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Abstract We introduce a new model of near-forward elas-
tic proton–(anti)proton scattering at high energy based on the
modern formulation of Pomeron and Odderon in terms of
Wilson lines and generalized transverse momentum depen-
dent distributions. We compute the helicity-dependent elas-
tic amplitudes φ1,2,3,4,5 in this model and study their energy
dependence from the nonlinear small-x evolution equations.
While both Pomeron and Odderon contribute to helicity-flip
processes in general, in the forward limit t = 0 only the
double helicity-flip amplitude φ2, dominated by the spin-
dependent Odderon, survives. This may affect the extraction
of the ρ parameter as well as the total cross section in the
LHC energy domain and beyond.

1 Introduction

The elastic proton–(anti)proton scattering at high energies
becomes an important source of information about the multi-
layer proton structure [1]. While the gluon-driven exchanges
are dominant at asymptotically high energies (small-x), an
elastic scattering implies, at least, a (colour-singlet) pair of
correlated gluons propagating in the t-channel known as the
QCD Pomeron (see e.g. Ref. [2] and references therein), in
analogy to the leading pole exchange with Regge trajectory
of the highest intercept [3] (for more detailed on the Regge
theory, see Ref. [4]). Even larger numbers of interacting glu-
ons can be exchanged in an elastic scattering process, but the
role of such multi-gluon interactions in elastic scattering yet
remains uncertain, particularly, from the QCD point of view.

An odd-number gluon exchange starting from the leading
triple-gluon one corresponds to the crossing-odd Odderon
contribution in the Regge picture [5,6] (see also Ref. [7]). It
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was proposed back in the 70s in Ref. [8] that the Odderon
contribution may be non-negligible compared to that of the
Pomeron in the high-energy limit. However, while an exper-
imental observation of the Odderon is yet unavailable, an
exact magnitude and characteristics of such an elusive effect
from theoretical viewpoint remain largely unknown and are
the subjects of an intense debate and even controversial state-
ments in the literature.

The recent outbreak of Odderon activity (see e.g. Refs. [9–
11]) is largely triggered by the precision TOTEM data at the
highest energy of the LHC,

√
s = 13 TeV, on total σtot [12]

and differential dσ/dt [13] pp cross sections, as well as on
the real-to-imaginary ratio of the elastic nuclear amplitude at
the optical point, the so-called ρ-parameter [14]. Introducing
the total helicity non-flip elastic amplitude T (s, t) as a func-
tion of the total c.m. energy squared s and four-momentum
transfer squared t , the basic measurable quantities of the elas-
tic scattering read

dσ

dt
= (1 + ρ(s, t)2)

16πs(s − 4M2)
(ImT (s, t))2, ρ(s, t) = ReT (s, t)

ImT (s, t)
,

(1)

so that the ρ-parameter is related to the total and differential
(at vanishing momentum transfer) cross sections as follows

dσ

dt

∣
∣
∣
∣
t=0

= 1 + ρ2

16π
σ 2

tot, σtot = ImT (s, t = 0)√
s
√
s − 4M2

,

ρ ≡ ρ(s, t = 0), (2)

where M is the proton mass. The ρ-parameter is small at TeV
energies, ρ ∼ 0.1, and has been extracted by the TOTEM col-
laboration in Ref. [14] from the experimental data on dσ/dt
near t ≈ 0 using the Coulomb-Nuclear Interference (CNI).
As long as ρ(s) is known with sufficiently high precision,
Eq. (2) is used to determine σtot(s). The dominating claim is
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that a growth of the total cross section with energy, together
with a decreasing ρ-parameter, as well as a qualitative dif-
ference of differential cross sections of pp and p p̄ collisions
[15–17], all are associated with the Odderon effect. There are
some concerns in the literature, however, about the validity of
the experimental procedure of ρ extraction (see e.g. [18,19])
and to the Odderon interpretation of its decrease with energy
(see e.g. Refs. [11,20]), and hence more care is needed to jus-
tify the magnitude and the significance of the Odderon effect
in the ρ measurement. In off-forward kinematics, a substan-
tiated claim about the Odderon effect and its significance
is made recently from the shape analysis of the elastic dif-
ferential pp and p p̄ cross sections based upon their scaling
properties in Ref. [21]. In the current study, we instead con-
sider a possible Odderon effect and its energy dependence
at the optical point of vanishing t ≈ 0 only and leave the
analysis of t-dependence for a future work.

The usual rationale, similarly to the Pomeron, is that the
Odderon is assumed to not flip the helicities of the scattered
hadrons. Indeed, the existing theoretical formulations and the
procedure of ρ extraction from the experimental data itself
heavily rely on the presumption about an absence or a large
suppression of helicity-flip processes at high energies. In this
work, we question this convention and, in particular, explore a
viable possibility that the helicity-flip elastic amplitude may
be non-negligible at high energies. To our knowledge, this
has neither been confirmed nor disproved by direct experi-
mental measurements in the TeV region. On the other hand,
it has been suggested in the literature that the Odderon can
contribute to helicity-flip amplitudes [22–25]. Yet, the exact
treatment of the problem has been difficult due to the lack of
a systematic way to connect the Pomeron and Odderon with
the spin degrees of freedom of the scattering (composite)
particles such as protons in QCD.1

Recently, however, there has been a significant progress
in our understanding of the interplay between the Odderon
and the proton spin [29–34]. In the Deep Inelastic Scatter-
ing (DIS) at small-x , the Color Glass Condensate (CGC)
framework [35] provides a consistent description of the
Pomeron and Odderon in terms of Wilson line correlators.
Their couplings with various proton polarization states can
be completely parametrized by the generalized transverse
momentum dependent distributions (GTMDs) [34]. Indeed,
the gluon Sivers function [36] at small-x is connected to the
Odderon in the forward limit [29–31] and participates in the
proton helicity-flip reactions including the unpolarised elas-
tic scattering processes. In particular, it has been observed
that the so-called spin-dependent Odderon [29] can flip the
proton helicity even in the forward limit, and this effect can

1 For an earlier discussion of the Pomeron helicity flip observables for
phenomenological scalar, vector and tensor Pomeron-proton couplings,
see Ref. [26], and also, Refs. [27,28].

survive at high energies since the Odderon intercept is exactly
equal to unity [7].

