃ = αr , respectively.
The system of differential equations describing the cosmo-
logical evolution in this model takes the form

−(1 + z)h(z)
d�(z)

dz
= −(1 + z)h(z)

dh

dz
+ 2h2(z)

+ψ2(z) − 3h(z)ψ(z), (92)

(1 + z)h(z)
d�(z)

dz
= 1

6
M2

e f f (z)�(z), (93)

−(1 + z)h(z)
dh(z)

dz
= 1

1 − M2
e f f (z)/12�(z)

×
{

− 3γ

2

[
1 + 2α�2(z)

] r(z)

�(z)
− α(1 + z)h(z)

�(z)

�(z)

dr(z)

dz

+Mef f (z)2

6�(z)

[
h2(z) + �2(z) − 2h(z)�(z)

]}
, (94)
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Fig. 5 Variation as a function of the redshift of the dimension-
less Hubble function h(z) for the geometry-matter coupling function

F
(
Q̃, T̃

)
= α Q̃T̃ for M = 0.98, and for different values of α:

α = −0.72 (dotted curve), α = −0.77 (short dashed curve), α = −0.80
(dashed curve), α = −0.81 (long dashed curve), and α = −0.82 (ultra-
long dashed curve). To integrate the system of cosmological evolution
equations we have used the initial conditions h(0) = 1, �(0) = 0.455,
and �(0) = 0.335. The solid curve represents the evolution of the
Hubble function in the standard �CDM cosmological model

where

M2
e f f (z) = M2 + 12αr(z) + 12�(z), (95)

and

r(z) = 1

12
{
α�(z)

[
2h(z) + (2γ − 1)�(z)

] + 1
}

×
{

2h(z)�(z)
[
M2 + 12�(z)

]
+ 12h2(z)�(z)

+�2(z)
[
M2 + 12�(z)

] }
, (96)

respectively. The system of strongly nonlinear system of dif-
ferential Eqs. (92)–(94) must be integrated with the initial
conditions h(0) = 1, and �(0) = �0 and �(0) = �0,
respectively. The variations of the Hubble function, matter
density, deceleration parameter, Weyl vector field, and of the
Lagrange multiplier are represented in Figs. 5, 6, 7, 8 and 9.
To obtain the figures we have fixed the initial (present day)
values of the Weyl vector and of the Lagrange multiplier, and
we have slightly varied the numerical value of α.

The variation of the Hubble function in this model is rep-
resented in Fig. 5. In the considered redshift range the Hubble
function is an increasing function of z (a decreasing function
of time). Up to a redshift z ≈ 1 the model can give a good
alternative description of the standard �CDM model. For
higher redshifts the differences between the predictions of
the Weyl type f (Q, T ) gravity and the standard cosmolog-
ical model become significant, with the Weyl type f (Q, T )

gravity predicting, at least for the chosen set of parameters,
higher numerical values, and a more significant increase with

Fig. 6 Variation as a function of the redshift of the matter energy den-

sity r(z) for the geometry-matter coupling function F
(
Q̃, T̃

)
= α Q̃T̃

for M = 0.98, and for different values of α: α = −0.72 (dotted
curve), α = −0.77 (short dashed curve), α = −0.80 (dashed curve),
α = −0.81 (long dashed curve), and α = −0.82 (ultra-long dashed
curve). To integrate the system of cosmological evolution equations
we have used the initial conditions h(0) = 1, �(0) = 0.455, and
�(0) = 0.335. The solid curve represents the evolution of the matter
density in the standard �CDM cosmological model

respect to z of h(z). The variation of h(z) is relatively inde-
pendent of the variation of the values of α.

The variation with the redshift of the matter energy density
r(z) is represented in Fig. 6. The energy density is an increas-
ing function of z, or, equivalently, a decreasing function of
the cosmological time. As one can see from the Figure, the
Weyl type f (Q, T ) ∝ QT model can give a good alternative
description of the matter dynamics, with some values of the
model parameter α reproducing almost exactly the standard
�CDM model up to the redshift z ≈ 1.5. However, the mat-
ter density is strongly dependent on the choice of the model
parameter α, and a large number of evolutionary scenarios
for matter can be constructed by varying the values of α.

