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Abstract Generally a black hole could be over-charged/
spun, violating the weak cosmic censorship conjecture
(WCCC) for linear order accretion while the same is always
restored for non-linear accretion. The only exception, how-
ever, is that of a five-dimensional rotating black hole with sin-
gle rotation, which cannot be overspun even at linear order. In
this paper we investigate this question for a five-dimensional
charged rotating minimally gauged supergravity black hole
and show that it could not be overspun under non-linear
accretion, thereby respecting WCCC. However, in the case
of single rotation WCCC is also respected for linear accre-
tion when the angular momentum of the accreting particle is
greater than its charge irrespective of the relative dominance
of the charge and rotation parameters of the black hole.

1 Introduction

Black holes have always been very exciting and interesting
objects both for their amazing gravitational and the geomet-
rical properties, but they have now taken the center-stage
after the discovery of gravitational waves produced by the
merger of two stellar mass black holes in the LIGO-VIRGO
detection experiment [1,2]. In the near future it is envisaged
that gravitational wave observations may uncover some of
the hidden properties of the black holes which were other-
wise not accessible. One of the most fundamental questions
in general relativity (GR) is of course testing of the cos-
mic censorship conjecture (CCC) which has so far remained
unproven [3]. The physical possibility of its violation in the

a e-mail: mjamil@zjut.edu.cn (corresponding author)

weak form (WCCC) has of late been a very active area of
research.1

A gedanken experiment was envisaged in which over-
charged/rotating test particles were bombarded into a black
hole to see whether an extremal black hole could be turned
into an extremal black hole [5]. The answer turned out
to be negative and it was shown that particles with over-
extremal parameters cannot reach the horizon of extremal
black hole and thereby the horizon cannot be destroyed. Thus
an extremal black hole obeys WCCC under linear test particle
accretion. On the other hand it was also shown that a non-
extremal black hole can never turn extremal [6] because, as
extremality is approached, the allowed window of the param-
eter space of particles with appropriate parameters to reach
the horizon pinches off. Thus extremality or the zero black
hole temperature can never be attained. However, the interest
in this question got revived when it was argued that a non-
extremal black hole cannot be converted into an extremal one
and subsequently extremal to over-extremal but extremality
could be jumped over to create an over-extremal state. That
is, a black hole could be overcharged [7] or overspun [8]
by a discrete discontinuous accretion process. Thus a naked
singularity could be created defying WCCC. On the other
hand, a naked singularity was also addressed with a different
prospective that whether it could be created as an end state
of gravitational collapse [9–14].

1 The weak cosmic censorship conjecture essentially states that a cen-
tral singularity is always hidden behind an event horizon and hence is
never visible to an outside observer [3,4] under test particle/field accre-
tion.
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This led to a spurt in activity where various authors studied
overcharging/spinning of the black holes in different settings
violating WCCC; [see, e.g. 15–27]. In all this work, it was
assumed that a test particle follows a geodesic (or the Lorentz
force when charged) motion and back and radiation reaction;
self-force effects were not included. It is expected, though,
that when these effects will be taken into account, there would
be no overcharging/spinning and destruction of the black hole
horizon [28–33]. Recently, charged scalar and test fields have
also been considered for testing WCCC [34,35]. What hap-
pens is that particles/fields that could cause an over-extremal
state would not be able to reach the black hole horizon. This
was precisely how extremality was not destroyed or attained
[5,6]. Note that in test particle accretion the black hole is per-
turbed linearly, while a realistic accretion process like fluid
flow would involve non-linear perturbations, which could
alter the situation completely. This is what has recently been
done.

An extensive analysis of non-linear accretion/perturbations
has been carried out in a breakthrough work [36] leading to
the expected result that the black hole horizon indeed cannot
be destroyed, thereby reestablishing the validation of WCCC.
The same conclusion was also obtained for Kerr–AdS black
holes [37]. Following [36], a variety of work has been done
as regards non-linear perturbations [38–42] reinforcing the
result that a black hole cannot be over-charged/spun and the
horizon cannot be destroyed. Furthermore, the same analy-
sis has been done in higher dimension [43] as well, show-
ing that a five-dimensional Myers–Perry rotating black hole
[44] though could be overspun at linear order but when sec-
ond order perturbations are taken into account the situation
reverses—no overspinning is allowed and WCCC is restored.
In this case there is yet another subtler case of a black hole
with single rotation that cannot be overspun even at linear
order, however, like all other cases it could be overspun when
both rotations are present [45]. However, the six-dimensional
rotating black hole with two rotations cannot be overspun
under a linear order perturbation [46]. A charged black hole
in higher dimensions could always be overcharged at linear
order [47].

In this paper we would like to examine this question of
linear and non-linear accretion for a charged rotating black
hole in five dimensions. In four dimensions, it was straight-
forward to add a charge parameter in the � function of the
rotating solution; i.e.� = r2−2Mr+a2+Q2. Unfortunately
this does not work in five dimensions, and in fact an analogue
of a Kerr–Newman black hole has not yet been found. There
exists a solution in the slow rotation limit [48–50], and some
solutions in supergravity and string theory [51–57]. Closest
to the Kerr–Newman black hole is the one described by a
minimally gauged supergravity black hole [58]. Black hole
energetics in terms of ergosphere and energy extraction of
this solution has been investigated [59]. We shall take this

solution (by setting � = 0) of the minimally gauged super-
gravity black hole for a charged and rotating black hole in
five dimensions and study linear and non-linear accretion for
testing WCCC.