Motivated by these developments, in this paper we intro-
duce a new model of near-forward elastic proton–proton scat-
tering designed for the TeV region and beyond. By treating
one of the protons within the quark-diquark model, we can
devise a setup analogous to DIS in the so-called dipole frame.
In this frame, helicity-flip amplitudes can be calculated by
exchanging the spin-dependent Pomeron and Odderon. We
then study their energy dependence at t = 0 by numeri-
cally solving the small-x evolution equations for Pomeron
and Odderon. Of course, in near-forward pp scattering there
is no apparent hard scale (like the photon virtuality Q2 in
DIS) which guarantees the use of perturbative approaches.
However, in the TeV region one can consider the saturation
momentum Qs as a dynamically generated hard scale.

The paper is organised as follows. In Sect. 2, we introduce
the basic helicity amplitudes of the elastic pp scattering and
discuss their role at high energies. In Sect. 3, we derive the
helicity amplitudes in the quark-diquark dipole model and
discuss their main properties. In Sect. 4, energy dependence
of the helicity amplitudes and their ratios is numerically stud-
ied from the nonlinear small-x evolution equations. Finally,
a brief summary and concluding remarks are given in Sect. 5.

2 Helicity amplitudes

Consider near-forward proton–proton elastic scattering
P1P2 → P ′

1P
′
2 at high energies schematically shown in

Fig. 1, with 4-momenta satisfying

Pμ
1 ≈ δ

μ
+P+

1 , Pμ
2 ≈ δ

μ
−P−

2 ,

�μ = P ′μ
1 − Pμ

1 = Pμ
2 − P ′μ

2 ≈ δ
μ
i �i⊥, (3)

where i = 1, 2 denotes the transverse momentum compo-
nents.

We introduce the spin-dependent elastic amplitudes
〈λ′

1λ
′
2|T |λ1λ2〉 [37–40] where λ = 2h = ±1 represents the

helicity of each proton (multiplied by two, for convenience).
These helicity amplitudes depend on s ≈ 2P+

1 P−
2 , t ≈ −�2⊥

as well as the azimuthal angle ϕ = Arg(�1⊥ + i�2⊥). We fac-
tor out the ϕ-dependence as2

〈λ′
1λ

′
2|T |λ1λ2〉 ≡ e

i
2 (λ1−λ2−λ′

1+λ′
2)ϕ〈λ′

1λ
′
2|T̃ |λ1λ2〉, (4)

and switch to the commonly used notation

8πφ1(s, t) = 〈+ + |T̃ | + +〉,
8πφ2(s, t) = 〈+ + |T̃ | − −〉,

2 The exact phase factor depends on one’s convention when defining the
nucleon spinors, and the one we adopt here may differ from those in the
literature. Of course, the overall phase is unobservable and physically
unimportant.
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Fig. 1 Schematic illustration of the light-front dipole picture of elastic
pp scattering driven by a quark–diquark dipole scattering off a proton
target by means of the Pomeron and Odderon exchanges in the t-channel
commonly denoted by a vertical grey blob

8πφ3(s, t) = 〈+ − |T̃ | + −〉,
8πφ4(s, t) = 〈+ − |T̃ | − +〉,
8πφ5(s, t) = 〈+ + |T̃ | + −〉. (5)

φ1,3 are the helicity non-flip amplitudes, φ2,4 are the dou-
ble helicity-flip amplitudes and φ5 is the single helicity-flip
amplitude. They are normalized such that the elastic differ-
ential cross section reads

dσ

dt
= 2π

s(s − 4M2)

(|φ1|2 + |φ2|2 + |φ3|2 + |φ4|2 + 4|φ5|2
)

,

(6)

while the total cross section is

σtot = 4π√
s
√
s − 4M2

Im(φ1(s, 0) + φ3(s, 0)). (7)

A general argument shows that φ4 ∝ t , φ5 ∝ √−t as
t → 0, whereas φ1,2,3 go to a constant in this limit [40,41].
(Here we focus on the QCD part of the amplitude. The QED
part behaves differently, see Appendix A.) Given these limit-
ing behaviors, it is convenient to rescale the spin-dependent
amplitudes as [24]

r2(s, t) = φ2(s, t)

2Imφ+(s, t)
= R2 + i I2,

r4(s, t) = M2φ4(s, t)

−t Imφ+(s, t)
= R4 + i I4,

r5(s, t) = Mφ5(s, t)√−tImφ+(s, t)
= R5 + i I5, (8)

where

φ+(s, t) ≡ φ1(s, t) + φ3(s, t)

2
. (9)

The complex functions ri=2,4,5 have a finite limit as t → 0.
They can be experimentally accessed by measuring various
spin asymmetries [24]. For example, r5 is closely related to

single spin asymmetry AN , and r2 is related to double spin
asymmetry ANN . The results from fixed-target experiments
at RHIC at

√
s = 13.76 GeV and 21.92 GeV [42,43] indicate

that the parameters r2, r5 are small, of order 10−3 in this low-
energy region. There are also RHIC data in the collider mode
at

√
s = 200 GeV [44,45]. The analysis mostly focused on

AN and a rather small value of r5 has been reported.
At higher energies, however, nothing is known about the

fate of the helicity-flip amplitudes since there is no polarized
proton collider beyond the RHIC energies. They are rarely
discussed in connection with the ongoing measurements at
the LHC, or with the earlier measurements at the Tevatron.
It is usually assumed, often without even mentioning it, that
φ1 ≈ φ3 and φ2,4,5 ≈ 0 for all values of t . There is then
only one (complex) amplitude T = 8πφ1, and (6) and (7)
reduce to the formulas mentioned in the introduction. Yet,
even in unpolarized scattering, the helicity-flip amplitudes
affect the observables. In the presence of nonvanishing φ2,
Eq. (2) should be modified as

dσ

dt

∣
∣
∣
∣
t=0

= σ 2
tot

16π
(1 + ρ2 + 2|r2|2). (10)

Also, in the non-forward scattering with |t | > 0, φ2,4,5 ampli-
tudes could affect the shape of dσ/dt , especially, in the dip
region where |φ1,3| become small.

