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Abstract We presented a non-singular solution of Ein-
stein’s field equations using gravitational decoupling by
means of complete geometric deformation (CGD) in the
anisotropic domain for compact star models. In this approach
both the gravitational potentials are deformed as ν = ξ +
β h(r) and e−λ = μ+β f (r), where β is a coupling constant.
Then we solve more complex field equations under above
transformations by using a particular form of deformation
function h(r) for two different cases namely the mimic con-
straint for the pressure {p(r) = θ1

1 } and the mimic constraint
for the density {ρ(r) = θ0

0 } (Ovalle in Phys Lett B 788:213,
2019). The compact star models have been constructed by
taking M0/R = 0.2 for two different non-zero values of β.
Moreover, the boundary conditions are also performed for
the said complete geometric deformation in the presence of
anisotropic matter distribution. We also find pressure, den-
sity, anisotropy and causality conditions that are physically
acceptable throughout the model. The M − R curve is also
presented to support our model for describing a realistic com-
pact object such as neutron stars.

1 Introduction

In recent days, Ovalle and his collaborators developed a sim-
ple, powerful and systematic effective approach the so-called
minimal geometric deformation (MGD) approach for decou-
pling of the gravitational source in general relativity. The
minimal geometric deformation (MGD) was initially discov-
ered [2,3] in the framework of Randall–Sundrum brane-word
[4,5]. Later on, it was extended to derive the new black hole
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solutions [6,7]. In this connection, there are several works on
MGD with its applications (earlier and recent) can be seen in
the following references [8–21]. The decoupling of the grav-
itational source through MGD is not only a new technique,
but it also provides to search the new solutions of Einstein’s
field equations with numbers of attractive ingredients. This
approach has two main characteristics which are mainly as:
(A) In order to find a solution of the Einstein’s field equa-
tions for a more complex energy-momentum tensor T̃i j , we
divide this energy-momentum tensor into two or more sim-
pler energy tensor components as,

T̃i j = {Ti j , θni j }. (1)

After the splitting of T̃i j , we solve Einstein’s equation for
each of the above components. In this process, we achieve
many solutions corresponding to each above components
for the original energy tensor T̃i j . At last, the solution for
the Einstein equations corresponding to the original energy-
momentum tensor T̃i j can be obtained by a simple linear
combination of all the above solutions. (B) while the sec-
ond procedure is reverse of the above procedure (A), In this
approach, we can generalized a simple solution for the Ein-
stein equations into more complex forms. For example to
say that we can start through an easy gravitational source
corresponding to original energy-momentum tensor Ti j and
derive a more complex gravitational source by adding an
extra energy-momentum tensor,

Ti j �−→ T̃i j = Ti j + θ1
i j . (2)

In this way we can repeat the same procedure by adding
more gravitational sources θni j to generalize the solutions of
the Einstein equations corresponding to energy tensor Ti j ,
into the scenario of more generalize form of the gravitational
sources T̃i j . Furthermore, this also implies that they interact
only gravitationally. Basically MGD-decoupling was applied
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for a particular transformation which is along the radial met-
ric component ê−λ(r) as: e−λ(r) �→ ê−λ(r) = e−λ(r)+β f (r),
where f (r) denotes the deformation function along the met-
ric component ê−λ(r). Under this transformation, there are
several physically acceptable solutions for spherically sym-
metric space-time have been derived in the different con-
text [60–62]. This MGD approach is also used to examine
the gravitational lensing singularity beyond to the general
relativity [63] as well as to discover the critical stability
space for Bose-Einstein condensates in gravitational struc-
ture [64]. In the presence of variable tension fluid branes, It
was also applied to discuss the corrections to dark SU(N)
star evident parameters [65]. Based on the above discus-
sion we can say that the minimal geometric deformation
decoupling approach is a very powerful technique to dis-
cover solutions of Einstein’s equation for the self-gravitating
stellar objects. But Ovalle and his collaborators proposed
that this MGD approach has some limitations as it fails to
explain the existence of a stable black hole with a well-
defined horizon because of the transformation undergone
along only the radial metric component and temporal met-
ric component is unchanged. In this regard, this MGD was
extended by deforming of both metric functions, and then
obtained modified Schwarzschild geometry, a new solution
that describes the brane-world star [6], and derived the cor-
rections to the gravitational wave radiation which is emitted
by SU(N) EMGD dark glueball stars mergers [66]. More-
over, the extended gravitational decoupling solution was also
obtained in the context of changed matter distribution [21].