In particular it would be interesting to examine the case of
single rotation for linear accretion where a black hole cannot
be overspun [45] but could be overcharged [47]. It turns out
that the ultimate behavior would be determined by the relative
dominance of angular momentum and charge of the accreting
particle. If the former is dominant, the black hole cannot be
over-extremalized, while if it is the latter, it could be.

The paper is organized as follows: in Sects. 2 and 3, we
describe the black hole metric and its properties and build up
the background for studying linear and non-linear accretion
for an over-extremalizing black hole in Sect. 4. Finally we
conclude with a discussion in Sect. 5. We shall use the natural
units, G = c = 1, throughout.

2 The black hole metric and its properties

The metric of a five-dimensional charged and rotating
black hole in minimally gauged supergravity black hole
models [58] is given in the Boyer–Lindquist coordinates
(t, r, θ, φ, ψ) by

ds2 = − (dt − a sin2 θdφ − b cos2 θdψ
)

×
[
f
(
dt − a sin2 θdφ − b cos2 θdψ

)

+ 2q

�
(b sin2 θdφ + a cos2 θdψ)

]

+�

(
r2dr2

�
+ dθ2

)
+ sin2 θ

�

[
adt − (r2 + a2)dφ

]2

+cos2 θ

�

[
bdt − (r2 + b2)dψ

]2

+ 1

r2�

[
abdt − b(r2 + a2) sin2 θdφ

− a(r2 + b2) cos2 θdψ
]2

, (1)

where we have set � = 0 and the metric coefficients are
given by

f (r, θ) = (r2 + a2)(r2 + b2)

r2�
− μ� − q2

�2 ,

�(r, θ) = r2 + a2 cos2 θ + b2 sin2 θ,

�(r) = (r2 + a2)(r2 + b2) + 2abq + q2 − μr2 . (2)

Here a and b are specific angular momenta parameters rela-
tive to two axes and they are related to the angular momenta,
Jφ, Jψ as follows:

a + b = 4

π

Jφ + Jψ
μ + q

, (3)
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with mass parameter μ = 8M
3π

and charge parameter q =
4Q√
3π

of the black hole. The electromagnetic potential is given
by

A = −√
3q

2�
(dt − a sin2 θdφ − b cos2 θdψ). (4)

The horizon of the black hole follows from the relation
� = 0, i.e.

r± = ±
√

μ − 2q − (a + b)2 ±√μ + 2q − (a − b)2

2
. (5)

From the above expression it is evident that a horizon
does not exist unless the following inequalities are satisfied:
a2 +b2 +2|a||b| ≤ μ−2q and a2 +b2 −2|a||b| ≤ μ+2q.
Let us rewrite the horizon given in the above equation in
terms of the black hole mass, charge and angular momenta
as

r+ = 1

4
√

3π
(
M +

√
3Q
2

) [α

+
√√√
√

α2 + 108π Jφ Jψ + 64
√

3Q

(

M +
√

3Q

2

)2
⎤

⎥
⎦ ,

(6)

where

α =
(

32M3 − 27π
(
Jφ + Jψ

)2

− 72MQ2 − 24
√

3 Q3
)1/2

. (7)

Note that the black hole horizon exists if and only if α2 >

0, else it would be a naked singularity. Meanwhile, α = 0
corresponds to the extremal charged rotating black hole. The
area of the event horizon can be evaluated by setting dr =
dt = 0 and r = r+ in the metric (1). The horizon metric
reads

gαβ =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

� 0 0

0

(
r2 + a2 + a

[
a
(
μ�−q2

)+2bq�
]

�
sin2 θ

)
sin2 θ

[
ab
(
μ�−q2

)+(a2+b2
)
q�
]

2�
sin2 2θ

0
[
ab
(
μ�−q2

)+(a2+b2
)
q�
]

2�
sin2 2θ

(
r2 + b2 + b

[
b
(
μ�−q2

)+2aq�
]

�
cos2 θ

)
cos2 θ

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

. (8)

The horizon area is computed as

A =
∫

�3

√
det|gαβ |dθdφdψ = 2π2

r+

(
μr2+ − abq − q2

)
,

(9)

which must not decrease in any physical process according
to the famous area non-decrease theorem [60].

The angular velocities along the φ and ψ directions at the
horizon r = r+ are given by

�
(φ)
+ = a(r2+ + b2) + bq

(r2+ + a2)(r2+ + b2) + abq
, (10)

�
(ψ)
+ = b(r2+ + a2) + aq

(r2+ + a2)(r2+ + b2) + abq
, (11)

for which the Killing field, χ = χα∂α , takes the form

χ = χ(t) + �
(φ)
+ χ(φ) + �

(ψ)
+ χ(ψ). (12)

Then surface gravity is defined by

2kχα = ∇α

(−χβχβ
) |r=r+ , (13)

or by

k2 = −1

2

(∇αχβ

) (∇αχβ
) |r=r+ . (14)

The surface gravity and electromagnetic potential at the hori-
zon are, respectively, given by

k =
(
2r2+ + a2 + b2 − μ

)
r+

μr2+ − abq − q2
(15)

and

� = −χαAα|r=r+ =
√

3qr2+
μr2+ − abq − q2

. (16)

3 Varitional identities and perturbation inequalities

It is well known that the Lagrangian L for a diffeomor-
phism covariant theory in n-dimensional manifold M can be
described by a metric gαβ with symmetrized covariant deriva-
tive and curvature tensor and other physical fields ψ [61]. The
variation of Lagrangian is then written as