In the next section, we compute all the φ’s in a model
which incorporates Pomeron and Odderon in the Wilson line
formulation of small-x QCD. We do not make the usual
assumption that the helicity-flip amplitudes φ2,4,5 are neg-
ligibly small. As we shall see very clearly below, the spin-
dependent Pomeron and Odderon exchanges naturally gen-
erate non-negligible helicity-flip amplitudes. The latter are
a priori not suppressed at high energies since they share
the same energy dependence (‘Regge intercept’) as for the
helicity-conserving ones.

3 Elastic scattering in the quark–diquark model

In this section, we calculate the helicity amplitudes φ1,...,5

in the dipole model of high-energy pp (and p p̄) scattering
illustrated in Fig. 1. Our setup is similar to the description of
DIS at small-x in the so-called ‘dipole frame’ where the vir-
tual photon fluctuates into a quark–antiquark pair long before
interacting with the target proton. Specifically, we work in
an asymmetric frame in which P+

1 � P−
2 . The ‘slow’, left-

moving proton 2 is treated in the quark–diquark model [46].
It fluctuates into a quark and a scalar diquark, and the pair
interacts with the shockwave created by the ‘fast’ proton 1
in the eikonal approximation. The corresponding scattering
amplitude is given by
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T (s, t) = 2is
∫

d2r⊥
4π

∫ 1

0

dz

z(1 − z)

∗(r⊥, z, λ′

2)

×N (r⊥,�⊥, λ1, λ
′
1)
(r⊥, z, λ2). (11)

Here, 
 is the light-front wave function of the proton 2 fluc-
tuation into a q−qq pair to be specified shortly, λ1,2 and λ′

1,2
denote helicities of protons 1,2 in the initial and final states,
respectively, r⊥ is the transverse distance between the quark
and the diquark, z is the longitudinal momentum fraction
of the proton 2 carried by the quark, and N is the so-called
dipole scattering amplitude defined by

2P+2πδ(P+ − P
′+)N (r⊥,�⊥, λ1, λ

′
1)

≡ 〈P ′
1, λ

′
1|1 − 1

Nc
TrU (r⊥/2)U †(−r⊥/2)|P1, λ1〉, (12)

in terms of a lightlike Wilson line in the fundamental repre-
sentation

U (x⊥) = P exp

(

ig
∫

dz−A+(z−, x⊥)

)

, (13)

which describes the quark scattering off the target color field,
and that for the diquark, U †, which has the same color rep-
resentation as an antiquark. As usual, g and Nc = 3 denote
the QCD coupling and number of colors.

Following [34], we parametrize the dipole amplitude as

∫

d2r⊥e−ik⊥·r⊥ N (r⊥, �⊥, λ1, λ
′
1)

= (2π)4δ(2)(�⊥)δ(2)(k⊥)δλ1,λ′
1

− g2(2π)3

8NcM(k2⊥ − �2⊥/4)
ū(P ′

1, λ
′
1)

{ [

f1,1 + i
k⊥ · �⊥
M2 g1,1

]

+i
σ i+

P+
1

ki⊥
[
k⊥ · �⊥
M2 f1,2 + ig1,2

]

+i
σ i+

P+
1

�i⊥
[

f1,3 + i
k⊥ · �⊥
M2 g1,3

]}

u(P1, λ1), (14)

where the gluon GTMDS f1,n and g1,n (n = 1, 2, 3) are
functions of k2⊥, �2⊥ and |k⊥ · �⊥| as well as the Bjorken-x
variable. At small-x , they come from the real and imagi-
nary parts of the operator TrUU † and represent the Pomeron
[47] and Odderon [48] exchanges, respectively. The apparent
pole at k2⊥ = �2⊥/4 is innocuous because f and g are pro-
portional to k2⊥ − �2⊥/4, see for example (36) below. Equa-
tion (14) describes the most general coupling between the
Pomeron/Odderon and the proton, consistent with the sym-
metries of the GTMDs. By using the Gordon identity, one
can write (14) as the linear combination of scalar and vector
couplings. The tensor coupling [26] is absent in our frame-
work.

Let us now work out the product of spinors explicitly. Up
to corrections of order M/P+

1 and �⊥/P+
1 , we get

ū

{

f1,1 + i
k⊥ · �⊥
M2 g1,1+i

σ i+

P+
1

ki⊥
[

f1,2
k⊥ · �⊥
M2

+ig1,2

]

+i
σ i+

P+
1

�i⊥
[

f1,3 + i
k⊥ · �⊥
M2 g1,3

]}

u

≈ 2Mδλ1,λ
′
1

[

f1,1(k⊥) + i
k⊥ · �⊥
M2 g1,1(k⊥)

]

+2λ1δλ1,−λ′
1
k⊥ · ελ1

[
k⊥ · �⊥
M2 f1,2(k⊥) + ig1,2(k⊥)

]

+2λ1δλ1,−λ′
1
�⊥ · ελ1

[

f1,3(k⊥) − 1

2
f1,1(k⊥)

+i
k⊥ · �⊥
M2

(

g1,3(k⊥) − 1

2
g1,1(k⊥)

)]

, (15)

where we introduced the ‘polarization vector’

ελ = (1, iλ), �⊥ · ελ = �1⊥ + iλ�2⊥ = √−teiλϕ.