The deceleration parameter of the model, depicted in
Fig. 7, is also strongly dependent on the numerical values of
α, and thus allows the possibility of constructing a large num-
ber of cosmological evolutionary expansions. For z < 0.5 we
obtain a good qualitative concordance with the predictions of
the standard cosmology. Cosmological phases with a de Sitter
type expansion with q = −1 can also be obtained. However,
the nature of the transition to the accelerating phase is dif-
ferent in the Weyl and standard cosmology. Up to redshifts
of around z ≈ 1, the deceleration parameter is roughly a
constant in the range q ∈ (0.5, 1), and the Universe is decel-
erating. Then the Universe began to accelerate, and after a
short cosmological time interval it entered in an accelerating
phase, with q < 0. The value of α determines the nature of
the final stages of the accelerating evolution.
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Fig. 7 Variation as a function of the redshift of the deceleration param-

eter q(z) for the geometry-matter coupling function F
(
Q̃, T̃

)
= α Q̃T̃

for M = 0.98, and for different values of α: α = −0.72 (dotted
curve), α = −0.77 (short dashed curve), α = −0.80 (dashed curve),
α = −0.81 (long dashed curve), and α = −0.82 (ultra-long dashed
curve). To integrate the system of cosmological evolution equations
we have used the initial conditions h(0) = 1, �(0) = 0.455, and
�(0) = 0.335. The solid curve represents the evolution of the deceler-
ation parameter in the standard �CDM cosmological model

Fig. 8 Variation as a function of the redshift of the Weyl vector com-

ponent �(z) for the geometry-matter coupling function F
(
Q̃, T̃

)
=

α Q̃T̃ for M = 0.98, and for different values of α: α = −0.72 (dotted
curve), α = −0.77 (short dashed curve), α = −0.80 (dashed curve),
α = −0.81 (long dashed curve), and α = −0.82 (ultra-long dashed
curve). To integrate the system of cosmological evolution equations
we have used the initial conditions h(0) = 1, �(0) = 0.455, and
�(0) = 0.335

The Weyl vector, whose behavior is indicated in Fig. 8, is a
monotonically decreasing function of z, and a monotonically
increasing function of the cosmological time. The temporal
increase of � triggers the late acceleration of the Universe,
with the rate of change of � becoming significant after the
redshift z ≈ 1. The evolution of � is strongly dependent on
the numerical values of the model parameter α, as well as of
the initial conditions adopted to integrate the cosmological
evolution equation.

Fig. 9 Variation as a function of the redshift of the Lagrange multiplier

�(z) for the geometry-matter coupling function F
(
Q̃, T̃

)
= α Q̃T̃ for

M = 0.98, and for different values of α: α = −0.72 (dotted curve),
α = −0.77 (short dashed curve), α = −0.80 (dashed curve), α =
−0.81 (long dashed curve), and α = −0.82 (ultra-long dashed curve).
To integrate the system of cosmological evolution equations we have
used the initial conditions h(0) = 1, �(0) = 0.455, and �(0) = 0.335

The evolution of the Lagrange multiplier �(z), repre-
sented in Fig. 9, is strongly dependent on the numerical values
of α, and indicates a complex behavior. For larger values of α,
�(z) shows an oscillating behavior, with increasing phases
alternating with decreasing ones. For smaller values of α the
Lagrange multiplier is a monotonically decreasing function
of z, indicating its increase in time. In the present model the
combined effects of � and � at low redshifts determine the
transition of the Universe from a decelerating to an acceler-
ating phase.

5.3 f (Q, T ) = ηH2
0 e

μ

6H2
0
Q + ν

6κ2 T

As a third possible cosmological model in the Weyl type
f (Q, T ) gravity we will consider the case in which the
function f (Q, T ) is given by f (Q, T ) = ηH2

0 e
(
μ/6H2

0

)
Q +(

ν/6κ2
)
T , where η, μ and ν are constants. Hence we obtain

F
(
Q̃, T̃

)
= ηeμQ̃/6 + νr , FQ̃ = (ημ/6)eμQ̃/6, and FT̃ =

ν, respectively. In the following for simplicity we assume
that ημ/6 = 1. For this choice of the function f (Q, T ) the
cosmological evolution equations take the form

−(1 + z)h(z)
d�(z)

dz
= −(1 + z)h(z)

dh

dz
+ 2h2(z)

+ψ2(z) − 3h(z)ψ(z), (97)

(1 + z)h(z)
d�(z)

dz
= 1

6
M2

e f f (z)�(z), (98)

−(1 + z)h(z)
dh(z)

dz
= 1

1 − M2
e f f (z)/12�(z)
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Fig. 10 Variation as a function of the redshift of the dimension-
less Hubble function h(z) for the geometry-matter coupling function

F
(
Q̃, T̃

)
= ηeμQ̃/6 + νT̃ for M = 1.7, η = 6/μ, ν = 20, and

for different values of μ: μ = 1.7 (dotted curve), μ == 1.5 (short
dashed curve), μ = 1.3 (dashed curve), μ = 1.1 (long dashed curve),
and μ = 0.9 (ultra-long dashed curve). To integrate the system of
cosmological evolution equations we have used the initial conditions
h(0) = 1, �(0) = 0.058, and �(0) = 0.0235. The solid curve rep-
resents the evolution of the Hubble function in the standard �CDM
cosmological model