δL = Eδφ + d�(φ, δφ), (17)

where we define all dynamical fields through φ = (gαβ, ψ)

and E as a parameter of Lagrangian, which consists of the
fields φ. Then the equation of motion is given by E = 0,
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while � represents the symplectic potential (n − 1)-form
and is written as

ω(φ, δ1φ, δ2φ) = δ1�(φ, δ2φ) − δ2�(φ, δ1φ) , (18)

where δ1,2 refers to the variations. The Noether current 5-
form relative a vector field ζ α is defined by

Jζ = �(φ, Lζ φ) − ζ · L , (19)

for which d Jζ = 0 is the equation of motion. According
to [62], one can define the Noether current in the following
form:

Jζ = dQζ + Cζ , (20)

where Qζ is referred to as the Noether charge, while Cζ =
ζ αCα is the constraint of the theory; Cζ = 0 corresponds to
the case when the equations of motion are satisfied.

From Eqs. (19) and (20) for fixed ζ α , we write the linear
variational identity on a Cauchy surface �
∫

∂�

δQζ − ζ · �(φ, δφ) =
∫

�

ω(φ, δφ,Lζ φ)

−
∫

�

ζ · Eδφ −
∫

�

δCζ , (21)

where the first term on the right is defined by

δHζ =
∫

�

ω(φ, δφ,Lζ φ) , (22)

which represents the variation of the Hamiltonian associated
with the vector field ζ α . This reduces to δHζ = 0 if and only
if ζ α is a Killing vector and a symmetry of φ, thus satisfying
both the equation of motion E = 0 and Lζ φ = 0. On the
basis of a linear variational identity, the non-linear one on
the same surface is then defined by
∫

∂�

δ2Qζ − ζ · δ�(φ, δφ)] =
∫

�

ω(φ, δφ,Lζ δφ)

−
∫

�

ζ · δEδφ −
∫

�

δ2Cζ .

(23)

Since ζ α is assumed to be a Killing field, Eq. (21) for the
linear variation reduces to
∫

∂�

δQχ − χ · �(φ, δφ) = −
∫

�

δCχ , (24)

where χα = χα
(t)+�

(φ)
+ χα

(φ)+�
(ψ)
+ χα

(ψ) is the Killing vector

with the horizon angular velocity�
(φ,ψ)
+ . The Cauchy surface

� defines the bifurcation surface B at one end and spatial
infinity at the other. Let us then rewrite the left-hand side of
Eq. (24) on the Cauchy surface � thus:
∫

∂�

δQχ − χ · �(φ, δφ) =
∫

∞
δQχ − χ · �(φ, δφ)

−
∫

B
δQχ − χ · �(φ, δφ). (25)

The contribution to boundary integral at infinity then yields
∫

∞
δQχ − χ · �(φ, δφ) = δM − �

(φ)
+ δ Jφ − �

(ψ)
+ δ Jψ

(26)

with ADM mass M and angular momenta Jφ,ψ . From
Eqs. (24)–(26), one can define the linear order variational
identity (21) as

δM − �
(φ)
+ δ Jφ − �

(ψ)
+ δ Jψ =

∫

B
[δQχ − χ · �(φ, δφ)]

−
∫

�

δCχ , (27)

for given Cauchy surface � with a bifurcation surface B on
which the equation of motion is satisfied.

On the other hand the non-linear variational identity (23)
then reads

δ2M − �
(φ)
+ δ2 Jφ − �

(ψ)
+ δ2 Jψ

=
∫

B
[δ2Qχ − χ · δ�(φ, δφ)]

−
∫

�

χ · δEδφ −
∫

�

δ2Cχ + E�(φ, δφ), (28)

where E�(φ, δφ) is the canonical energy on the Cauchy sur-
face � as a non-linear correction to δφ.

For Eqs. (27) and (28), the symplectic potential 4-form is
defined by

�i jkh (φ, δφ) = 1

16π
εi jkhαg

αβgγ η(�ηδgβγ − �βδgγ η)

− 1

4π
εi jkhαF

αβδAβ, (29)

where the first term on the right is responsible for the GR
part, while the second is for the electromagnetic part where
the Lagrangian is

L = ε

16π

(
R − FαβFαβ

)
. (30)

Hence we have

E(φ)δφ = −ε

(
1

2
T αβδgαβ + jαδAα

)
, (31)

where ja = 1
4π

�bFab. Equation (29) yields the correspond-
ing symplectic current

ωi jkh = 1

4π

[
δ2(εi jkhαF

αβ)δ1Aβ − δ1(εi jkhαF
αβ)δ2Aβ

]

+ 1

16π
εi jkhαwα, (32)

with

wi = Pi jkhαβ
(
δ2g jk�hδ1gαβ − δ1g jk�hδ2gαβ

)
,

Pi jkhαβ = giαgβ j gkh − 1

2
gihg jαgβk − 1

2
gi j gkhgαβ

−1

2
g jkgiαgβh + 1

2
g jkgihgαβ. (33)
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Taking into account Lζ gαβ = �αζβ +�βζα and �αAβ =
Fαβ + �βAα , the Noether current 4-form is given by

(Jζ )i jkh = 1

8π
εi jkhα�β(�[βχα]) + εi jkhαT

α
β ζ β

+ 1

4π
εi jkhα�γ (FγαAβζ β) + εi jkhαAβ jαχβ;