(16)

In the r⊥-space, the parametrization takes the form,

N (r⊥,�⊥, λ1, λ
′
1) = (2π)2δ(2)(�⊥)δλ1,λ

′
1

−g2(2π)3

4NcM

{

Mδλ1,λ
′
1

[

f̃1,1(r⊥) + �⊥· r⊥
M2r2⊥

g̃1,1(r⊥)

]

+λ1δλ1,−λ′
1

r⊥ · ελ1

r2⊥

[

r⊥· �⊥ f̃ b1,2(r⊥) + g̃1,2(r⊥)
]

+λ1δλ1,−λ′
1
�⊥ · ελ1

[

f̃ a1,2(r⊥) + f̃1,3(r⊥)

− f̃1,1(r⊥)

2
+ �⊥· r⊥

M2r2⊥

(

g̃1,3(r⊥) − g̃1,1(r⊥)

2

)] }

, (17)

with

f̃1,1(r⊥) =
∫

d2k⊥
(2π)2 e

ik⊥·r⊥ f1,1(k⊥)

k2⊥ − �2⊥/4
, (18)

f̃1,3(r⊥) =
∫

d2k⊥
(2π)2 e

ik⊥·r⊥ f1,3(k⊥)

k2⊥ − �2⊥/4
, (19)

f̃ a1,2(r⊥) =
∫

d2k⊥
(2π)2 e

ik⊥·r⊥
[

k2⊥
M2 − (r⊥ · k⊥)2

r2⊥M2

]

f1,2(k⊥)

k2⊥ − �2⊥/4
,

(20)

f̃ b1,2(r⊥) =
∫

d2k⊥
(2π)2 e

ik⊥·r⊥
[

2
(r⊥ · k⊥)2

r2⊥M2
− k2⊥

M2

]

f1,2(k⊥)

k2⊥ − �2⊥/4
,

(21)

and

g̃1,n(r⊥) = i
∫

d2k⊥
(2π)2 e

ik⊥·r⊥k⊥ · r⊥ g1,n(k⊥)

k2⊥ − �2⊥/4
, (22)

for n = 1, 2, 3. All functions defined above are real-valued.
The wave function of proton 2 in the quark–diquark model

is given by (see “Appendix B” for the relevant Feynman rules)
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(r⊥, z, λ2) = −cs

∫
d2l⊥
(2π)2 e

−ir⊥·l⊥

× z(1 − z)ū(z, l⊥, λq)u(P2, λ2)

l2⊥ + M̃2
, (23)

where cs is a constant normalisation. The constituent quark
has momentum fraction z, transverse momentum l⊥, massmq

and helicity λq . The scalar diquark has momentum fraction
z̄ = 1 − z and mass ms . Due to a finite binding energy,
mq + ms ≥ M , and this ensures that M̃2 ≡ z̄m2

q + zm2
s −

zz̄M2 ≥ 0. After carrying out the integration over l⊥, one
can rewrite the wave function in Eq. (23) as,


(r⊥, z, λ2)

= −cs
√
zz̄

2π
√

2

[

δλq ,λ2

(

Mz + mq
)

K0(M̃|r⊥|)

−δλq ,−λ2λ2r⊥ · ε∗
λ2

i M̃

|r⊥|K1(M̃|r⊥|)
]

. (24)

This leads to the following expression for the wave function
squared in the forward limit,

∑

λq


(r⊥, z, λ2)

∗(r⊥, z, λ′

2)=c2
s

zz̄2

(2π)2

(

δλ′
2,λ2

�n(r⊥)

M

−2iλ2δλ′
2,−λ2

r⊥ · ε∗
λ2

� f (r⊥)

)

, (25)

in terms of the helicity flip and helicity non-flip parts of the
wave function

�n(r⊥) = M
[(

Mz+mq
)2

K 2
0 (M̃|r⊥|)+M̃2K 2

1 (M̃|r⊥|)
]

,

(26)

� f (r⊥) = (

Mz + mq
)

K0(M̃|r⊥|) M̃

|r⊥|K1(M̃|r⊥|), (27)

respectively. In the non-forward case, a nontrivial phase

e
i
(

z− 1
2

)

�⊥·r⊥ emerges3 [49]. We keep the subleading terms
up to quadratic order in �⊥, so in practice we use

3 For the reader’s convenience, here we briefly recapitulate the discus-
sion in Ref. [49]. The non-forward amplitude in dipole models typically
has the following structure in impact parameter space b⊥,

T (b⊥)=
∫

d2�⊥e−ib⊥·�⊥T (�⊥)∼
∫

d2r⊥|
(�⊥ = 0)|2N (b⊥ − zr⊥),

(28)

where N is the dipole scattering amplitude. The shift b⊥ → b⊥ − zr⊥
is caused by the phase factor eizr⊥·�⊥ which generically appears in
non-forward impact factors [50], see Eq. (36) below for example. This
implies that b⊥ + (1 − z)r⊥ and b⊥ − zr⊥ can be interpreted as the
coordinate of the quark and antiquark (or diquark), respectively. We can
thus identify

N (b⊥ − zr⊥) =
〈

1 − 1

Nc
TrU (b⊥ + (1 − z)r⊥)U†(b⊥ − zr⊥)

〉

.

(29)

∑

λq



∗ →
∑

λq



∗ei
(

z− 1
2

)

�⊥·r⊥

≈
∑

λq



∗
[

1 + i z∗�⊥ · r⊥ − z2∗(�⊥ · r⊥)2

2

]

, (31)

where we used the abbreviation z∗ = z − 1/2. Assembling
the above pieces together, we get

∫

d2r⊥
∗(r⊥, z, λ′
2)N (r⊥, �⊥, λ1, λ

′
1)
(r⊥, z, λ2)

= − πg2c2
s

2NcM
zz̄2

∫

d2r⊥
{

δλ′
2,λ2

δλ1,λ′
1
�n

[

H̃

(

1 − z2∗
4

�2⊥r2⊥
)

− δ(2)(�⊥)
2Nc

g2π
+ i z∗�2⊥

2M2 g̃1,1

]

+ δλ′
2,−λ2

δλ1,−λ′
1
δλ1,λ2 � f

×
[

−2i g̃1,2 − i
�2⊥
2M2

(

2g̃1,3 − g̃1,1 − z2∗M2r2⊥ g̃1,2
) + z∗�2⊥r2⊥

2
Ẽ

]

−δλ′
2,−λ2

δλ1,−λ′
1
δλ1,−λ2 � f (�⊥ · ελ1 )

2

×
[

z∗r2⊥
2

Ẽ − i

2M2

(

2g̃1,3 − g̃1,1 − z2∗M2r2⊥
2

g̃1,2

)]

+δλ′
2,λ2

δλ1,−λ′
1
λ1�⊥ · ελ1

�n

2M

[

Ẽ + i z∗ g̃1,2

]