×
{

− γ

2
(3 + ν)

r(z)

�(z)
− μ(1 + z)h(z)

�2(z)

�(z)

d�(z)

dz

×eμ�2(z) + Mef f (z)2

6�(z)

[
h2(z) + �2(z) − 2h(z)�(z)

]}
,

(99)

where

M2
e f f (z) = M2 + 12eμ�2(z) + 12�(z), (100)

and

r(z) = −h(z)�(z)
[
M2 + 12�(z)

]

ν + 6
+ 6h2(z)�(z)

ν + 6

−6eμ�2(z) [2μh(z)�(z) − 1]

μ(ν + 6)
+ �2(z)

[
M2 + 12�(z)

]

2(ν + 6)
,

(101)

respectively. The system of Eqs. (97)–(99) must be inte-
grated with the initial conditions h(0) = 1, �(0) = �0

and �(0) = �0, respectively. The variations with the red-
shift of the Hubble function h(z), matter energy density r(z),
deceleration parameter q(z), Weyl vector �(z), and of the
Lagrange multiplier �(z) are represented in Figs. 10, 11, 12
and 14, respectively.

The variation of the Hubble function in this model is rep-
resented in Fig. 10. The Hubble function of this model is
an increasing function of z (a decreasing function of time),
indicating an expansionary evolution of the Universe. Up to
a redshift z ≈ 0.5 the model reproduces well the standard
�CDM model, and for the redshift range z ∈ (0, 0.5), the

Fig. 11 Variation as a function of the redshift of the matter energy

density r(z) for the geometry-matter coupling function F
(
Q̃, T̃

)
=

ηeμQ̃/6 + νT̃ for M = 1.7, η = 6/μ, ν = 20, and for different values
of μ: μ = 1.7 (dotted curve), μ == 1.5 (short dashed curve), μ = 1.3
(dashed curve), μ = 1.1 (long dashed curve), and μ = 0.9 (ultra-
long dashed curve). To integrate the system of cosmological evolution
equations we have used the initial conditions h(0) = 1, �(0) = 0.058,
and �(0) = 0.0235. The solid curve represents the evolution of the
matter density in the standard �CDM cosmological model

cosmological evolution does not depend significantly on the
numerical values of the parameters. For redshifts z > 0.5
the differences between the predictions of the Weyl type

F
(
Q̃, T̃

)
= ηeμQ̃/6 +νT̃ gravitational model and the stan-

dard cosmological model become important, with the present
Weyl type f (Q, T ) gravity model predicting, for the chosen
set of parameters, much higher numerical values, and a rapid
increase of h(z) with respect to z. At high redshifts the vari-
ation of h(z) is strongly dependent on the numerical values
of the parameter μ.

The variation with the redshift of the matter energy den-
sity r(z) is represented in Fig. 11. The energy density is
an increasing function of z, with the matter energy density
decreasing in time. For small redshifts 0 ≤< 1 the predic-

tions of the Weyl type F
(
Q̃, T̃

)
= ηeμQ̃/6 + νT̃ gravity

reproduce well the standard �CDM cosmological model,
while in the redshift range z < 0.5 the predictions of the
two models are very close. In the small redshift range the
evolution is independent on the model parameters. At larger
redshifts the matter density becomes strongly dependent on
the model parameters, and significant differences do appear
as compared to the standard cosmology, with the matter den-
sity taking much higher values.

The deceleration parameter of the model, represented in
Fig. 12, shows important differences with respect to the
�CDM model. If for small redshifts one could find a set
of parameters that reproduce relatively well standard cos-
mology, at higher redshifts both the qualitative and quan-
titative differences become important. The Universe still
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Fig. 12 Variation as a function of the redshift of the deceleration

parameter q(z) for the geometry-matter coupling function F
(
Q̃, T̃

)
=

ηeμQ̃/6 + νT̃ for M = 1.7, η = 6/μ, ν = 20, and for different values
of μ: μ = 1.7 (dotted curve), μ == 1.5 (short dashed curve), μ = 1.3
(dashed curve), μ = 1.1 (long dashed curve), and μ = 0.9 (ultra-long
dashed curve). To integrate the system of cosmological evolution equa-
tions we have used the initial conditions h(0) = 1, �(0) = 0.058,
and �(0) = 0.0235. The solid curve represents the evolution of the
deceleration parameter in the standard �CDM cosmological model