(34)

the Noether charge Qζ and the constraint Cζ read

(Qζ )i jk = − 1

16π
εi jkαβ�αζ β − 1

8π
εi jkαβF

αβAγ ζ γ ,

(Cγ )i jkh = εi jkhα(T α
γ + Aγ jα). (35)

4 Over-extremalizing black hole via gedanken
experiments

4.1 Extremal case

Here we consider a particle absorption by an extremal black
hole of mass M , angular momenta Jψ and Jφ and electric
charge Q. From Eq. (7), the extremality condition reads

32M3 = 27π
(
Jφ + Jψ

)2 + 72MQ2 + 24
√

3 Q3. (36)

A particle of energy δM and angular momenta δ Jψ and δ Jφ
and charge δQ is thrown into the black hole horizon. This
leads to an increase in the corresponding parameters of the
black hole, and a perturbed stationary state would be attained
with the parameters M+δM , J+δ Jφ , J+δ Jψ , and Q+δQ.
The condition for over-extremalization or WCCC violation
would require the following inequality:

96M2δM < 54π
(
Jφ + Jψ

) (
δ Jφ + δ Jψ

)+ 72Q2δM

+144MQδQ + 72
√

3 Q2δQ, (37)

for first order linear accretion. An extremal black hole will
be pushed to an over-extremal state if and only if

δM − 9π
(
Jφ + Jψ

)

4(4M2 − 3Q2)

(
δ Jφ + δ Jψ

)

−
3
(

2MQ − √
3Q2

)

(
4M2 − 3Q2

) δQ < 0. (38)

We should then examine whether an over-extremal state
satisfying Eq. (38) does or does not occur. Let us suppose that
a black hole with an initial given state is bombarded by test
particles of appropriate parameters described by the stress-
energy tensor Tαβ . Consequently, the black hole parameters
are increased by the following amounts [36]:

δM =
∫

H
εi jkhαχ

γ

(t)

(
δT α

γ + Aγ δ jα
)

, (39)

δ Jφ = −
∫

H
εi jkhαχ

γ

(φ)

(
δT α

γ + Aγ δ jα
)

, (40)

δ Jψ = −
∫

H
εi jkhαχ

γ

(ψ)

(
δT α

γ + Aγ δ jα
)

, (41)

where the integration is over a surface element on the event
horizon r+. We assume that at the end of the process, the
black hole attains another stationary state. Since the term∫
B[δQχ −χ ·�(φ, δφ)] vanishes because of no perturbation

at the bifurcation surface [36], Eq. (27) then yields

δM − �
(φ)
+ δ Jφ − �

(ψ)
+ δ Jψ = −

∫

�

δCγ

= −
∫

H
εi jkhα

(
χ

γ

(t) + �
(φ)
+ χ

γ

(φ) + �
(ψ)
+ χ

γ

(ψ)

)

×
(
δT α

γ + Aγ δ jα
)

, (42)

where χγ is the null generator of the horizon r+. Equa-
tion (42) ensures that a particle crossed the horizon even-
tually. Bearing in mind � = −χγAγ |r=r+ and using∫
H δ(εi jkhα jα) = δQ for the perturbed charge fallen into

the horizon r+, we rewrite Eq. (42) as

δM − �
(φ)
+ δ Jφ − �

(ψ)
+ δ Jψ − �+δQ

= −
∫

H
εi jkhαχγ δT γα, (43)

where the volume element on the horizon is written as
εi jkhα = −5ε̃[i jkhkα] We then write

−
∫

H
εi jkhαχγ δT γα =

∫

H
ε̃i jkhχγ kαδT γα. (44)

This clearly shows that the right-hand side is only positive
when the null energy condition is satisfied, i.e. δTαβkαkβ ≥
0. This leads to the inequality

δM − �+
(
δ Jφ + δ Jψ

)− �+δQ ≥ 0. (45)

For the extremal black hole we have

�+ = 9π
(
Jφ + Jψ

)

4(4M2 − 3Q2)
, (46)

�+ =
3
(

2MQ − √
3Q2

)

(
4M2 − 3Q2

) , (47)

and the inequality (45) becomes

δM − 9π
(
Jφ + Jψ

)

4(4M2 − 3Q2)

(
δ Jφ + δ Jψ

)

−
3
(

2MQ − √
3Q2

)

(
4M2 − 3Q2

) δQ ≥ 0. (48)

This inequality clearly contradicts the inequality (38). Thus
an extremal black hole cannot be overspun and WCCC holds.

Furthermore, we must show that the new perturbed state is
also indeed extremal. We need to ensure that it is indeed not
possible to over-extremalize an extremal black hole. From

123



481 Page 6 of 12 Eur. Phys. J. C (2020) 80 :481

the first law of black hole dynamics we write

δM = k

8π
δA + �(φ)δ Jφ + �(ψ)δ Jψ + �δQ, (49)

where M = M(A, Jφ, Jψ, Q) and the horizon area, A =
A(Jφ, Jψ, Q). For the extremal black hole, we will consider
a variation in the mass,

δMext =
(

∂M

∂A

∂Aext

∂ Jφ
+ ∂M

∂ Jφ

)
δ Jφ

+
(

∂M

∂A

∂Aext

∂ Jψ
+ ∂M

∂ Jψ

)
δ Jψ

+
(

∂M

∂A

∂Aext

∂Q
+ ∂M

∂Q

)
δQ

= k

8π
δA + �

(φ)
+ δ Jφ + �

(ψ)
+ δ Jψ + �+δQ, (50)

where

k = ∂M

∂A
, (51)