+δλ′
2,−λ2

δλ1,λ′
1
λ2�⊥ · ε∗

λ2
� f

[

z∗Mr2⊥ H̃ − i g̃1,1

M

]}

, (32)

where we defined

H̃ ≡ f̃1,1 =
∫

d2k⊥
(2π)2 e

ik⊥·r⊥ f1,1(k⊥,�⊥)

k2⊥ − �2⊥/4
, (33)

and

Ẽ ≡ 2 f̃1,3 − f̃1,1 + 2 f̃ a1,2 + f̃ b1,2

=
∫

d2k⊥
(2π)2 e

ik⊥·r⊥ − f1,1(k⊥) + 2 f1,3(k⊥) + k2⊥
M2 f1,2(k⊥)

k2⊥ − �2⊥/4

≡
∫

d2k⊥
(2π)2 e

ik⊥·r⊥ E(k⊥,�⊥)

k2⊥ − �2⊥/4
. (34)

Footnote 3 continued
This gives

T (�⊥) ∼
∫

d2b⊥eib⊥·�⊥
∫

d2r⊥|
|2

×
〈

TrU (b⊥ + (1 − z)r⊥)U†(b⊥ − zr⊥)
〉

=
∫

d2b⊥eib⊥·�⊥
∫

d2r⊥e
i
(

z− 1
2

)

�⊥·r⊥ |
|2

×
〈

TrU (b⊥ + r⊥/2)U†(b⊥ − r⊥/2)
〉

. (30)
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Above, f1,1 and E are nothing but the GTMD version of
the GPDs of the fast proton (c.f., Eq. (4.48) of Ref. [51])
normalized as

∫

d2k⊥ f1,1(k⊥, �⊥) = H(t),
∫

d2k⊥E(k⊥, �⊥) = E(t),

(35)

where H and E are the standard gluon GPDs. Note that, since
we are colliding identical particles, by symmetry the coef-
ficients of δλ′

2,−λ2
δλ1,λ

′
1

and δλ′
2,λ2

δλ1,−λ′
1

have to be equal
(up to a sign and trivial relabeling). However, in the asym-
metric frame in which we are working, this is not obvious at
first sight. While we do not have an explicit proof, we nev-
ertheless argue that the two expressions are indeed equiv-
alent. The functions �n and � f introduced in Eqs. (26)
and (27) are related to the helicity non-flip and helicity flip
parts of the gluon GTMD of the slow proton, respectively,

G(k⊥,�⊥) ∝ CFα2
s

∫
dz

zz̄

∫

d2r⊥

×
∑



∗eiz�⊥·r⊥ k2⊥ − �2⊥/4

(�⊥/2 − k⊥)2(�⊥/2 + k⊥)2

×(1 − e−ir⊥·(�⊥/2−k⊥))(1 − e−ir⊥·(�⊥/2+k⊥)). (36)

The t-channel gluon propagators in Eq. (36) (as well as
the small-x evolution) are absorbed into Ẽ and H̃ . Thus,
the terms proportional to �n Ẽ and � f H̃ in the last two
lines of Eq. (32) are both the convolution of the H -type
GTMD of one proton and the E-type GTMD of the other
proton, and are thus equal. A similar argument applies to
the imaginary parts proportional to �n g̃1,2 and � f g̃1,1.
Although there is in general no relation between g̃1,2 and
g̃1,1, they satisfy the same evolution equation. The only dif-
ference is the way the t-channel Odderon amplitude T O

couples to the proton, and this coupling is proportional to
� f and �n , respectively, cf., Ref. [30]. Thus, the imag-
inary terms in the last two lines of Eq. (32) both have
the structure �n ⊗ TO ⊗ � f , and are thus equivalent.
After removing the phase according to Eq. (4), we arrive
at

φ1 = φ3 = − isg2c2
s

8NcM

∫ 1

0
dzz̄

∫
d2r⊥
4π

�n

×
[

H̃

(

1 − z2∗
4

�2⊥r2⊥
)

− δ(2)(�⊥)
2Nc

g2π
+ i z∗�2⊥

2M2 g̃1,1

]

, (37)

φ2 = − sg2c2
s

4NcM

∫ 1

0
dzz̄

∫
d2r⊥
4π

� f

×
[

g̃1,2 + �2⊥
4M2 (2g̃1,3 − g̃1,1 − z2∗M2r2⊥ g̃1,2) + i

z2∗
4

�2⊥r2⊥ Ẽ

]

,

(38)

φ4 = isg2c2
s

16NcM
(−t)

∫

dzz̄
∫

d2r⊥
4π

� f

(

z∗r2⊥ Ẽ

− i

M2

(

2g̃1,3 − g̃1,1 − z2∗M2r2⊥
2

g̃1,2

))

, (39)

φ5 = isg2c2
s

16NcM

√−t
∫ 1

0
dzz̄

∫
d2r⊥
4π

z∗

×
(

2� f Mr2⊥ H̃ − i

M
�n g̃1,2

)

. (40)

The sign in front of g̃1,2 in Eq. (40) has been fixed using the
relation 〈++ |T̃ |+−〉 = −〈++ |T̃ |−+〉 [52]4. We imme-
diately notice that φ1,3 are purely imaginary and φ2 is purely
real. Therefore, the usual ρ-parameter (1) vanishes at t = 0
in this model. Away from t = 0, the ρ-parameter is dom-
inated by the spin-independent Odderon g̃1,1. We also see
that the Pomeron (H̃ , Ẽ) and Odderon (g̃1,2,3) contributions
are always relatively imaginary. This means that there is no
interference when squaring the amplitudes |φi |2, and dσ/dt
is insensitive to the sign of g̃1,2,3. In other words, dσ/dt is
identical for pp and p p̄ scatterings in this model.

Recently, there are indications that the difference
dσ pp/dt − dσ p p̄/dt is nonvanishing from an analysis of
the LHC and Tevatron data [21,53]. In order to explain this,
the Odderon has to have a small imaginary part (and the
Pomeron has a small real part). It may be possible to gener-
alize our model to accommodate this effect, for example, by
using the dispersion relation or invoking Regge theory or the
AdS/CFT correspondence [54]. This is however beyond the
scope of this work.

