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Abstract We evaluate the contribution to the X (3872)

width from a triangle mechanism in which the X decays into
D∗0 D̄0 − cc, then the D∗0(D̄∗0) decays into D0π0 (D̄0π0)
and the D0 D̄0 fuse to produce π+π−. This mechanism pro-
duces an asymmetric peak from a triangle singularity in the
π+π− invariant mass with a shape very sensitive to the X
mass. We evaluate the branching ratios for a reaction where
this effect can be seen in the B− → K−π0π+π− reaction
and show that the determination of the peak in the invariant
mass distribution of π+π− is all that is needed to determine
the X mass. Given the present uncertainties in the X mass,
which do not allow to know whether the D∗0 D̄0 state is bound
or not, measurements like the one suggested here should be
most welcome to clarify this issue.

1 Introduction

The X(3872) (now branded as χc1(3872) in the PDG [1])
was the first exotic state of the X, Y, Z series, observed in the
B → K X (3872); X (3872 → π+π− J/ψ [2] reaction and
later on in different processes [1]. The value of its mass, as
listed in the PDG [1], is

MX = 3871.69 ± 0.17 MeV, (1)

which turns out to be compatible with the D∗0 D̄0 threshold
mass,

mD0 + mD∗0 = 3871.68 ± 0.07 MeV.

Hence, it could be equally bound or unbound in the above
channel. The amount of theoretical work devoted to this

a e-mail: raqumoli@ucm.es (corresponding author)

resonance is large and we divert the reader to the detailed
discussion done in Ref. [3]. The proximity to the D∗ D̄0

threshold has led to the suggestion that this resonance could
be a D∗ D̄ − cc state. Concretely, in Ref. [4] two indepen-
dent bound states for D0 D̄∗0 and D+D∗− were obtained at
3863.67 MeV as 3871.77 MeV respectively, but it was also
suggested that these components could get mixed to give
two I = 0, J = 1 states,1 with the I = 0 state correspond-
ing to the X(3872). In Ref. [5] the X(3872) is associated
to a D∗0 D̄0 − cc state, while coupled channel calculations
including both, the D∗0 D̄0 − cc and D∗+D− − cc channels,
reproduce the X(3872) as an approximate I = 0 combination
of the neutral and charged channels for the wave function at
short distances [6–8]. One could understand the latter picture
as follows: since the X (3872) is bound by about 7 MeV in
the charged D∗+D− − cc component, this amount of bind-
ing energy contributes to make the system stable, being both
components, neutral and charged, relevant for the whole sys-
tem.

One method to improve the determination of the X(3872)
mass was proposed in Ref. [9] using a triangle singularity
(TS) which appears in D∗0 D̄∗0 → γ X (3872), where the
D∗0 D̄∗0 would be produced by some source. A possible
implementation of the idea is given in Ref. [10] with the
e+e− → γ X (3872) reaction. The reason for this sensitivity
of the reaction to the X(3872) mass is the sharp peak pro-
duced by the TS when the width of the intermediate state
particle, D∗0 in this case, is small (of the order of 60 KeV).

Triangle singularities, popular in the sixties [11–14], stem
from reaction mechanisms where a particle A decays into two
particles 1 + 2, then particle 1 decays into particles 3 and B,
and latter 2 + 3 fuse to produce a particle C . Altogether
one has A → B + C with a triangle loop in the Feynman

1 Where I and J denote isospin and spin respectively.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-8014-7&domain=pdf
http://orcid.org/0000-0001-9427-240X
mailto:raqumoli@ucm.es


451 Page 2 of 9 Eur. Phys. J. C (2020) 80 :451

Fig. 1 Feynman diagram for
the reaction A → BC source of
the triangle singularity (TS)
phenomena
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diagram with the particles 1, 2, 3 (see Fig. 1). The appearance
of the singularity demands that: a) all particles 1, 2, 3, are
placed simultaneously on shell;b) the latter are also collinear;
and c) the process can occur at the classical level (Coleman-
Norton Theorem) [15]. Formulated with a general framework
using the Feynman parameterization of the amplitudes [12,
16], the formalism can be done in a different way, which is
technically easier and more transparent [17]. In Ref. [17], all
the conditions for the TS are condensed in a single equation,

qon = qa− , (2)

where qon is the momentum of particles 1, 2 in the A rest
frame, when they are placed on shell, and qa− , one of the two
solutions for the momenta of particle 2 when 2, 3 are placed
on shell to produce particle C , and 1 and B are parallel (see
Ref. [17] for the expressions of qon and qa− ).