δA = ∂Aext

∂ Jφ
δ Jφ + ∂Aext

∂ Jψ
δ Jψ + ∂Aext

∂Q
δQ. (52)

The surface gravity goes to zero k → 0 for an extremal black
hole. As a result, Eq. (50) yields

δMext = �+
(
δ Jφ + δ Jψ

)+ �+δQ, (53)

which characterizes an extremal black hole M = Mext(Jφ,

Jψ, Q). The black hole exists provided M ≥ Mext(Jφ, Jψ, Q),
and if the opposite is the case, M < Mext(Jφ, Jψ, Q),
an over-extremal state occurs. If a particle with angular
momenta and charge crosses the horizon of an extremal black
hole this results in a black hole’s angular momenta and charge
being enhanced to Jφ +δ Jφ , Jψ +δ Jψ and Q+δQ. In view
of Eqs. (45) and (53), we then write for the final mass

M + δM ≥ M + �+
(
δ Jφ + δ Jψ

)+ �+δQ

= Mext(Jφ, Jψ, Q) + δMext

= Mext(Jφ + δ Jφ, Jψ + δ Jψ, Q + δQ). (54)

As is clear from the above equation, the final black hole mass
is not less than the initial extremal mass and hence it has not
been over-extremalized. All this is in agreement with the
third law of black hole thermodynamics [5,6,63,64]. Thus
an extremal black hole cannot be converted into an over-
extremal state, and there occurs no violation of WCCC.

Next, we investigate the over-extremal state for a near-
extremal black hole for linear and non-linear perturbations
through gedanken experiments.

4.2 Near-extremal case

In this subsection we apply new gedanken experiment devel-
oped by Sorce and Wald [36] to an over-extremalized near-
extremal black hole. According to the gedanken experiment

one should take into account a one-parameter family of
fields φ(λ) and the background spacetime is characterized
by Tαβ = 0 and jα = 0. For this we have already consid-
ered a hypersurface as � = �1 ∪ H endowed with specific
properties. So this hypersurface contains such a region from
which a bifurcation surface B starts and continues up the
horizon portion H of � till it becomes spacelike �1. After
that it reaches spatial infinity to become asymptotically flat.
Based on the particular characteristics of the �, we work
on the second order variational identity for a near-extremal
black hole. Let us recall Eq. (28),

δ2M − �
(φ)
+ δ2 Jφ − �

(ψ)
+ δ2 Jψ

=
∫

B
[δ2Qχ − χ · δ�(φ, δφ)]

−
∫

�

χ · δEδφ −
∫

�

δ2Cχ + E�(φ, δφ)

=
∫

B
[δ2Qχ − χ · δ�(φ, δφ)] + EH (φ, δφ)

−
∫

H
χ · δEδφ

−
∫

H
εi jkhα

(
χ

γ

(t) + �
(φ)
+ χ

γ

(φ) + �
(ψ)
+ χ

γ

(ψ)

)

×
(
δ2T α

γ + Aγ δ2 jα
)

=
∫

B
[δ2Qχ − χ · δ�(φ, δφ)] + EH (φ, δφ)

+
∫

H
ε̃i jkhχγ kαδ2T γα + �+δ2Q, (55)

where χα is tangent to H and we applied the gauge condition
χαδAα = 0 on H . In the last step, we impose the null energy
condition δ2Tαβkαkβ ≥ 0 to rewrite the above equation

δ2M − �
(φ)
+ δ2 Jφ − �

(ψ)
+ δ2 Jψ − �+δ2Q

=
∫

B
[δ2Qχ − χ · δ�(φ, δφ)] + EH (φ, δφ) . (56)

Let us then evaluate the first and second terms on the
right-hand side of Eq. (56) and rewrite these terms for a one-
parameter field φMGS(λ),
∫

B
[δ2Qχ − χ · δ�(φ, δφMGS)] and EH (φ, δφMGS),

(57)

where δφMGS is the perturbation caused by matter falling
into the minimally gauged supergravity black hole with the
following parameters:

M(λ) = M + λδM,

Jφ(λ) = Jφ + λδ Jφ,

Jψ(λ) = Jψ + λδ Jψ,

Q(λ) = Q + λδQ. (58)

123



Eur. Phys. J. C (2020) 80 :481 Page 7 of 12 481

Note here that we choose δM , δQ, and δ Jφ,ψ in such a way
that they are consistent with the linear order perturbation,
Eq. (45). However, δ2M = δ2 Jφ,ψ = δ2QB = δE =
EH (φ, δφMGS) = 0 is satisfied for this one-parameter fam-
ily of fields. Thus, by imposing the condition χα = 0 at the
bifurcation surface B we have

δ2M − �
(φ)
+ δ2 Jφ − �

(ψ)
+ δ2 Jψ − �+δ2Q

=
∫

B
[δ2Qχ − χ · δ�(φ, δφMGS)]

≥ − k

8π
δ2AMGS . (59)

This is the non-linear variational identity for the one-
parameter family of perturbation.