As for the ratios (8), we get

r2(s, t = 0) =
∫

dzz̄
∫

d2r⊥� f g̃1,2
∫

dzz̄
∫

d2r⊥�n

(

H̃ − ANc
2π3g2

) = R2 + i I2, (41)

r4(s, t ≈ 0)=
∫

dzz̄
∫

d2r⊥� f

[

−2g̃1,3+ g̃1,1 + z2∗M2r2⊥
2 g̃1,2 − i z∗M2r2⊥ Ẽ

]

2
∫

dzz̄
∫

d2r⊥�n

(

H̃ − ANc
2π3g2

)

= R4 + i I4, (42)

r5(s, t ≈ 0) =
∫

dzz̄
∫

d2r⊥z∗
[

−�n g̃1,2 − 2i� f M2r2⊥ H̃
]

2
∫

dzz̄
∫

d2r⊥�n

(

H̃ − ANc
2π3g2

)

= R5 + i I5. (43)

Since φ4,5 vanish at t = 0, r4,5 are not well-defined at t = 0,
and of course measurements are always performed at t �=
0. On the other hand, r2 has a well-defined limit t → 0,
and there we need to subtract (2π)2δ2(�⊥ = 0) ≡ A, the
transverse area of the proton, from H̃ in the denominator.
This converts the S-matrix (H̃ ) into the T -matrix, and is
crucial for the r⊥ integral to converge at small r⊥. [Note

4 Since the last two lines of Eq. (32) are equivalent as we have argued,
we may choose any linear combination of {H̃ , Ẽ} and {g̃1,1, g̃1,2} in
Eq. (40). Here, we chose the set {H̃ , g̃1,2} merely because we have
numerical results available for these distributions.
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that �n, f (r⊥) ∼ 1/r2⊥ at small-r⊥.] When t is nonzero, the
subtraction is absent but there is no convergence problem
since H̃ vanishes at r⊥ = 0 if �⊥ �= 0. However, we can
keep this subtraction in the denominator of r4,5 and evaluate
it at t = 0 thanks to the fact that the limit Im φ1(t → 0)

is smooth. Also, H̃ in the numerator of r5 can be safely
evaluated at t = 0 since the factor r2⊥ kills the divergence
at r⊥ = 0. In the present work, these tricks are crucial for
the numerical study in the next section since we do not have
a numerical solution of H̃ at t �= 0.

We see that the real parts R2,4,5 entirely come from the
Odderon. In particular, R2 at t = 0 is nonvanishing due to
the spin-dependent Odderon g1,2, and this can contribute to
the differential and total cross section according to Eq. (10).
The imaginary parts I4,5 come from the Pomeron and I2
vanishes in this model. It is interesting to notice that I5 is
parametrically of order unity if the typical value is r⊥ ∼
1/M . However, at high energy the integrand is more localized
at small-r⊥, and then the factor r2⊥ leads to a suppression of I5
(see below). We also expect |I5| � |I4| assuming |H | � |E |.

4 Energy dependence of the helicity amplitudes

In this section, we study the center-of-mass energy
√
s depen-

dence of the helicity amplitudes φi and their ratios obtained in
the previous section. f1,n and g1,n are the real and imaginary
parts of the dipole scattering amplitude (12), respectively.
The latter satisfies the Balitsky–Kovchegov (BK) equation
[47,55] which is an evolution equation in ln s including
the gluon saturation effect. Thus, the Pomeron and Odd-
eron amplitudes can be obtained from the real and imaginary
parts of the BK equation with appropriate initial conditions
[48,56]. We restrict ourselves to the forward limit �⊥ = 0,
which means that we concentrate on f1,1 and g1,2. Solving
the BK equation with finite �⊥ is numerically more involved,
and to our knowledge this has not been done for the Odderon.

Admittedly, the use of the BK equation for our problem
must be legitimately criticized. Being an equation originally
derived in perturbation theory, in principle the BK equation
can only apply to processes which involve a hard scale. How-
ever, in near-forward elastic pp scattering, apparently there
is no such hard scale. Yet, the idea of gluon saturation and
the Color Glass Condensate [35] is that at asymptotically
high energies, the gluon distribution in the colliding parti-
cles is characterized by a dynamically generated hard scale,
called the saturation momentum Qs(s) which is an increas-
ing function of

√
s. It has been demonstrated [57] that the

theory of saturation with Q2
s ∝ (

√
s)0.23 > 1 GeV2 can

successfully describe the multiplicity and the mean pT dis-
tribution in pp collisions across the whole energy region of
the LHC, 0.9 GeV <

√
s < 7 TeV. This partly justifies our

approach at least for the Pomeron, and allows us to calculate

the perturbative part of the growth of the total cross section
with energy. Of course there are also nonperturbative contri-
butions to the total cross section, but in our model these are
absorbed into the parameter A. As a matter of fact, the same
argument does not quite hold for the Odderon. It has been
noticed that the characteristic momentum scale of the Odd-
eron amplitude does not grow like Qs [33,58]. Therefore, the
results involving Odderon below are at best a crude estimate
of the possible high energy behavior suggested by perturba-
tion theory. In reality the dominance of the nonperturbative
effects may be overwhelming.

We basically follow Ref. [33] for the numerical evaluation
of f1,1 and g1,2, except that we now include the running cou-
pling effect. Reference [33] considered a transversely polar-
ized proton and studied the gluon Sivers function which is
the forward limit of g1,2. On the other hand, in our problem
the proton is longitudinally polarized. We thus need a little
spinor algebra to connect the two works. Let us return to
Eq. (14) and take the forward limit �⊥ = 0,
∫

d2r⊥e−ik⊥·r⊥N (r⊥) = (2π)2δ(2)(k⊥)A

− g2(2π)3

4NcMk2⊥

(

M f1,1 + εi j ki⊥S j
⊥g1,2

)

.

(44)

Here we assume that the proton is transversely polarised,
with the transverse spin vector �S⊥ normalised as | �S⊥| = 1.
In the r⊥-space,

N (r⊥)=A − g2(2π)3

4NcM

(

MH̃(r⊥) + i
εi j Si⊥r

j
⊥

r2⊥
g̃1,2(r⊥)

)

.