At the beginning, there was a search for reactions which
would show some enhancement due to a TS without much
success [13,14]. However, the situation has been reverted
recently given the vast amount of experimental informa-
tion gathered. One of the most relevant examples has been
the interpretation in terms of a TS [16,18,19] of the peak
observed at COMPASS [20], which originally was branded
as a new resonance, the “a1(1420)”.

It was also relevant the explanation in terms of a TS [21–
24] of the enhancement of the isospin forbidden decay of
η(1405) → π0 f0(980) [25]. Another example is the expla-
nation of an enhancement of the γ p → K�(1405) cross
section around

√
s = 2110 MeV [26] solved in terms of a

TS in [27], or the interpretation of the πN (1535) production
channel [28] in the γ p → pπ0η reaction [29].

Many examples of proposed TS to learn about the nature
of some resonance, or to enhance dynamically suppressed
production modes in different reactions, have been given in
Refs. [30–32].

In the present work we go back to the work on the
X (3872) → π0π+π− reaction proposed in Ref. [33] and
study in detail the B− → K−X (3872); X (3872) →
π0π+π− reaction showing that there is a TS for an invariant
mass of π+π− around 3729.7 MeV with a peak quite sen-
sitive to the mass of the X (3872). The reaction proposed is
similar to the one where the X (3872) was originary found,
B → K X (3872); X → J/ψπ+π−, but the J/ψ is now
replaced by a π0 and the rest is the same. The reaction has

the novelty that because there is a triangle singularity peak
establishing a correspondence between the X mass and the
Mπ+π− , the π0 does not have to be measured in principle.
For practical purposes the measurement of the π0 helps to
reduce background, however, it is sufficient to know that a
π0 is produced without knowing with precision its energy
and momentum.

2 Formalism

2.1 Mechanism for the triangle singularity in the
B− → K−X; X → π0π+π− reaction

The mechanism discussed above is depicted diagrammati-
cally in Fig. 2. For the evaluation of the mass distribution of
the B− → K−X; X → π0π+π− decay, several ingredients
are needed:

1. the B− → K−X weak vertex,
2. the coupling of the X to the D∗ D̄ − cc state,
3. the decay width for the D∗ → Dπ process,
4. the amplitude DD̄ → π+π−, see Fig. 2.

We proceed step by step to their evaluation.

2.1.1 The B− → K−X vertex

Since the B− and K− have both J P = 0−, while X has
J PC = 1++, p-wave is needed to compensate, because of
the conservation of the angular momenta. Hence, the suited
operator producing a scalar amplitude is

tB−→K−X = C�εX · �pK− , (3)

where C is an unknown constant and has to be evaluated.
There are several sources of experimental information. For
example, Refs. [1,34] give

BR
(
B− → K−X; X → D0 D̄0π0

)
= (1.0 ± 0.4)× 10−4.

(4)

Assuming that the BR of X → D0 D̄0π0 is about 50%, as
deduced in Ref. [35] we obtain the branching ratio

BR(B− → K−X) � (2.0 ± 0.8) × 10−4. (5)

This number is in agreement with the one deduced in Ref.
[35] of (1.9±0.6)×10−4, and the one measured by BABAR,
(2.1 ± 0.6 ± 0.3) × 10−4 [1]. We shall take Eq. (5) for eval-
uations.
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Fig. 2 Mechanisms for
B− → K−X; X → π0π+π−
which develop a TS in the
π+π− invariant mass
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The decay width of B− → K−X is then given by

d	B− = 1

8π

1

M2
B−

pK−
∑̄ ∑

|tB−,K−X |2 (6)

with
∑̄∑ |tB−,K−X |2 = C2| �pK−|2, pK− = λ1/2(M2

B− ,

m2
K− ,m2

X )/2MB− , and then,

C2

	B−
= 8πM2

B−BR(B− → K−X)

p3
K−

(7)