Following the above procedure we apply this new ver-
sion of gedanken experiment to probe over-extremalization
of a near-extremal black hole. Let us recall the extremality
condition Eq. (36),

32M3 − 27π
(
Jφ + Jψ

)2 − 72MQ2 − 24
√

3 Q3 = 0.

Thus a near-extremal state is characterized as

f (λ) = 32M(λ)3 − 27π
[
Jφ(λ) + Jψ(λ)

]2

−72M(λ)Q(λ)2 − 24
√

3 Q(λ)3 , (60)

where f (0) = α2, a bit larger than zero, and M(λ), Jφ(λ),
Jψ(λ) and Q(λ) are defined by Eq. (58). To jump from a sub-
extremal to an over-extremal state we must obtain f (λ) < 0,
and for that we now expand f (λ) up to second order in α and
λ as

f (λ) = α2 + f1λ + f2λ
2 + O(λ3, λ2α, λα2, α3), (61)

where

f1 = 24
(

4M2 − 3Q2
)
⎡

⎣δM − 9π
(
Jφ + Jψ

)

4(4M2 − 3Q2)

(
δ Jφ + δ Jψ

)

−
3
(

2MQ − √
3Q2

)

(
4M2 − 3Q2

) δQ

⎤

⎦ , (62)

f2 =
⎧
⎨

⎩
12
(

4M2 − 3Q2
)
⎡

⎣δ2M

− 9π
(
Jφ + Jψ

)

4(4M2 − 3Q2)

(
δ2 Jφ + δ2 Jψ

)

−
3
(

2MQ − √
3Q2

)

(
4M2 − 3Q2

) δ2Q

⎤

⎦

+96M(δM)2 − 27π
(
δ Jφ + δ Jψ

)2

+72
(
M(δQ)2 + 2QδMδQ + √

3Q(δQ)2
)
⎫
⎬

⎭
. (63)

In Eq. (62), the expression in brackets is written for an optimal
choice of the linear order correction

δM − 9π
(
Jφ + Jψ

)

4(4M2 − 3Q2)

(
δ Jφ + δ Jψ

)+
3
(

2MQ − √
3Q2

)

(
4M2 − 3Q2

) δQ =

−

√

27π Jφ Jψ + 4
√

3Q
(

2M + √
3Q
)2

(
27π Jφ Jψ + 4

√
3Q
(

2M + √
3Q
)2
)2 (

9π(Jφ + Jψ)2 + 4
√

3
3 Q

(
2M + √

3Q
)2
)2

×
⎡

⎣6π

(

M +
√

3Q

2

)⎛

⎝144
√

3πQ

(

M +
√

3Q

2

)2

[δ Jψ J 3
φ + 2Jψ J 2

φ (δ Jφ + 2δ Jψ) + 2Jφ J
2
ψ

(δ Jψ + 2δ Jφ) + δ Jφ J
3
ψ ] + 243π2 Jφ Jψ(Jφ + Jψ)2(δ Jψ Jφ + δ Jφ Jψ) + 16Q2

(
2M + √

3Q
)4 [

Jφ(δ Jφ + 2δ Jψ)

+Jψ(δ Jψ + 2δ Jφ)
])+ 256Q2

(

M +
√

3Q

2

)4 (
9
√

3π Jφ Jψ + 4Q
(

2M + √
3Q
)2
)

δQ

]
α. (64)

4.3 With two rotations

4.3.1 Linear order accretion

In view of Eq. (64), we rewrite f (λ) for a linear order cor-
rection as
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Fig. 1 f (λ) against λ for the given values of the test particle and black
hole parameters

f (λ) = α2 −
6
(

2M + √
3Q
)−1

(
27π Jφ Jψ + 4

√
3Q
(

2M + √
3Q
)2
)1/2 (

9π(Jφ + Jψ)2 + 4
√

3
3 Q

(
2M + √

3Q
)2
)2

×
⎡

⎣6π

(

M +
√

3Q

2

)⎛

⎝144
√

3πQ

(

M +
√

3Q

2

)2

[δ Jψ J 3
φ + 2Jψ J 2

φ (δ Jφ + 2δ Jψ) + 2Jφ J
2
ψ

(δ Jψ + 2δ Jφ) + δ Jφ J
3
ψ ] + 243π2 Jφ Jψ(Jφ + Jψ)2(δ Jψ Jφ + δ Jφ Jψ) + 16Q2

(
2M + √

3Q
)4 [

Jφ(δ Jφ + 2δ Jψ)

+Jψ(δ Jψ + 2δ Jφ)
]
⎞

⎠+ 256Q2

(

M +
√

3Q

2

)4 (
9
√

3π Jφ Jψ +4Q
(

2M + √
3Q
)2
)

δQ

⎤

⎦ α λ + O(λ2), (65)

from which it is evident that it is always possible to obtain
f (λ) < 0 for suitable values of given parameters. Thus a
black hole could be over-extremalized. To ensure this, we
try to explore f (λ) numerically. From Eq. (5), the extremal
condition μ − 2q = (a + b)2 yields

√
32

27π

(
M − √

3Q
)

= Jφ + Jψ

M +
√

3
2 Q

. (66)

From Eq. (66) it is clear that near-extremality requires
Q2 < M2/3, which in turn allows us to choose Q = 0.5M .
For given Q = 0.5M , f (0) = α2 corresponding to the
near extremality defines the angular momenta numerically,
Jφ + Jψ = 0.322011 for the given value α = 0.01. For this
thought experiment one can take different values of the black
hole parameters and even smaller values of α. Setting M = 1,
let us choose δ Jφ = 0.001 	 Jφ , δ Jψ = 0.001 	 Jψ and
δQ = 0.003 	 Q in order for the test particle approximation
to remain valid. Let us now evaluate Eq. (65) numerically,
whereby f (0.1) = −0.00045 < 0. That is, it could be over-
extremalized under linear order accretion. It thus indicates
violation of WCCC at the linear order. The obtained numer-
ical results are shown in Fig. 1.