In the present article, we have extended MGD by the
deforming both gravitational potential functions to obtain
a singularity free anisotropic solution for compact objects.
The presence of anisotropy inside the stellar model plays
an important role to describe more compact object mod-
els. Normally the densities of the compact stellar objects are
larger than the nuclear matter density. Then it can imagine
the presence of the unequal pressures (radial and tangential)
that introduce the anisotropy inside the object [22]. In the
context of the Newtonian regime, Jeans [23] proposed the
first result to assume the anisotropy in self-gravitating stel-
lar objects. Sudden after, Lemaître [24] had also measured
the impact of local anisotropy and presented that one can
reduce the higher limits forced on the maximum value of
the surface gravitational potential in the framework of gen-
eral relativity (GR). Ruderman [25] provided a remarkable
depiction of new realistic self-gravitating objects which indi-
cates that a compact object with matter density (ρ) more than
1015g/cm3 is probably to be anisotropic, where the nuclear
interaction becomes relativistic in nature. Bowers and Liang
[26] had shown the effects of the anisotropy on the com-
pact stellar model where they studied the modified hydro-
static equilibrium equation by the inclusion of anisotropy,
and then comparative effects of anisotropy on the structure

of the static spherically symmetric configurations and with
isotropic fluid. For an anisotropic equation of state, Heintz-
mann and Hillebrandt [27] have examined that the maxi-
mum mass of neutron star models at the very high densities
lies beyond 3 − 4M�. There are several remarkable works
on the anisotropic fluid have been done in last several years
in different scenario [28–59]. Herrera and Santos [22] stud-
ied and discussed almost probable reasons for the presence
of local anisotropy in self-gravitating systems with exam-
ples of both Newtonian and general relativistic scenario. The
article is organized as follows: In Sect. 2, first, we define the
modified action S by combining of Einstein–Hilbert action
and another extra source through the coupling parameter
β. Then we write the general equation of motion by vary-
ing the action S with respect to the metric tensor gi j . By
using this equation of motion, the explicit form of the Ein-
stein’s field equations for spherically symmetric metric has
been presented which involves the unknown components of
energy-momentum tensor Ti j and extra source θi j with two
unknown metric functions λ(r) and ν(r). The energy tensor
Ti j describes the perfect fluid matter distribution. In order to
solve the system completely for the anisotropic matter distri-
bution (which is coming due to the presence of extra source
θi j ), we apply the extended MGD approach as mentioned in
Sect. 3. In this approach we deformed both metric potentials
by ν = ξ + β h(r) and e−λ = μ + β f (r). By inserting
this transformation in the original system we split this sys-
tem into two subsystems namely Einstein’s system (for per-
fect fluid matter distribution associated with Ti j ) and quasi-
Einstein system (for the anisotropic source θi j ). In Sect. 4,
we derived the matching conditions (necessary and sufficient
conditions) to determine all the arbitrary constants. The pro-
cedures for the finding solution for both systems are given
in Sect. 5 as: Initially, we start from known seed isotropic
solution, in particular, Tolman IV solution for the Einstein’s
system (first system) which determines ν(r), λ(r), isotropic
pressure (p(r)) and density ρ(r). Then we focus on the sec-
ond system, quasi-Einstein system’ which has five unknown
namely two unknown deformation functions f (r) and h(r),
and three unknown components for the source θ (θ0