Fig. 13 Variation as a function of the redshift of the Weyl vector com-

ponent �(z) for the geometry-matter coupling function F
(
Q̃, T̃

)
=

ηeμQ̃/6 + νT̃ for M = 1.7, η = 6/μ, ν = 20, and for different values
of μ: μ = 1.7 (dotted curve), μ == 1.5 (short dashed curve), μ = 1.3
(dashed curve), μ = 1.1 (long dashed curve), and μ = 0.9 (ultra-long
dashed curve). To integrate the system of cosmological evolution equa-
tions we have used the initial conditions h(0) = 1, �(0) = 0.058, and
�(0) = 0.0235

strongly decelerates at redshifts z > 0.5, with the decel-
eration parameter taking values of q ≈ 2. At a redshift of
around z ≈ 0.5, the Universe experiences a transition to an
accelerating phase, and after a short cosmological interval the
deceleration parameter takes negative values. The final evo-
lutionary stages are strongly dependent on the model param-
eters, and the Universe can enter in a de Sitter phase with
q ≈ −1. Cosmological scenarios with q < −1 can also be
obtained within this model.

Fig. 14 Variation as a function of the redshift of the Lagrange mul-

tiplier �(z) for the geometry-matter coupling function F
(
Q̃, T̃

)
=

ηeμQ̃/6 + νT̃ for M = 1.7, η = 6/μ, ν = 20, and for different values
of μ: μ = 1.7 (dotted curve), μ == 1.5 (short dashed curve), μ = 1.3
(dashed curve), μ = 1.1 (long dashed curve), and μ = 0.9 (ultra-long
dashed curve). To integrate the system of cosmological evolution equa-
tions we have used the initial conditions h(0) = 1, �(0) = 0.058, and
�(0) = 0.0235

The Weyl vector, presented in Fig. 13, is a monotoni-
cally decreasing function of z, and a monotonically increas-
ing function of time. It takes negative values, except for a
small redshift range near the origin z = 0. The late accelera-
tion of the Universe is determined by the increase of �. For
high redshifts the evolution of � depends significantly on the
numerical values of the model parameters, and on the initial
conditions used to numerically integrate the cosmological
evolution equation.

The Lagrange multiplier �(z), shown in Fig. 14, is also a
monotonically decreasing function of the redshift. Except for
a small region near the origin z = 0 it takes negative values.
For higher redshifts the evolution of �(z) depends strongly
on the model parameters.

6 Discussions and final remarks

Despite its initial success in describing the cosmological
observations, presently several disagreements between the
�CDM model and observations raise the possibility that in
fact standard cosmology is just an approximation of a more
realistic theory. Beyond the “standard” problems of dark
matter and dark energy, a number of other inconsistencies
do appear when confronting the model with astronomical
data. For example, the value of the Hubble constant obtained
from the Planck CMB anisotropies is significantly smaller
than the values derived by using the luminosity distances
of supernovae [95]. Moreover, recent cosmic shear surveys
have shown that the combination of the matter density �m ,
parameterized by the S8 ≡ σ8

√
�m/0.3 parameter, and of
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the amplitude of the dark matter fluctuations σ8 on scales
of the order of 8 Mpc h−1 is significantly smaller than the
value obtained from the Planck data and the assumption of
the �CDM model [96]. In [97] it was shown that a combined
analysis of the CMB anisotropy power spectra, obtained by
the Planck satellite, and luminosity distance data simultane-
ously excludes a flat Universe and a cosmological constant
at 99% C.L. These results are valid when combining Planck
with three different datasets.

From a theoretical point of view we are also witnessing
an interesting situation. One of the important moments in the
development of theoretical physics happened more than one
hundred years since Einstein did propose the first geometric
description of gravity, the general relativity theory, we are
presently facing the unusual circumstance that at least three
geometric descriptions of gravity are possible. The differ-
ent versions can be constructed independently with the use
of the three basic concepts introduced in Riemannian geom-
etry, and its extensions, namely, the curvature, torsion and
nonmetricity of the spacetime, respectively. These intriguing
developments raise the fundamental question if a unique geo-
metric description of gravity is really possible. Are the three
independent descriptions of gravity completely equivalent,
or maybe they are only particular cases of a more general
geometric theory of gravity, which still needs to be discov-
ered?

In the present paper we have investigated a particular rep-
resentation of the third geometric description of gravity, rep-
resented by the symmetric teleparallel gravity, or f (Q) grav-
ity, in which the basic quantity describing the gravitational
field is the nonmetricity Q. Moreover, we have considered
the class of theories, introduced in [81], in which the non-
metricity Q is coupled nonminimally to the trace of the mat-
ter energy-momentum tensor T . The f (Q, T ) theory is con-
structed in a way similar to the f (R, T ) theory [16,98], but
with the standard Ricci scalar replaced by the nonmetric-
ity that describes the symmetric teleparallel formulation of
gravity. Similarly to the case of the standard curvature - mat-
ter couplings, in the f (Q, T ) theory the coupling between Q
and T leads to the nonconservation of the energy-momentum
tensor. But, in the present approach to f (Q, T ) type gravity
theories, instead of keeping the nonmetricity Q arbitrary, we
have fixed it from the beginning, by using the prescriptions
of the Weyl geometry, in which the covariant divergence of
the metric tensor is given by the product of the metric and of
the Weyl vector wμ. The scalar nonmetricity is related in a
simple way to the square of the Weyl vector as Q = −6w2,
and thus all the geometric properties of the theory are deter-
mined by the Weyl vector and the metric tensor, respectively.
To obtain the gravitational field equations of the Weyl type
f (Q, T ) gravity we have introduced a variational principle,
which generalizes the variational principle of the f (Q, T )