(45)

This can be written as (compare with Eq. (5) of [33])

S(�x⊥, �y⊥) = P(r⊥) + i �S⊥ × �r⊥ Q(r⊥), �r⊥ ≡ �x⊥ − �y⊥,

(46)

where

P(r⊥) = g2(2π)3

4NcA
H̃(r⊥),

Q(r⊥) = g2(2π)3

4NcMA
g̃1,2(r⊥)

r2⊥
, (47)

for the Pomeron and the spin-dependent Odderon compo-
nents of the dipole S-matrix, respectively.

We compute P(s, r⊥) and Q(s, r⊥) as functions of the
center-of-mass energy squared s from the solution of the BK
equation with running coupling as prescribed in Ref. [59].
Then, using Eq. (47) we access H̃(r⊥) and g̃1,2(r⊥) that are
further employed in computing r2,5 through Eqs. (41) and
(43). We adopt the following form for the coupling constant
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Fig. 2 The energy dependence of the total cross section. We take
Qs0 = 1.0 GeV to fit the experimental data

αs(r
2⊥) = 1

b0 log

(

4
r2⊥�

+ a

) , (48)

with b0 = 9
4π

(corresponding to n f = 3), � = 0.241 GeV

and a = e
8π
9 . The initial conditions are given at the starting

energy scale s0 as follows:

P(s0, r⊥) = e−r2⊥Q2
s0/4, Q(s0, r⊥) = κQ3

s0r
2⊥e−r2⊥Q2

s0/4.

(49)

The initial saturation scale Qs0 is expected to be around 1
GeV in the TeV region, while the strength of Odderon κ is
an unknown parameter including its sign (see, however, [29])
which should be fitted to the data [34]. The other parameters
in this model are mq , ms and c2

sA (only this product enters
our observables). We fix mq = 0.3 GeV and ms = M −mq ,
while c2

sA is fitted to the total cross section.
The energy dependence of the total cross section com-

puted in our approach is shown in Fig. 2 with Qs0 = 1.0
GeV. Here, the green and pink lines denote two different val-
ues of the starting energy scale,

√
s0 = 0.1 and 0.5 TeV,

respectively. The result is in reasonable agreement with the
corresponding measurements in pp collisions performed at
several distinct energies, such as those by the TOTEM LHC
Collaboration at 13 TeV [12], 8 TeV [60], 7 TeV [61,62]
and 2.76 TeV [16], as well as in p p̄ collisions by D0 Teva-
tron Collaboration at 1.96 TeV [63] and by UA4 CERN SPS
Collaboration at 546 GeV [64] and 630 GeV [65]. Since the
measured values for σtot(s) are sometimes not available in
the experimental articles, in those cases the σtot values have
been taken from the global Lévy analysis of the correspond-
ing elastic pp and p p̄ cross section data performed recently
in Ref. [17]. Incidentally, we have also tried Qs0 = 0.5 GeV,
but the quality of the fit is noticeably worse in this case.

The results for R2, I5 and R5 are plotted in Fig. 3 as func-
tions of

√
s in upper-left, upper-right and bottom panels,

respectively. Note that the normalization and sign of R2,5

are arbitrary, as it is proportional to the unknown parameter
κ , and we have chosen R5 to be negative following the recent
suggestion in [66]. Irrespective of this, we can predict that
R2 and R5 have the same sign and that |R2| is roughly two
times larger than |R5|. We also see a clear tendency that the
magnitude of R2,5 decreases with increasing energy. This
is because, although the Odderon intercept is unity in the
dilute (BFKL) regime, the nonlinear saturation effect tends
to suppress the Odderon amplitude [33,48,58]. On the other
hand, the value of I5 is a prediction of this model, since
both the denominator and numerator of (43) come from the
Pomeron. It is negative and the magnitude decreases with
energy because of the factor r2⊥ in the numerator of (43): The
r⊥-integral is dominated by r⊥ ∼ 1/Qs(s), and Qs(s) is an
increasing function of energy.

The data on single spin asymmetry AN in small-angle
elastic pp collisions

AN
dσ

dt
= − 4π

s(s − 4M2)
Im

{

(φ1 + φ2 + φ3 − φ4)φ
∗
5

}

,

(50)

have recently become available from the fixed-target mea-
surement HJET at BNL [67] as well as earlier from the STAR
measurements of polarized elastic pp collisions at

√
s = 200

GeV [44]. These data have enabled to extract the real and
imaginary parts of r5 ratio in a wide energy domain. The val-
ues of R5 published by the experimental collaborations were
found (by STAR measurement and by an extrapolation from
the lower HJET energies) to be either small positive or con-
sistent with zero at

√
s = 200 GeV (see also [26]), while the

hadronic contribution predicted in Fig. 3 (upper-right panel)
is found to be larger than the ballpark of experimental values.

We note, however, that the CNI contribution has to be
taken into consideration as its impact on r5 can be rather
important, whereas the current analysis only focuses on the
hadronic contribution to φ5. Indeed, as was recently advo-
cated in Ref. [66] relying on a Regge analysis and a domi-
nance of the Pomeron spin-flip contribution, the absorptive
corrections to the Coulomb spin-flip amplitude significantly
modify the CNI mechanism. As a result, this modification
affects the extracted values of r5, in particular making the
spin-flip Pomeron I5 rather large and negative, at the level of
−5 to −10 % at

√
s = 200 GeV, in consistency with expec-

tations [68]. The fact that our QCD-based approach predicts
non-vanishing and negative I5 is encouraging, although as we
explained above it falls with energy, in contrast to the behav-
ior predicted by the Regge fit of Ref. [66]. These results are
not inconsistent and rather suggest that the gluon saturation
regime has not been reached at RHIC energies. We leave a
thorough analysis of the CNI effects in the current framework
for a future work.
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Fig. 3 The energy dependence of double-spin-flip R2 (left) and single-spin-flip r5 = R5 + i I5 (right and bottom) to non-flip ratios. Here, we take
κ = 1/16 and Qs0 = 1.0 GeV

5 Conclusions

In this work, we have presented a new QCD-inspired
model for small-angle elastic proton–(anti)proton scatter-
ing in terms of spin-dependent Pomeron and Odderon helic-
ity amplitudes in the dipole picture based upon the Wilson
line approach. The elastic amplitudes φ1,...,5 are effectively
described in near-forward kinematics by means of a scatter-
ing of the lowest Fock state p → q + (qq) of projectile
proton (i.e. the quark–diquark dipole) off the proton target,
i.e. in a similar fashion as DIS. The corresponding dipole
S-matrix receives contributions from non-flip and spin-flip
Pomeron and Odderon exchanges that are represented in
terms of GTMDs of different types.