4.3.2 Non-linear order accretion

We here consider the second order particle accretion O(λ2)

so as to understand what might happen in the non-linear
regime. Let us start from Eq. (63), where the non-linear terms
are given by

δ2M − 9π
(
Jφ + Jψ

)

4(4M2 − 3Q2)

(
δ2 Jφ + δ2 Jψ

)

−
3
(

2MQ − √
3Q2

)

(
4M2 − 3Q2

) δ2Q

≥ − k

8π
δ2A = 1

12
(
4M2 − 3Q2

)
α2

×
(
N1
(
M, Q, Jφ, Jψ

)
δM2

+N2
(
M, Q, Jφ, Jψ, δ Jφ, δ Jψ

)
δM

+N3
(
M, Q, Jφ

)
δ J 2

ψ

+N4
(
M, Q, Jφ, Jψ

)
δ Jφδ Jψ

+N5
(
M, Q, Jφ, Jψ, δ Jφ, δ Jψ

)
δMδQ+N6

(
M, Q, Jψ

)

×δ J 2
φ + N7

(
M, Q, Jφ, Jψ, δ Jφ, δ Jψ

)
δQ

+N8
(
M, Q, Jφ, Jψ

)
δQ2

)
. (67)

Here the function Ni is related to the black hole parameters in
a complicated way. When we take into account a non-linear
term O(λ2) by using Eq. (67) and optimal choice of linear
order correction, the function f (λ) takes the form
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f (λ) >

⎛

⎜
⎜⎜
⎝

α −
3
(

2M + √
3Q
)−1

λ

(
27π Jφ Jψ + 4

√
3Q
(

2M + √
3Q
)2
)1/2 (

9π(Jφ + Jψ)2 + 4
√

3
3 Q

(
2M + √

3Q
)2
)2

×
⎡

⎣6π

(

M +
√

3Q

2

)⎛

⎝144
√

3πQ

(

M +
√

3Q

2

)2 [
δ Jψ J 3

φ + 2Jψ J 2
φ (δ Jφ + 2δ Jψ) + 2Jφ J

2
ψ(δ Jψ

+2δ Jφ) + δ Jφ J
3
ψ

]
+ 243π2 Jφ Jψ(Jφ + Jψ)2(δ Jψ Jφ + δ Jφ Jψ) + 16Q2

(
2M + √

3Q
)4 [

Jφ(δ Jφ + 2δ Jψ)

+Jψ(δ Jψ + 2δ Jφ)
])+ 256Q2

(

M +
√

3Q

2

)4 (
9
√

3π Jφ Jψ + 4Q
(

2M + √
3Q
)2
)

δQ

])2

+O(α3, α2λ, αλ2, λ3). (68)

This clearly shows that always f (λ) > 0. Thus, it veri-
fies the expected result that a five-dimensional charged rotat-
ing black hole in minimally gauged supergravity cannot be
over-extremalized for non-linear order accretion, while the
opposite is true for linear order accretion. Under non-linear
accretion WCCC is therefore always obeyed.

4.4 With single rotation

4.4.1 Linear order accretion

Let us consider a particular case of single rotation, for which
Eq. (65) takes the following form:

f (λ) = α2 −
48 × 33/4Q3/2

(
2M + √

3Q
)3

(
9
√

3π J 2
ψ + 4Q

(
2M + √

3Q
)2
)2

×
(

3π Jψδ Jψ + 4Q
(

2M + √
3Q
)

δQ

)
αλ

+O(λ2). (69)

It is clear from the above equation that overspinning/
charging is quite possible in general. However, let us con-
sider the various cases separately.

• δQ = 0. Note that in the limit Q → 0 one can reach
f (λ) > 0, for which the black hole could not be over-
spun, thereby verifying the validity of the WCCC for
a black hole having a single rotation. This verifies the
recently obtained result Ref. [45] that WCCC is obeyed
for single rotation even at linear order accretion. Consider
the numerical example: for Q = 0.5, Jψ = 0.322011,
δ Jψ = 0.001, and α = 0.01 with λ = 0.1 we get
f (λ) = 0.000041 > 0. Thus WCCC would always hold
good for a neutral particle.

• δ Jψ = 0. It is well known that a four-dimensional
charged black hole could be overcharged [47]. To be
a bit more quantitative let us reconsider Eq. (69), for
Q = 0.5, Jψ = 0.322011, δQ = 0.003, and α = 0.01
with λ = 0.1: we get f (λ) = −0.00048 < 0. With this
we again verify the result of Ref. [47] that WCCC could
as in four dimensions be violated.

Thus a five-dimensional black hole with single rotation
could be overcharged but not overspun. The natural ques-
tion then arises what happens to five-dimensional charged
black hole with a single rotation—could it be overcharged or
overspun under bombardment of over-charged particles?

• We know that a black hole cannot be overspun but it
could be over-charged. When both charge and rotation
are present, the outcome should depend on which one is
the greater. The question is: does this dominance refer
to black hole rotation and charge parameters or that of
the impinging particles? It turns out that it refers to the
parameters of the impinging particles. We will show this
by numerical examples. Let us begin with δ Jψ < δQ.
The question is, what might happen in this case? To
answer this question we must approach, as in previous
cases, the problem quantitatively. For given Q = 0.5,
Jψ = 0.322011, δQ = 0.003, δ Jψ = 0.0001, and α =
0.01 with λ = 0.1 leads to f (λ) = −0.0002445, and so
the black hole could be over-extremalized violating the
CCC. Let us now interchange the black hole parameters
and keep the rest of the parameters unchanged. That is,
Q = 0.353553, Jψ = 0.499394, δQ = 0.003, δ Jψ =
0.0001, and α = 0.01 with λ = 0.1 will give f (λ) =
−0.00001495 < 0, implying over-extremalization.