theory, and whose gravitational sector is constructed from

three components. The first component is an arbitrary func-
tion of the Weyl vector and of the trace of the matter energy-
momentum tensor f (−6w2, T ). The second component is
represented by the kinetic term and the mass term of the field,
assumed to be massive. Finally, we have adopted the telepar-
allel view on gravitation and geometry, by assuming that
the Ricci-Weyl scalar of the spacetime identically vanishes.
This condition is introduced in the gravitational action via a
Lagrange multiplier. By varying the gravitational action with
respect to the metric and the Weyl vector we have obtained
the system of gravitational field equations, which described
gravity in terms of the metric and a vector field, and a general-
ized Proca type equation for the evolution of the Weyl vector.
We have performed our analysis of the gravitational action in
the framework of the metric-affine formalism. The covariant
divergence of the matter energy-momentum tensor has also
been obtained, and it turns out that generally it is not con-
served. The energy and momentum balance equations have
been derived explicitly from the matter nonconservation rela-
tion. The nonconservation of the matter energy-momentum
tensor may have important physical implications, leading to
significant changes in the thermodynamics of the Universe,
similarly to those in the theories with geometry-matter cou-
pling [16,98–102]. Moreover, due to the nongeodesic motion
of test particles induced by the geometry matter coupling, in
the present approach, similarly to other modified gravity the-
ories [99,103] an extra force acting on massive particles is
generated.

The investigations presented in the present paper may also
lead to a better understanding of the geometrical formula-
tion of gravity theories, including the aspects related to the
geometry-matter coupling. The present approach allows a
consistent representation of the f (Q, T ) type theories with
nonminimal curvature-matter coupling.

As a first observational test of the Weyl type f (Q, T )

gravity theory we have analyzed its cosmological impli-
cations. As a first step in this direction we have obtained
the generalized Friedmann equations of the Weyl type
f (Q, T ) theory. For the description of the Universe we
have adopted the homogeneous and isotropic Friedmann–
Lemaitre–Robertson–Walker type metric, describing the cos-
mological evolution in a flat geometry. In the Weyl type
f (Q, T ) theory we can reformulate the generalized Fried-
mann equations as the standard Friedmann equations of gen-
eral relativity in which the ordinary matter energy density
and pressure are replaced by some effective quantities ρe f f
and pef f . The effective thermodynamic parameters ρe f f and
pef f depend first on the function f (Q, T ) and of its deriva-
tives with respect to Q and T , which are effectively functions
of the Weyl vector and of the thermodynamic parameters of
matter. There is also an explicit dependence on the Weyl
vector, its time derivative, the mass of the vector field, and
on the Lagrange multiplier λ. The effective thermodynamic
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energy also contains the linear combination of the ordinary
matter energy density and pressure, multiplied by fT . Hence
the basic equations describing the cosmological evolution in
the Weyl type f (Q, T ) gravity can be formulated in terms
of two effective thermodynamic quantities, an energy den-
sity and pressure, respectively, which depend on the matter
energy and pressure components of the energy-momentum
tensor, on the Weyl vector, and on the Lagrange multiplier,
respectively. The function f (Q, T ) and its derivatives are
effective functions of the Weyl vector and of T . Hence in
the present model the evolution of the Universe is controlled
by the Weyl vector, the Lagrange multiplier, and the mat-
ter content. An important indicator of the nature of the cos-
mological evolution is the deceleration parameter. q can be
expressed in terms of the matter energy density and pres-
sure, of the Weyl vector, and of the Lagrange multiplier. The
deceleration parameter has a complicated dependence on the
function f and of its derivatives. Hence, depending on the
functional form of f (Q, T ), a large variety of cosmologi-
cal evolutions can be obtained in the framework of the Weyl
type f (Q, T ) gravity, including accelerating and deceler-
ating cosmological expansions. For the vacuum case when
ρ = p = 0 we have also shown explicitly that the field equa-
tions of Weyl type f (Q, T ) gravity theory do have a de Sitter
type solution, indicating that for late times the vacuum Uni-
verse enters into an exponentially accelerating phase with
q = −1. From a mathematical point of view the general-
ized Friedmann equations are given by a set of three highly
nonlinear ordinary differential equations, which generally
can be solved only numerically. To simplify the numerical
analysis we have reformulated the cosmological equations
by introducing a set of dimensionless variables. In order to
facilitate comparison with observations we have introduced
as the independent variable the cosmological redshift z. In
our investigations of the Weyl type f (Q, T ) gravity we have
also analyzed three distinct classes of cosmological models,
obtained by choosing some specific simple functional forms
for the function f (Q, T ). In two of our examples we have
considered that Q and T enter in an additive form in the struc-
ture of f (Q, T ). We have also analyzed a model in which
the function f is proportional to the cross term product of Q
and T , so that f ∝ QT . In all three cases we have compared
the predictions of the Weyl type f (Q, T ) gravity theory with
the results of the standard �CDM cosmological model.