0 , θ1
1 and

θ2
2 ).Therefore, we need to specify two additional conditions

to close this system. We solve this system by specifying the
following conditions: (i) The mimic constraints for the pres-
sure [67] and particular physically motivated ansatz for h(r)
as θ1

1 (r) = p(r) and h(r) = (r2/A2)(1 + r2/A2), (ii) The
mimic constraints for the density [67] and same particular
physically motivated ansatz for h(r) as θ0

0 (r) = ρ(r) and
h(r) = (r2/A2)(1 + r2/A2), where A is constant. In this
process, we determine other deformation function f (r) and
now the system is closed. The physical analysis and conclud-
ing remarks are given in Sect. 6 respectively.
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2 The Einstein field equations for decoupled system

The modified action for decoupled system can be defined by
adding an extra source via coupling parameter β as, [1]

S = SEH + βSθ =
∫ [ R

16π
+ LM + β Lθ

]√−g d4x (3)

where LM denotes the Lagrangian for matter field while
Lθ is a Lagrangian density for the additional source and the
sybmols R and g has their usual meanings. Now the energy
momentum tensor Ti j for the matter distribution is given by,

Ti j = − 2√−g

δ(
√−gLM )

δgi j
. (4)

It is obviously that the matter Lagrangian LM depends on
only the components of metric tensor gi j and not on their
derivatives, so we get the following form of Ti j ,

Ti j = −2
∂LM

∂gi j
+ gi jLM . (5)

Similarly, the extra source θi j as the energy tensor corre-
sponding to Lagrangian density Lθ given as,

θi j = −2
δLθ

δgi j
+ gi jLθ . (6)

After varying the action (3) with respect to the metric tensor
gi j we get the following general equations of motion for the
decoupled system as,

Ri j − 1

2
R gi j = −8π T tot

i j , (7)

with T tot
i j = Ti j + β θi j , (8)

where we have chosen the relativistic units G = c = 1. On
the other hand we take,

Ti j = (ρ + p)uiu j − pgi j , (9)

is the 4-dimensional energy-momentum tensor for the perfect
fluid matter distribution with matter density ρ, isotropic pres-
sure p and 4-velocity vector field ui . The extra source θi j in
Eq. (8) is coupled in the matter field by the parameter β which
may contain new fields, such as vector, scalar or tensor fields.
This source will create anisotropies in the self-gravitating
systems. As we know that the Einstein tensor is always
divergence-free. Therefore, the total energy-momentum ten-
sor in Eq. (7) must hold the conservation equation,

∇ j T
(tot) i j = 0. (10)

A static spherically symmetric metric in Schwarzschild coor-
dinate is given as,

ds2 = −eλ(r) dr2 − r2
(
dθ2 + sin2 θ dφ2

)
+ eν(r)dt2.

(11)

where λ(r) and ν(r) are the functions for the radial vector
r only. Then the 4-velocity vector ui = can be defined as:
ui = e−ν/2 δi0 within 0 ≤ r ≤ R. The Einstein’s field equa-
tion for decoupled system for the metric (11) can be given as,

8π(T 0
0 + β θ0

0 ) = e−λ

(
λ′

r
− 1

r2

)
+ 1

r2 , (12)

8π(T 1
1 + β θ1

1 ) = −e−λ

(
ν′

r
+ 1

r2

)
+ 1

r2 , (13)

8π(T 2
2 + β θ2

2 ) = −e−λ

4

(
2ν′′ + ν′2 + 2

ν′ − λ′

r
− ν′λ′

)
.