2.1.2 The X → D∗ D̄ − cc coupling

We follow here the formalism of Refs. [6,8]. The wave func-
tion at short distances is given there approximately by

X ≡ 1

2

(
D∗+D− + D∗0 D̄0 − D∗−D+ − D̄∗0D0

)
(8)

which corresponds to I G(J PC ) = 0+(1++) with the isospin
phase convention, (D+,−D0), (D̄0, D−), and the same for
D∗.2 In the diagrams of Fig. 2, the diagrams for the TS
after B decays into K X are depicted. The X coupling to
all the components of Eq. (8) has to be evaluated. However,
the D∗+D− − cc components are bound by 7 MeV for the
X mass, which means that the intermediate charged D, D∗
mesons in the loop can not be put on shell. This binding has to
be compared to the D∗+ width of (83.4±1.8) KeV [1], hence
we can say that they are very off shell and do not produce
any appreciable contribution for the TS in the X mass range
(this conclusion is also found in Ref. [33]). Thus, the most

2 The C− parity is acting over the charged mesons as CD+ = D−,
CD∗+ = −D∗−

important contribution comes from the D∗0 D̄0 and D̄∗0D0

couplings, which just have opposite sign.
In Ref. [6] the coupling of X to the D∗ D̄ − cc state is

evaluated, but the binding obtained is larger than the exper-
imental one [1]. A better estimate can be obtained using the
Weinberg compositeness condition, see Refs. [36–38], which
in the normalization used here is given by [38],

g2
X = 16πs

μ

√
2μEB (9)

being s = M2
X , μ denotes the reduced mass of the D∗, D, and

EB the binding energy of X with respect to D∗0 D̄0 system.
With the value of MX given in Eq. (1) we compromise with
the coupling, gX = 2 GeV,3 and then,

gX,D∗0 D̄0 = 1

2
gX ; gX,D̄∗0D0 = −1

2
gX . (10)

We should note that Weinberg’s formula, Eq. (9), holds for
bound states. Our formalism can be used with unbound
D∗0 D̄0 components since we work in coupled channels and
the D∗+ D̄−−cc components are bound, stabilize the system
and lead to a coupling of X to the neutral components in the
coupled channel approach.

The full vertex function for the X → D∗0 D̄0 is then given
by [6]

tX,D∗0 D̄0 = 1

2
gX �εX · �εD∗ . (11)

3 This corresponds to binding energies of the X around 20 KeV. How-
ever, note that the position of the peak related to the TS is not altered
by this value.
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Fig. 3 Feynman diagram for
the perturbative amplitude
D0 D̄0 → π+π−. In parenthesis
the momenta of the particles

D̄0(p1)

D0(p2)

π+(p3)

π−(p4)

D∗−(q)

2.1.3 The D∗ → Dπ coupling

We write for convenience

tD∗0,π0D0 = − g̃√
2
( �pπ0 − �pD∗0) · �εD∗ . (12)

Then, taking the D∗+ decay width from the PDG [1], and
using isospin symmetry together with the fact that the branch-
ing ratio for the D∗0 → D0π0 process is 64.7%, one obtains,

g̃ = 8.43; 	D∗0 = 55.9 KeV. (13)

The value obtained here for 	D∗0 is similar to the one reported
in [39] of 	D∗ � 60 KeV. The coupling of D̄∗0, π D̄0 can be
obtained from Eq. (12) changing the direction of the lines in
the corresponding Feynman diagram, and hence, one obtains
a relative minus sign. This means that, together with Eq. (10),
the first two diagrams of Fig. 2 give the same contribution.

2.1.4 The DD̄ → π+π− amplitude

For this amplitude we follow the approach of Refs. [40,41],
where, working in coupled channels, one finds a DD̄ bound
state corresponding to a pole at

√
s0 = (3722 − i18) MeV.

We shall find the TS at Mπ+π− very close to this energy.
Thus we can use the pole expression for the amplitude,

ti j = gi g j

s − s0 + i
√
s0 	

, (14)

with s0 = (3722 MeV)2, 	 = 36 MeV, gD+D− = (5962 +
i1695) MeV, gD0 D̄0 = (5962 + i1695) MeV, gπ+π− =
(9 + i83) MeV.