The f (Q, T ) = αQ+βT model can give a good descrip-
tion of the cosmological data up to redshifts of the order
of z ≈ 1 − 1.5. Depending on the numerical values of the
model parameters a large variety of cosmological scenarios
can be constructed, including cosmological evolutions of the
de Sitter type, with the Universe expanding exponentially.
The model f (Q, T ) = αQβT also leads to a good descrip-
tion of the standard cosmological model at small redshifts,
allowing by an appropriate choice of the model parameters

the construction of a large number of accelerating scenar-
ios, including de Sitter type expansions. The third model
with f (Q, T ) = ηeμQ + νT leads to a complex cosmologi-
cal dynamics, involving larger deviations from the standard
�CDM model. In particular the Universe experiences a very
rapid transition from a decelerating phase with a large posi-
tive value of q to an accelerating state with q < 0, and it can
reach very quickly a de Sitter type expansion.

In the Weyl type f (Q, T ) gravity theory the nature of the
cosmological evolution is strongly dependent on the numer-
ical values of the model parameters, as well as of the func-
tional form of f . For the specific models and the range of cos-
mological parameters we have considered we have obtained
the basic result that the Universe began its recent evolution
in a decelerating phase, entering in the large time limit z = 0
into an accelerating de Sitter type stage. By slightly vary-
ing the model parameters we can obtain a large spectrum of
present day values for the deceleration parameter. In gen-
eral at low redshifts the theoretical predictions of the Hubble
parameter in the Weyl type f (Q, T ) are similar to those of
the standard general relativistic cosmology in the presence
of a cosmological constant. However, at higher redshifts sig-
nificant differences appear with respect to the �CDM model
in the behavior of the Hubble function, of the matter energy
density, and of the deceleration parameter. However, if inves-
tigated for a larger range of functional forms of f and of
model parameters the Weyl type f (Q, T ) gravity may rep-
resent an attractive alternative to the �CDM cosmology, with
the late time de Sitter phase induced by the presence of the
Weyl geometry, and its interaction with matter.

The Weyl type f (Q, T ) gravity theory can be easily gen-
eralized to include in the total action, together with ordi-
nary matter, scalar fields. Hence this opens the possibility of
another application of the Weyl type f (Q, T ) theory, namely,
the consideration of inflation in the presence of both Weyl
type vector fields, and of scalar fields. Such an approach
may lead us to a completely new understanding of the grav-
itational, geometrical, and cosmological processes that did
determine the dynamics of the very early Universe. Another
major topic that could be investigated in the framework of
the Weyl type f (Q, T ) gravity is cosmological structure for-
mation, an analysis that could be done with the use of a back-
ground metric. For different choices of the f (Q, T ) function
the SNIa, BAO, and CMB shift parameter data can be used
to obtain constraints for the respective models, and for the
evolution of the Weyl vector and of the Lagrange multiplier.
Such an approach may also allow the detailed investigation
and study of structure formation in the Universe from a dif-
ferent theoretical perspective. Another interesting and impor-
tant issue is obtaining the Newtonian and the post-Newtonian
limits of the Weyl type f (Q, T ) gravity theory, an analysis
that could allow us to obtain the constraints Solar System
level gravity imposes on the theory, and on the properties of
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the Weyl vector. Constraints arising from other astrophysical
observations can also be obtained by using the Newtonian
limit.