(14)

where,

T 0
0 = ρ(r), T 1

1 = −p(r), T 2
2 = −p(r), (15)

The linear combination of the Eqs. (12–14), corresponding
the conservation Eq. (10), gives (using Eq. (15))

−ν′

2
(ρ + p) − p′ − ν′β

2
(θ0

0 − θ1
1 ) + β (θ1

1 )′

−2β

r
(θ2

2 − θ1
1 ) = 0. (16)

It is noted that we can recover the perfect fluid case for β →
0. As we see that the system (12)–(14) having eight unknown
functions, namely: two gravitational potentials λ(r) (radial
metric function) and ν(r) (temporal metric function); two
physical variables, pressure p(r) and density ρ(r); and three
unknown components for θi j which implies that the system
has infinitely many solutions. Therefore, we need to specify
some additional conditions to solve the system (12)–(14). For
simplicity, we can describe the effective density as,

ρ̃ = ρ + β θ0
0 , (17)

an effective radial pressure

p̃r = p − β θ1
1 , (18)

and an effective tangential pressure

p̃t = p − β θ2
2 . (19)

Then obviously we can clearly define the anisotropy as

Π ≡ p̃t − p̃r ≡ β (θ1
1 − θ2

2 ). (20)

Now, we are going to discuss a different approach for solving
the system.

3 Gravitational decoupling by complete geometric
deformation (CGD)

In this section, we shall apply the complete geometric defor-
mation to solve the system of Eqs. (12)–(14). In the process,
we see that how the gravitational decoupling transform the
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field Eqs. (12)–(14) in two separate systems; namely, the Ein-
stein system associated with the sourceTi j and quasi-Einstein
system for the source θi j . Let us consider the solution for the
eqs. Equations (12)–(14) by taking β = 0 which corresponds
to GR perfect fluid solution {μ, ξ, p, ρ}. Then the respective
line element can be written as,

ds2 = −μ−1 dr2 − r2
(
dθ2 + sin2 θ dφ2

)
+ eξ(r)dt2, (21)

with

2m0(r)

r
≡ 8π

r

∫ r

0
ρ r2 dr ≡ 1 − μ, (22)

is the mass function for the standard GR expression. Now let
us move on the coupling parameter β to see the impact of the
source θi j on the perfect fluid solution {μ, ξ, p, ρ}. For this
purpose, we apply the following transformations in Eq. (21)
as [1,66]

ξ �→ ν = ξ + β h(r) (23)

μ �→ e−λ = μ + β f (r). (24)

where h(r) and f (r) represent the geometric deformation
functions corresponding to the temporal and radial metric
components. Moreover, this transformation is the extended
case of minimal geometric transformation (MGD), which is
called a complete geometric deformation (CGD) or extended
geometric deformation along both the radial and tempo-
ral components of the line element (21). By plugging the
deformed metric functions (15) and (16) in the system of
equations (12)-(14), the system divided into two subsystems
such as: (i) The first system is described by the Einsteins
equations for energy-momentum tensor Tμν as,

1

r2 − r μ′ + μ

r2 = 8 π ρ, (25)

− 1

r2 + μ + r μξ ′

r2 = 8 π p, (26)

μ

(
ξ ′′

2
+ ξ ′2

4
+ ξ ′

2r

)
+

(
ξ ′μ′

4
+ μ′

2r

)
= 8 π p. (27)

along with conservation equations of (16) for β = 0 gives,

− ξ ′

2
(ρ + p) − p′ = 0. (28)

The above Eq. (28) is the linear combination of the Eqs.
(25)–(27). The second system corresponding to θi j source is
known as the quasi-Einstein system, is given by the following
field equations,

−
(

f ′

r
+ f

r2

)
= 8 π θ0

0 , (29)

− f

(
ν′

r
+ 1

r2

)
= 8 π θ1

1 + μ h′

r
, (30)

− f

2

(
ν′′ + ν′2

2
+ ν′

r

)
− f ′

2

(
ν′

2
+ 1

r

)
= 8 π θ2

2 + F1, . (31)

where, the expressions for F1 is given as,

F1 = μ

4

(
2 h′′ + β h′ 2 + 2 h′

r
+ 2 ξ ′ h′) + μ′ h′

4
. (32)

The conservation equation for the quasi-Einstein system
(∇ j θ

i j = 0) yields the following equation,

− ν′β
2

(θ0
0 − θ1

1 ) + β (θ1
1 )′ − 2β

r
(θ2

2 − θ1
1 ) = 0. (33)

From the Eqs. (32) and (33) we conclude that there is no
exchange of energy-momentum tensor between the sources
Ti j and θi j . Therefore, their interaction is purely gravita-
tional.