We should note that the D0 D̄0 → π+π− amplitude, in
spite of being tied to a bound state, is much smaller than
the perturbative amplitude given by the diagram in Fig. 3,
which has been used as an estimate in Ref. [33], among other
options.

Using the isospin extra factor
√

2 for D0 → D∗+π−
relative to D0 → D∗0π0, the amplitude of Fig. 3 is given by

t tree
D0 D̄0→π+π− = g̃2

q2 − M2
D∗

(p1 + p3) · (p2 + p4), (15)

D0

π0

π−

X

π+

D̄∗0

D̄0

X(P )

D0(P − q − k)

D∗0(P − q)

π+(P − k − p1)

π−(p1)

π0(k)

D̄0(q)

(a) (b)

Fig. 4 Triangle mechanisms for the X → π0π+π− process. In dia-
gram a) we show in parenthesis the momenta of the particles

which is about 45 times bigger than the result from Eq. (14).
We should also note that the estimate for the D0 D̄0 → π+π−
amplitude [33] based on the mechanism of Fig. 3 is about a
factor of five smaller than that from Eq. (15), and 9 bigger
than the result from Eq. (14). This short discussion clearly
indicates that, although we think that the amplitude of Eq.
(14) is realistic, we must accept some uncertainties in the
strength of the predicted cross sections. But we should also
emphasize that the position and shape of the predicted peaks
does not depend on this amplitude. In the evaluations done
here for the diagrams of Fig. 2 we use the amplitude of
Eq. (14).

2.2 The X → π0π+π− Triangle mechanism

Prior to the evaluation of the diagrams of Fig. 2 we shall eval-
uate the width of the X going through the two mechanisms
depicted in Fig. 4, both of which give identical contribution
to the X → π0π+π− amplitude.

In order to evaluate the amplitude of Fig. 4 we make use of
the fact that the D, D∗ in the intermediate states are placed
on shell in the TS. This, and the fact that the particles are
heavy, make it unnecessary to take into account the negative
energy part of the D, D∗ propagators. Hence,

D(q) = 1

q2 − m2 + iε
−→ 1

2ω

1

q0 − ω + iε
, (16)

and only the positive energy part is taken. In Eq. (16), ω ≡
ω(q) = √�q 2 + m2. Since both diagrams in Fig. 4 give rise
to the same amplitude, the total amplitude is written by,

t = −2igX g̃
∫

d4q

(2π)4

1

2
√

2
�εX · �εD∗

×�εD∗ · (2�k + �q) tD0 D̄0,π+π−
1

2ω∗
1

2ω1

1

2ω2

× 1

P0 − q0 − ω∗ + iε

1

q0 − ω1 + iε

× 1

P0 − q0 − k0 − ω2 + iε
, (17)
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where ω∗ ≡ ω∗(q) =
√
m2

D∗ + �q 2, ω1 ≡ ω1(q) =√
m2

D + q2, ω2 ≡ ω2(�q+�k) =
√
m2

D + (�q + �k)2. Summing

over the D∗0 polarizations and performing the q0 integration
analytically using Cauchy’s theorem, one obtains

t = − 1√
2
gX g̃ tD0 D̄0,π+π− �εX · �k tT , (18)

where tT is given by

tT =
∫

d3q

(2π)3

1

2ω∗
1

2ω1

1

2ω2

(
2 + �q · �k

�k 2

)
θ

(
qmax − |�q|∗)

× 1

P0 − ω1 − ω∗ + i 	D∗
2

1

P0 − k0 − ω1 − ω2 + iε
,

(19)

where we have added the cut off θ(qmax−|�q|∗), which comes
associated with the approach of Ref. [38], and q∗ being the
momentum of the D̄0 in Fig. 4 a) in the π+π− rest frame. To

arrive to Eq. (19), we have replaced
∫
d3qqi by

∫
d3q �q·�k

�k 2 ki ,
since the the resulting integration is a vector and the only
vector non-integrated is �k. In addition, we have considered
the width of the D∗ by means of the substitution ω∗ −→
ω∗ − i 	D∗