In the present paper we have introduced a new model of
the symmetric teleparallel theory, in which the nonmetricity
is constructed from its initial Weyl form. In this approach the
gravitational phenomena can be fully described by the Weyl
vector, a Lagrange multiplier, and the metric in a globally flat
geometry. By using the variational formulation of the theory
we have obtained the basic equations of the model, and we
have proven its theoretical consistency. The present results
may also motivate and encourage the study the applications
of Weyl theory, and of the further extensions of the f (Q) type
family of theories. We have also shown that the cosmology of
the Weyl type f (Q, T ) theory predicts a de Sitter type expan-
sions of the Universe, and it can give a satisfactory descrip-
tion of the cosmological observations usually interpreted in
the framework of the standard �CDM model. Thus the Weyl
type f (Q, T ) gravity theory may represent a geometric alter-
native to dark energy, and perhaps even dark matter. In the
present study we have proposed some basic theoretical meth-
ods for the investigation of the geometric aspects of gravity,
and of their astrophysical and cosmological implications.
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Appendix A: Derivation of the field equations

In the present Appendix we will present the detailed calcu-
lations used for the derivation of the field equations of the
Weyl type f (Q, T ) gravity theory.

6.1 Basic mathematical results

In this Subsection, we present some basic mathematical
results necessary for the derivation of the field equations.
First of all, we compute δQ/δgμ and δT/δgμν ,

δQ

δgμν
= δ

δgμν

(−6wμwνg
μν

) = −6wμwν, (A1)

δT

δgμν
= δ(gαβTαβ)

δgμν
= −Tμν + gμνLm, (A2)

where we have made use of Eq. (24).
Next we show that δWρσ /δgμν = 0:

δ

δgμν
(∇σ wρ) = δ

δgμν
(∂σ wρ − �τ

σρwτ ) = −δ�τ
σρ

δgμν
wτ .

Similarly, we have

δ

δgμν
(∇ρwσ ) = −δ�τ

ρσ

δgμν
wτ .

Since the tensor δ�τ
σρ is symmetric with respect to the two

lower indices, we obtain

δWρσ

δgμν
= δ

δgμν
(∇σ wρ − ∇ρwσ ) = 0. (A3)

6.2 Variation with respect to the metric

For future convenience we define some terms as follows

I1 ≡ δ

δgμν

[∫
d4x

√−g f (Q, T )

]
,

I2 ≡ δ

δgμν

∫
d4x

√−g
(
λR̄

)
,

Sμν ≡ − 2√−g

δ

δgμν

[√−g

(
−1

4
WαβW

αβ − m2

2
wαwα

)]
,

Tμν ≡ − 2√−g

δ(
√−gLm)

δgμν
.

Here Tμν and S̃μν are the energy-momentum tensors of the
matter fields, and the vector field, respectively. A straightfor-
ward calculation gives,

Sμν = −gμν

4
WαβW

αβ − m2

2
gμνw

2

− 2
δ

δgμν

(
−1

4
WαβW

αβ − m2

2
w2

)

= WμρW
ρ

ν − gμν

4
WαβW

αβ + m2
(
wμwν − gμν

2
w2

)
.

(A4)
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6.2.1 Computing I1

For the term I1 we find

I1 = δ

δgμν

(∫
d4x

√−g f

)

=
∫

d4x

(
δ
√−g

δgμν
f + √−g fQ

δQ

δgμν
+ √−g fT

δT

δgμν

)

= √−g

[
− f

2
gμν − 6 fQwμwν + fT (Tμν + �μν)

]
,

(A5)

where we have made use of Eqs. (A1) and (A2), and of the
following identity,

δ
√−g = −

√−g

2
gμνδg

μν. (A6)

6.2.2 Computing I2

For the term I2 we obtain

∫
d4xδ

(√−gλR̄
)

=
∫

d4x
√−g

(
−1

2
gμνλR̄δgμν + λδ R̄

)

=
∫

d4x
√−gλ

[
δR + 6δ(∇ρwρ) − 12wμwνδg

μν
]
,

(A7)

where we have made use of the fact that R̄ = 0. With the use
of the identity δR = Rμνδgμν − gμν�δgμν − ∇μ∇νδgμν ,
and after integrating by parts, we obtain

∫
d4x

√−gλδR =
∫

d4x
√−g

(
λRμν + gμν�λ − ∇μ∇μλ

)
δgμν.

(A8)

Using the identity

δ�α
βγ = 1

2
gαρ

(∇βδgργ + ∇γ δgρβ − ∇ρδgβγ

)
, (A9)

and the fact that gαβ∇νgβγ + gβγ ∇μgαβ = ∇μδ
β
γ = 0, we

obtain∫
d4x

√−gλδ
(∇αwα

)

=
∫

d4x
√−gλ

[∇αwβδgαβ + gαβδ
(∇αwβ

)]

=
∫

d4x
√−gλ

[
∇αwβδgαβ − gαβwγ δ�

γ
αβ

]

=
∫

d4x
√−gλ

[
∇αwβδgαβ

−1

2
wρgβα

(∇αδgβρ + ∇βδgαρ − ∇ρδgαβ

) ]

=
∫

d4x
√−gλ

[
∇αwβδgαβ

+1

2
wρ

(
gβρ∇αδgβα + gαρ∇βδgαβ − gαβ∇ρδgαβ

) ]

=
∫

d4x
√−g

[
λ∇αwβ − ∇α(λwβ) + 1

2
gαβ∇ρ(λwρ)

]

=
∫

d4x
√−g

[
−w(β∇α)λ + 1

2
gαβ∇ρ(λwρ)

]
. (A10)

Hence:

I2 = √−g
[
λRμν + gμν�λ − ∇μ∇νλ − 6λwμwν

− 6w(μ∇ν)λ + 3gμν∇ρ(λwρ)
]
.