4 Matching conditions for anisotropic stellar model

The study of the matching condition for the anisotropic mat-
ter distribution is a crucial part of the boundary between the
geometries for interior (r < R) and exterior (r > R) space-
time. In our present situation, the interior stellar spacetime
is given by the extended geometric deformed metric,

ds2 = −
(

1 − 2m(r)

r

)−1

dr2 − r2(dθ2 − sin2 θ dφ2)

+eξ(r)eβ h(r) dt2, (34)

where

m(r) = m0(r) − r β

2
f (r). (35)

is internal mass of the anisotropic stellar structure corre-
sponding to energy momentum tensor T tot

i j , whilem0(r) is the
mass described in Eq. (22) and deformation functions f (r)
and g(r) are still to be determined. Now the inner metric (34)
should be smoothly matched with an exterior metric where
there is no isotropic fluid matter i.e. isotropic pressure p+ and
density ρ+ are zero. Since the exterior spacetime (r > R)
may contain new fields which are described by θi j -sector.
Therefore, the outer spacetime (r > R) is no more vacuum
in the present situation. The general exterior spacetime can
be given as,

ds2 = −eλ+(r)dr2 − r2(dθ2 − sin2 θ dφ2) + eν+(r) dt2,

(36)

where the gravitational potentials λ+(r) and ν+(r) are deter-
mined by exact Schwarzschild solution.

For smooth joining of inner geometry with outer geometry
at the boundary of the stellar interior at r = R, we apply the
well known Israel-Darmois junction conditions [68,69] at
r = R. These conditions are known as the continuity of the
first and second fundamental forms across the boundary 
.
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The continuity of the first fundamental form at the bound-
ary of the stellar model 
 given as,
[
ds2]



= 0, (37)

By writing of its explicit form we get,

ξ(R) + β h(R) = ν+(R), (38)

1 − 2M0

R
+ β f (R) = e−λ+(R), (39)

where, f (R) and h(R) are the deformation function at bound-
ary r = R and M0 = m0(R). The continuity of the second
fundamental can be read as,
[
Gi j r

j
]



= 0 (40)

here r j is a unit vector. Using Eqs. (7) and (59) we can find
[
T tot
i j r j

]



= 0, (41)

which gives
[
pr − β θ1

1 (r)
]



= 0 (42)

The condition (42) can be written in the following following
final form,

pr (R) − β (θ1
1 )−(R) = −β (θ1

1 )+(R) (43)

where pr (R) = p−
r (R). The condition given by Eq. (43)

is called the general expression for the second fundamental
form connected with the Einstein field equations described
by Eq. (7). Now we substitute the value of (θ1

1 )−(R) for the
interior geometry from Eq. (32) into the condition (43). Then
the second fundamental form (43) can be written as,

pr (R) + β

[
f

8π

(
ν′

r
+ 1

r2

)
− μ h′

r

]
r=R

= −β (θ1
1 )+(R), (44)

here ν′ ≡ ∂r ν−. To obtain (θ1
1 )+(R), we use the Eqs. (30)

and (34) for the outer geometry in Eq. (44) which gives,

pr (R) + β

[
f (R)

8π

(
ν′(R)

R
+ 1

R2

)
− μ(R) h′(R)

8πR

]

= β f ∗(R)

8π

[
2M

R3

1(
1 − 2M/R

) + 1

R2

]

−β

[
h∗(R)

]′
8πR

(
1 − 2M

R

)
, (45)

where, the geometric deformation functions f ∗(R) and
h∗(R) for the exterior Schwarzschild solution (52) are com-
ing due to the extra source θi j . It is important remark that if
the exterior solution is described only by the Schwarzschild

solution (52), then we must have f ∗(r) = 0 and h∗(r) = 0.
Then the Eq. (45) can be written as,

pr (R) + β

[
f (R)

8π

(
ν′(R)

R
+ 1

R2

)
− μ(R) h′(R)

8πR

]
= 0.