2 .
We take qmax = 800 MeV, and since the momentum q

appearing in the TS is of the order of 10 MeV/c, we can take
θ(qmax −|�q|∗) = θ(qmax −|�q|) for practical purposes, since
momenta around q∗

max give negligible contribution to the TS.
This allows us to do analytically the cos θ integration of Eq.
(19), and we find,

tT =
∫ qmax

0

q2dq

32π2

1

ω∗
1

ω1

1

k q

1

P0 − ω1 − ω∗ + i
	D∗0

2

×
{(

2 − m2
D0 + k2 + q2 − b2

2k2

)
ln
b − ω−

2 + iε

b − ω+
2 + iε

+ 1

2k2

[
−1

2
(b − ω+

2 )2 + 1

2
(b − ω−

2 )2 + 2b(ω−
2 − ω+

2 )

]}

(20)

where

b ≡ P0 − k0 − ω1; P0 ≡ MX ; q ≡ |�q|,

k0 = M2
X + m2

π0 − M2
π+π−

2MX

k ≡ |�k| =
λ1/2

(
M2

X ,m2
π0 , M

2
π+π−

)

2MX
,

ω+
2 =

√
m2

D0 + k2 + q2 + 2k q,

ω−
2 =

√
m2

D0 + k2 + q2 − 2k q. (21)

The TS appears technically when the denominator in Eq. (20)
becomes zero, P0 −ω1 −ω∗ (ignoring the 	D∗0 width), and

b−ω−
2 becomes zero. The presence of the D∗0 width renders

the contribution finite, but given the small value of 	D∗0 , tT
gives rise to very sharp peaks.

The differential mass distribution is given by

d	

dMπ+π−
= 1

(2π)3 k p̃π+
∑̄ ∑

|t |2 1

4M2
X

, (22)

where p̃π+ = λ1/2(M2
π+π− ,m2

π+ ,m2
π− )

2Mπ+π− , and,

∑̄ ∑
|t |2 = 1

6
g̃2|gX tD0 D̄0,π+π−|2�k 2|tT |2, (23)

and tT is given by Eq. (20).

2.3 The X → D∗0D → D0 D̄0π0 width

The results of Eq. (22) should be compared with the decay
width of the X to the D0 D̄∗0π0 channel with the given
X, D∗0 D̄0 coupling. The mechanisms for this decay proceed
as shown in the diagrams of Fig. 5.

The amplitude for the diagram of Fig. 5a is given by

ta = − gX g̃

2
√

2
�εX �εD∗

�εD∗ · ( �pπ − �pD)

M2
π0D0 − M2

D∗0 + iMD∗0	D∗0
. (24)

Taking into account both diagrams, Fig. 5a, b, after summing
over the D∗0, D̄∗0 polarizations, we obtain,

t̃ = − gX g̃

2
√

2

{
�εX · ( �pπ − �pD)

M2
π0D0 − M2

D∗0 + iMD∗0	D∗0

+ �εX · ( �pπ − �pD̄)

M2
π0 D̄0 − M2

D̄∗0 + iMD̄∗0	D∗0

}
. (25)

Given the small D∗ momenta, the π0D0 or π0 D̄0 move
freely in any direction and there is no appreciable interfer-
ence between the two mechanisms, such that we can write,

d	

dMπ0D0
= 1

(2π)3 pD̄0 p̃π0

∑̄ ∑
|t̃ |2 1

4M2
X

, (26)

being

pD̄0 =
λ1/2

(
M2

X , M2
D̄0 , M

2
π0D

)

2MX
,

p̃π0 =
λ1/2

(
M2

π0D0 ,m
2
π0 ,m

2
D0

)

2Mπ0D0
,

and

∑̄ ∑
|t̃ |2 = 1

9
p̃ 2

π0

∣∣∣∣∣
gX g̃

M2
π0D0 − M2

D∗0 + iMD∗0	D∗0

∣∣∣∣∣
2

.(27)
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Fig. 5 Diagrams for
X → D∗0 D̄0, D̄∗0D0, followed
by D∗0(D̄∗0) decay to
πD0(D̄∗0)

X D̄∗0 π0

D0 D̄0

X D∗0 π0

D̄0 D0

(a) (b)