(A11)

According to the least action principle,

δS

δgμν
= κ2 I1 + I2 − 1

2

√−g(Tμν + Sμν) = 0, (A12)

and therefore we arrive at the field equation

1

2

(
Tμν + Sμν

) − κ2 fT
(
Tμν + �μν

) = −κ2

2
gμν f

− 6κ2 fQwμwν + λ
(
Rμν − 6wμwν + 3gμν∇ρwρ

)

+ 3gμνw
ρ∇ρλ − 6w(μ∇ν)λ + gμν�λ − ∇μ∇νλ,

(A13)

6.3 Variation with respect to wμ

Since the matter energy momentum tensor is independent of
the vector field, we have

δ f

δwμ

= fQ
δQ

δwμ

= −12 fQwμ, (A14)

where we have made use of Eq. (24). Now it is easy to check
the following results,

δ
(
WαβWαβ

)

δwμ

= 4
(
�wμ − ∇ν∇μwν

) = 4∇νW
μν,

δw2

δwμ

= 2wμ,

λ
δ R̄

δwμ

= 6λ
δ(∇αwα)

δwμ
− 6λ

δw2

δwμ
= −6∇μλ − 12λwμ.

(A15)
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Thus the field equation of the Weyl type vector field is

∇νWμν − (m2 + 12κ2 fQ + 12λ)wμ = 6∇μλ. (A16)

Appendix B: Alternative form of the field equations

In this Appendix, we present the derivation of Eqs. (39).
Firstly, we introduce some notations as

D(0)
μν = Rμν − 6wμwν + 3gμν∇ρwρ,

D(1)
μν = 3gμνw

ρ∇ρ − 6w(μ∇ν),

D(2)
μν = gμν� − ∇μ∇ν,

Dμ = ∇μ + 2wμ.

Using the above definitions, Eq. (30) can be written as

1

2

(
Tμν + Sμν

) − κ2 fT
(
Tμν + �μν

) = −κ2

2
gμν f

−6κ2 fQwμwν + (D(0)
μν + D(1)

μν + D(2)
μν )λ. (B1)

From Eq. (28), we see that Dμλ is independent of λ, so
that

Dμλ = 1

6
∇νWνμ −

(
m2

6
+ 2κ2 fQ

)
wμ. (B2)

Therefore we can replace ordinary derivatives with Dμ,
and try to eliminate all the derivatives of lambda. Using the
following identities,

∇μλ = Dμλ − 2wμλ, (B3)

∇ν∇μλ = ∇νDμλ − 2∇ν(wμλ), (B4)

�λ = ∇μDμλ − 2λ∇μwμ − 2wμ∇μλ, (B5)

and starting from the highest order derivative, we have

D(2)
μν λ = gμν∇αDαλ − ∇μDνλ − 2gμνwρ∇ρλ

+ (
2∇μ(λwν) − 2λgμν∇ρwρ

)
. (B6)

Now, we obtain
(
D(0)

μν + D(1)
μν + D(2)

μν

)
λ = gμν∇ρDρλ − ∇νDμλ

+gμνwρ∇ρλ − wμ∇νλ − 3wν∇μλ

+λ
(
Rμν − 6wμwν + gμν∇ρwρ + 2∇μwν

)
. (B7)

Working on the first order derivatives in a similar manner,
we obtain

(D(0)
μν + D(1)

μν + D(2)
μν )λ = gμν∇ρDρλ − ∇νDμλ

+ gμνwρD
ρλ − wμDνλ − 3wνDμλ

+ λ
(
Rμν + 2wμwν − 2gμνw

2 + gμν∇ρwρ + 2∇νwμ

)
.

(B8)

Hence the field equations become

1

2

(
Tμν + Sμν

) − κ2 fT
(
Tμν + �μν

) = −κ2

2
gμν f

− 6κ2 fQwμwν + gμν∇ρDρλ − ∇νDμλ

+ gμνwρD
ρλ − wμDνλ − 3wνDμλ

+ λ
(
Rμν + 2wμwν − 2gμνw

2 + gμν∇ρwρ + 2∇νwμ

)
.

(B9)
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