(46)

The conditions (38), (39) and (46) represent the necessary and
sufficient conditions to find the arbitrary constants which are
involve in the system.

5 Anisotropic solution

In this section, we will solve the Einstein field equations (12)–
(14) for the anisotropic solution for compact star by using the
extended gravitational approach. In this approach we will
find the physical variables { p̃r , p̃t , ρ̃}, and two unknown
functions ν and λ which are given in the Eqs. (17)–(19) and
(11), respectively. The starting point is to find the solution of
Einstein’s Eqs. (25)–(27) for the perfect distribution. For a
particular choice, we choose simply the well-known Tolman
IV solution as a seed solution {ξ, μ, p, ρ}, given by

ξ(r) = ln

{
B2

A2 (A2 + r2)

}
, (47)

μ(r) = (C2 − r2) (A2 + r2)

C2 (A2 + 2 r2)
, (48)

p(r) = C2 − A2 − 3r2

8 π C2 (A2 + 2 r2)
, (49)

ρ(r) = 3 A4 + A2 (3C2 + 7 r2) + 2r2 (C2 + 3r2)

8 π C2 (A2 + 2 r2)2 . (50)

where, the arbitrary constants A, B andC will be determined
by using the matching conditions. The interior mass m0(r)
(as defined in Eq. (22)) is given as,

m0(r) ≡ 4 π

∫ r

0
ρ r2 dr ≡ r3 (A2 + C2 + r2)

2C2(A2 + 2 r2)
. (51)

Now let us turn on the second system namely the ”quasi-
Einstein” system corresponding to sector θi j . Now as we
see that the field Eqs. (29)–(31) involves both deformation
functions f (r) and h(r) corresponding to radial and tem-
poral metric components, respectively. In order to solve the
field Eqs. (29)–(31), we need to specify two more conditions.
There are many possibilities like introducing an equation of
state (EOS) for the source θi j and some physically motivated
ansatz for f (r) or h(r) or impose both deformation func-
tions. But in any situation, we must keep in mind that the
solution should be physically acceptable. Now we are going
to adopt the Ovalle procedures to solve the system (29)–(31)
as follows.
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5.1 Solution I: Mimic constraint for the pressure with
ansatz for deformation function h(r)

In order to close the system (29)–(31), we take the simple
choice [67],

θ1
1 (r) = p(r), (52)

h(r) = r2

A2

(
1 + r2

A2

)
. (53)

The condition (52) is compatible with exterior Schwarzschild
solution for a regular solution [67] and ansatz (53) is regular
and non-singular throughout within self-gravitating system.
Now by plugging the Eqs. (30), (52) and (53), we obtain the
deformation function f (r) as,

f (r) = r2 (A2 + r2) [A6 − 4C2r4 + 4r6 + f1(r)]
C2 (A2 + 2 r2) f2(r)

.

f1(r) = A4 (−3C2 + 5 r2) + A2 (−6C2 r2 + 6 r4),

f2(r) = A6 + A4 (3 + 2 β)r2 + 6 A2 βr4 + 4 β r6. (54)

Then the deformed gravitational potentials are given as,

e−λ(r) = (C2 − r2) (A2 + r2)

C2 (A2 + 2 r2)
+ β f (r), (55)

eν(r) = B2

A2 (A2 + r2) · exp

{
β

r2

A2

(
1 + r2

A2

)}
. (56)

and the effective physical quantities { p̃r , p̃t , ρ̃} can be given
as,

p̃r (r) = p(r) − β θ1
1 (r) = (1 − β)

C2 − A2 − 3r2

8 π C2 (A2 + 2 r2)
,

(57)

p̃t (r) = p(r) − β θ2
2 (r) = C2 − A2 − 3r2

8 π C2 (A2 + 2 r2)
− β θ2

2 (r),

(58)

ρ̃(r) = 3 A4 + A2 (3C2 + 7 r2) + 2r2 (C2 + 3r2)

8 π C2 (A2 + 2 r2)2

+β θ0
0 (r). (59)

where, the expression for θ0
0 (r) and θ2

2 (r) is given in
appendix. The anisotropy for the self-gravitating system can
be easily determined by subtracting of Eqs. (57) and (58).