• δ Jψ > δQ. Let us again consider the numerical exercise:
Take a) Q = 0.5, Jψ = 0.322011 and b) Q = 0.353553,
Jψ = 0.499394 for given δQ = 0.0003, δ Jψ = 0.001,
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Fig. 2 From left: f (λ) for δ Jψ 	 δQ and δ Jψ 
 δQ against λ for the given values of the test particle and black hole parameters

and α = 0.01 with λ = 0.1. That leads to a) f (λ) =
6.3832×10−6 > 0 and b) f (λ) = 50.1196×10−6 > 0.
It cannot be over-extremalized, and WCCC continues to
hold ground.

• δ Jψ = δQ. Let us consider the values of the param-
eters to be as follows: a) Q = 0.5, Jψ = 0.322011
and b) Q = 0.353553, Jψ = 0.499394 for given
δQ = 0.003, δ Jψ = 0.003, and α = 0.01 with
λ = 0.1, we get a) f (λ) = −0.000417867 < 0 and b)
f (λ) = −0.000116191 < 0. This shows that the black
hole could reach an over-extremal state when impinging
particles have angular momentum equal to charge.

What emerges from this analysis is that a black hole with
single rotation for linear accretion obeys WCCC so long as
δQ < δ Jψ , and the opposite is true for δQ ≥ δ Jψ irrespec-
tive of the relative dominance of the black hole rotation and
charge parameters. In Fig. 2 we verify the above numerical
analysis for δQ > δ Jψ and δQ < δ Jψ , respectively. Inter-
estingly, in the case of equality of angular momentum and
charge of impinging particles it is the charge’s interaction that
plays a dominant role for the over-extremalizing process.

4.4.2 Non-linear order accretion

Let us rewrite Eq. (68) in the case of a single rotation,

f (λ) =

⎛

⎜⎜⎜
⎝

α −
48 × 33/4Q3/2

(
2M + √

3Q
)3
(

3π Jψδ Jψ + 4Q
(

2M + √
3Q
)

δQ

)

(
9
√

3π J 2
ψ + 4Q

(
2M + √

3Q
)2
)2 λ

⎞

⎟⎟⎟
⎠

2

+ O(α3, α2λ, αλ2, λ3). (70)

From this, it is clear that the black hole cannot be over-
extremalized when second order perturbations, O(λ2), are
taken in account. For non-linear accretion, WCCC thus
always holds good.

5 Conclusions

It is well known that there does not exist a true analogue of the
four-dimensional Kerr–Newman rotating charged black hole
in five dimensions. On the other hand there exists an analogue
of a Kerr rotating black hole in five or more dimensions [44].
Strangely, electric charge cannot be injected onto a rotating
black hole. However, there exists a very close cousin of the
Kerr–Newman black hole in a minimally gauged supergrav-
ity solution of rotating and charged black hole [58]. To this
black hole we have in this paper extended the analysis of
over-extremalization under a linear and non-linear accretion
process [43].

In general it turns out that, as for all other cases, over-
extremalizing is possible for linear order, while it gets mirac-
ulously reversed when non-linear perturbations are included.
The five-dimensional black hole in question thus falls in line
with all other black holes: WCCC could be violated at linear
order but it is always restored at non-linear order accretion.
However, there is a subtle exception for a rotating black hole
in five dimensions, which has two rotation axes permitting
two rotation parameters.

Very recently, some of us [45] have demonstrated a
remarkable property of a black hole with single rotation.
Unlike a four-dimensional black hole, it cannot be overspun
even at the linear order accretion while it could be overspun
when both rotations are present. This property is, however,
carried through for the five-dimensional rotating charged

black hole under study. A charged black hole could always
be overcharged under linear accretion. In this case there are
both rotations and charge present. Hence the question: when
would it be over-extremalized and when not? As expected it
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turns out that when the rotation parameter of the impinging
particle is greater than its charge, over-extremalizing is pro-
hibited while the opposite is the case when charge is greater
than or equal to the rotation parameter. It is interesting that
in the case of equality of rotation and charge parameters, it
is the latter’s contribution that dominates. In all this, the rel-
ative dominance of charge or rotation of the black hole is,
however, irrelevant.

As pointed out in [45], a black hole with single rotation in
five dimensions is a different entity, like extremal black hole.
The latter can never be over-extremalized and, interestingly,
so is the case for the former. It seems that when a black hole
has the maximum number of rotations that are permitted in
a given spacetime dimension, it can be overspun under lin-
ear order accretion, while if it has less than the maximum
allowed, it cannot be overspun. In four dimensions, the max-
imum allowed number of parameters is one and that is why
it can be overspun, while in five dimensions the maximum
number allowed is two. That is why it can perhaps only vio-
late WCCC when both rotations are present, but not for single
rotation.

It may be noted that for non-linear accretion we have a
neat analytical expression showing f (λ) > 0, indicating the
absence of over-extremalization. However, for linear order
perturbations we had to resort to a numerical evaluation
because calculations were too involved and complicated. For
over-extremalization, any specific example is good enough
to show that it occurs, while for its absence one has to show
that that it is never possible. We do, however, consider an
optimal choice of parameters which would indicate that the
result would hold good in general for any other choice of
parameters. Most importantly it is the non-linear regime that
has the final and determining say, which has been established
rigorously and analytically.
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