Connecting to the numerical analysis of the small-x Odd-
eron evolution equation performed earlier in Ref. [33] and
incorporating in addition the QCD running coupling effect,
we explore the relative importance of spin-flip contributions
to the elastic pp scattering at high energies. In particular, we
analyse the energy dependence of the spin-flip Pomeron (I5)
and spin-flip Odderon (R5) amplitudes, as well as double-
spin-flip Odderon (R2) amplitude relative to the non-flip
one. At variance with an earlier Regge-based calculation
of Ref. [66] incorporating for the first time the absorptive
corrections in the CNI mechanism, we do not assume that
the exchanged spin-independent and spin-dependent Regge
trajectories have different intercepts and do not neglect the
Odderon contributions. Yet, we have reached a qualitatively
similar conclusion about a significant and negative contribu-

tion to the single helicity-flip amplitude I5. Moreover, the
measured value of R5 can be used to determine the Odderon
coupling κ , which in turn determines the value of R2. The
energy dependence of r5 in our approach is decaying and
hence is strictly opposite to the steeply rising behavior from
the Regge analysis [66] obtained in the lower energy region.
This suggests that once the gluon saturation effect kicks in,
the behavior of r5 changes. A further analysis of this issue is
certainly needed.

The experimentally probed energies in the existing mea-
surements of the spin-flip contributions may not be high
enough to make a conclusive statement about the energy
dependence of spin-dependent Pomeron and, especially,
Odderon effects. Indeed, at such low energies as

√
s = 200

GeV the C-odd effects may come mostly from secondary
Reggeon exchanges, not due to spin-dependent Odderon
studied in our analysis here. It is therefore of high importance
to perform a new measurement of r2 and r5 in a TeV energy
range to make a definite conclusion about the energy depen-
dence of spin-dependent Pomeron and Odderon in the future.
Note that this does not necessarily require polarized proton
beams which are not available at the LHC. The differen-
tial cross section (6) gets contributions from the helicity-flip
amplitudes, but they are usually ignored in the CNI analysis.
It would be very interesting to test more flexible parametriza-
tions of the CNI effect including the hadronic and electro-
magnetic contributions to φ2,4,5. This could eventually affect
the value of the ρ-parameter, and also the total cross section
via (10).
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Finally, it is of course necessary to extend the present cal-
culation to finite momentum transfer t , in particular up to the
‘dip’ region of dσ/dt . The basic formulas are given in (37)–
(40), but we are missing models of the spin-independent and
spin-dependent Pomeron and Odderon amplitudes at finite t
(see for example [69,70] for a model of g1,1 at finite impact
parameter). They can also serve as an initial condition for the
impact-parameter dependent BK equation to determine the
energy dependence. It is also interesting to consider different
models for the ‘slow’ proton such as a bound state of three
quarks. We hope to address these issues elsewhere.
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Appendix A: One photon exchange

In this Appendix we quickly reproduce the helicity ampli-
tudes in the one-photon exchange approximation. For a com-
plete result, see [52]. The scattering amplitude is given by

iT = −e2ū(P3, S3)

(

γ μF1 + iσμρ�ρ

2M
F2

)

u(P1, S1)

×−i

t
ū(P4, S4)

(

γμF1 − iσμλ�
λ

2M
F2

)

u(P2, S2),

(A1)

where � = P3 − P1 = P2 − P4 and F1 and F2 are Dirac and
Pauli form factors. This immediately gives

T++++ = T+−+− = 8πφ1 = 4παem
2s

t
F2

1 (t). (A2)

As for the double helicity-flip amplitudes, we use the formu-
las

ū−λ(P1)σ
+i�i uλ(P1) = 2i P+

1 λ�⊥ · ελ,

ū−λ(P2)σ
−i�i uλ(P2) = 2i P−

2 λ�⊥ · ε∗
λ, (A3)

to get

〈−λ,−λ′|T |λ, λ′〉 ≈ 4παem
s

2M2

λλ′�⊥ · ελ�⊥ · ε∗
λ′

−t
F2

2 .

(A4)

We therefore find

T−−++ = 8πφ2 = 4παem
s

2M2 F
2
2 . (A5)

For φ4,5, we need to remove the phase according to (4). The
results are

T+−−+ = −4παem
s

2M2

(�⊥ · ε−)2

−t
F2

2 ,

φ4 = −αem
s

4M2 F
2
2 = −φ2. (A6)

T+++− = 4παem
s

M

�⊥ · ε+
−t

F1F2,

φ5 = −αem
s

2M
√−t

F1F2. (A7)

Appendix B: Feynman rules of the quark–diquarkmodel

In the diquark model [46], the interaction between the
nucleon, the quark, and the scalar diquark is described by the
following Feynman rules for the nucleon–quark–diquark ver-
tex, quark–gluon vertex, and diquark–gluon vertex, respec-
tively (see Fig. 4),

ics ū(k, λk)u(P, S⊥)δcc
′
, −igtaγ μ, −igta(r + r ′)μ,

(B1)

The scalar diquark, quark and gluon propagators in the Feyn-
man gauge are given by

i

r2 − m2
s + iε

,
i( /k + mq)

k2 − m2
q + iε

,
−igμνδc c

′

k2 + iε
, (B2)

where c, c′ are color indices in the adjoint representation
and ta are SU(N) gauge group generators in the fundamental
representation.
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P k k’ r r’
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Fig. 4 Feynman rules of the quark–diquark model
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