2.4 Amplitude for B− → K−X ; X → π0π+π−

By taking the result for the evaluation of the X → π0π+π−
amplitude done in Sect. 2.2, in particular Eq. (18), next we
write the amplitude for the first two diagrams of Fig. 2,

t ′ = − 1√
2
CgX g̃

�εX · �pK tD0 D̄0,π+π− �εX · �k tT
M2

π0π+π− − M2
X + iMX	X

(28)

where pK ≡ | �pK | = λ1/2(M2
B ,m2

k ,M
2
π0,π+π−

2MB
, and tT given by

Eq. (20). After summing over the X polarizations,

t ′ = − 1√
2
CgX g̃

�pK · �k tD0 D̄0,π+π− tT

M2
π0π+π− − M2

X + iMX	X
. (29)

In |t ′|2 we consider that the angle average of | �pK · �k|2 is
1
3 | �pK |2�k 2, and then, one finds

∑̄ ∑
|t ′|2 = 1

6
C2 g̃

2|gX tD0 D̄0,π+π−|2 �p 2
K

�k2|tT |2
∣∣∣M2

π0π+π− − M2
X + iMX	X

∣∣∣
2 (30)

from where we obtain the double differential mass distribu-
tion [42],

d2	B−

dMπ0π+π−dMπ+π−
= pK pπ0 p̃π+

128π5M2
B−

∑̄ ∑
|t ′|2, (31)

where

pπ0 =
λ1/2

(
M2

π0π+π− ,m2
π− , M2

π+π−
)

2Mπ0π+π−
,

p̃π+ = λ1/2
(
M2

π+π− ,m2
π+ ,m2

π−
)

2Mπ+π−
. (32)

In practice, we perform the integral of Eq. (31) over
Mπ0π+π− , which results in a convolution of the decay width
of the X for the process X → π0π+π− with the spec-
tral function (mass distribution) of the X . The resulting
d	B−/dMπ+π− will show the TS of the mechanism dis-
cussed.

3871.0 3871.5 3872.0 3872.5 3873.0
0

20

40

60

80

100

MX(MeV)
Γ
X
(K
eV

)

Fig. 6 	X for X → π0D0 D̄0 as a function of MX calculated with
gX = 2 GeV. The vertical line and yellow error band represent the
X(3872) mass and error according to Eq. (1)

3 Results

3.1 The X → D0 D̄0π0 width

In Fig. 6 we show the results for X → D0 D̄0π0 width eval-
uated in Sect. 2.3 as a function of the X mass. We can see
that around the mass of the X given by Eq. (1), the width is
of the order of 30 KeV. This is one source of the width, but
according to [9,43], the total X width cannot be larger than
100 KeV. We will perform calculations of Eq. (31) adding
50 KeV or 100 KeV to the width of Fig. 6. In Ref. [33] evalu-
ations are done with 	non values of 50 KeV to 200 KeV (the
additional X width to the D∗ D̄ − cc channels) which would
be too large according to [9,43] and lead to drastic reductions
of the X → π0π+π− width.

3.2 The X → π0π+π− width

In Fig. 7 we show d	X/dMπ+π− for different values of the
X mass. We can see that we obtain peaks for all cases and
that changes in 10−2 MeV in the mass of the X change the
peak positions of the TS in a similar amount. We can see that
in the case of bound or unbound state even the shapes are
different. This situation is similar to the one observed in Ref.
[9] for D∗0 D̄∗0 → γ X . However we anticipate that in a real
reaction, like B− → K−X → K−π0π+π−, the mass of the
X is folded with its spectral function due to its finite width.
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Fig. 7 d	/dMπ+π− for different values of b = mD0 + mD∗0 − mX ,
where the threshold mD0 + mD∗0 = 3871.68 MeV [1]

Fig. 8 d	/(	B−dMπ+π− ) for MX = 3871.72 (b = −40 KeV) and
different values of 	non (	X = 	′

X + 	non.)

So, we must see what happens in each particular reaction,
and we address this point in the next subsection.

3.3 The B− → K−X → K−π0π+π− mass distributions

In Fig. 8 we showd	B−→K−π0π+π−/dMπ+π− obtained inte-
grating Eq. (31) over Mπ0π+π− for different values of the
added width 50 KeV, 100 KeV. We can see that an addi-

Fig. 9 d	/(	B−dMπ+π− ) for 	non = 50 KeV and different values of
b = mD0 + mD∗0 − mX

Fig. 10 d	/(	B−dMπ+π− ) for 	non = 100 KeV and different values
of b = mD0 + mD∗0 − mX

tional X width makes the strength of the distribution smaller
but the peak position appears at the same place.

In Figs. 9 and 10 we show the mass distribution for 	non =
50 and 100 KeV, respectively and different X masses. It can
be seen that the shape of the peak is quite sensitive to the
binding energy b of the X , and the shape is similar in both
figures. We follow the same idea as in Ref. [44] and evaluate
the asymmetry as
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Fig. 11 Asymmetry N>/N< as a function of the binding energy of the
X(3872) for 	non = 100 KeV

N>

N<

≡
∫ M̂+δ

M̂
dMπ+π

d	
	B−dMπ+π−

∫ M̂
M̂−δ

dMπ+π
d	

	B−dMπ+π−

, (33)

where M̂ is the value of the invariant mass of the two pions
where the differential distribution inside the integral takes
its maximum and δ = 0.5 MeV to cover the full strength
of the peak. This is depicted in Fig. 11 for 	non = 100
KeV. As can be seen, the shape of the distribution becomes
quite asymmetric for a bound state, while it is closer to
being symmetric if the X (3872) is a resonance. The differ-
ence of the asymmetry of Eq. (33) between 1.25 and 1.85
for b = −100 KeV and 100 KeV is quite large, and even
50 KeV difference in the binding should lead to observable
effects.

The interesting thing about this proposal is that in order
to determine the X mass one does not have to measure the
π0π+π− invariant mass and hence one does not have to
measure the π0, although its detection would serve to reduce
background. Similarly, one would not even need to measure
the K−, although again detecting it will reduce the back-
ground.

So, let us say that we detect the K− and the π0 (no pre-
cision is needed) and we measure only the π+π− invariant
mass with precision. Determining the peak of the TS tells
us which is the X mass. Given that π+π− can be measured
with high precision one could anticipate that the X mass
could be determined with a better precision than the present
one. The rates for production are not too small. Integrating
the peaks of Fig. 10 over Mπ+π− we obtain a branching frac-
tion of 4 × 10−6, about a factor 50 smaller than the BR for
B− → K−X .

4 Conclusions

We have studied the width of the X (3872) due to a triangle
mechanism that generates a triangle singularity, with peculiar
features highly sensitive to the X (3872) mass. The mecha-
nism is given by the decay of the X into D∗0 D̄0 − cc, with
the D∗0(D̄∗0) decaying to D0π0(D̄0π0). In a third step the
D0 D̄0 interact producing a pair of pions, π+π−. We find
that this mechanism gives rise to a very narrow peak in the
invariant mass of the final π+π−. The asymmetry of the peak
is very sensitive to the precise value of the X mass, such that
its experimental determination indirectly gives the X mass.
We take advantage of it and define the asymmetry of the dis-
tribution counting events to the right and the left of the peak,
and the ratio of these two magnitudes is very sensitive to the
X mass. Since this involves integrated rates and has more
statistics, this magnitude could turn out to be the best suited
to determine the X mass.

The interesting thing is that, given the relationship
between the X mass and the peak in the π+π− invariant
mass, one only has to measure the π+ and π− with high
precision, and these particles can indeed be measured very
precisely. Formally the K− and the π0 do not have to be
measured because the relationship of the X mass to Mπ+π−
does not depend on the energy of these two particles. Actu-
ally, they are defined at the peak of the triangle singularity.
In practice the measurement of these two particles is neces-
sary to reduce background, but the precise measurement is
unnecessary. It is enough to know that these two particles are
produced.

The rates obtained are relatively large, such that the mea-
surement can be carried in present facilities and certainly
will become more amenable in future upgrades. Given the
fact that present uncertainties in the X mass do not allow us
to know whether the D∗0 D̄0 component is bound or not, any
idea, like the present one, that helps remove this ambiguity
should be most welcome.
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