Now using continuity of the first fundamental form which
is given by,

B2

A2 (A2 + R2) · exp

{
β

R2

A2

(
1 + R2

A2

)}
= 1 − 2M

R
,

(60)

μ(R) + β f (R) = 1 − 2M0

R
+ β f (R) = 1 − 2M

R
, (61)

where the continuity of the second fundamental form (46)
with the mimic constraint (52) leads to

p(R) − β p(R) = 0 �⇒ p(R) = 0, (62)

which provides the following expression for constant A as,

C2 = A2 + 3 R2. (63)

Moreover, the explicit form of the Schwarzschild mass M
can be given from Eq.(61) as,

M

R
= M0

R

−β R2 (A2 + R2) [A6 − 4C2R4 + 4R6 + f1(R)]
2C2 (A2 + 2 R2) f2(R)

.

(64)

On the other hand the constant B can be determined by match-
ing conditions (60) and (61) as,

B2

A2 (A2 + R2) · exp

{
β

R2

A2

(
1 + R2

A2

)}

= 1 − 2M0

R
+ β f (R), (65)

It is very important to determine the effects of the anisotropy
on the surface redshift [50]. In our case it can be read as,

z(R) =
[

1 − 2 M(R)

R

]−1/2

− 1, (66)

while the red-shift inside the stellar model can be calculated
by the following formula,

z(r) = e−ν(r)/2 − 1, (67)

where,

f1(R) = A4 (−3C2 + 5 R2) + A2 (−6C2 R2 + 6 R4),

f2(R) = A6 + A4 (3 + 2 β)R2 + 6 A2 βR4 + 4 β R6.

For the solution I, we have chosen the compactness M0/R =
0.2, which satisfies the Buchdahal limit 4/9, and A = 5.7735
with different values of coupling parameter β to investigate
the physical behavior of the solution. From Figs. 1 and 2, we
see that the central pressure is decreasing when β is decreas-
ing, that happens due to presence of factor (1−β) in the effec-
tive pressure expression (57) while the densities at center and
the surface have opposite behavior than the central pressure
(see Table 1). This implies that the coupling parameter β

plays an important role to decide the matter density within
the compact objects. Moreover, the anisotropy is positive and
increasing throughout the stellar model that describes a more
compact object than the isotropic one (Fig. 3). The causality
condition is also satisfied within the stellar model (Fig. 4).
The M−R curve is also shown in Fig. 5. From this Fig. 5 one
can observe that there mass is increasing with R for β = 0 i.e.
in the case of isotropic matter distribution while for β = 0.01
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Fig. 1 The trend of thermodynamic pressure against the radial coordi-
nate r for the solution I. For plotting of this figure, the following values
have been chosen as M0/R = 0.2, R = 10 km and A = 5.7735

Fig. 2 The trend of energy density against the radial coordinate r for
the solution I. For plotting of this figure, the following values have been
chosen as M0/R = 0.2, R = 10 km and A = 5.7735

Fig. 3 The trend of anisotropy against the radial coordinate r for the
solution I. For plotting of this figure, the following values have been
chosen as M0/R = 0.2, R = 10 km and A = 5.7735

and β = 0.002 the mass and radius are Mmax = 1.898,
R = 9.245 Mmax and M = 1.898, R = 10.06 km, respec-
tively. Then corresponding compactness are M/R = 0.3028
and 0.2783 for β = 0.01 and 0.002 respectively, which also
shows that compactness increases when β increases. The Fig.
6 shows the trend of gravitational red-shift within the stellar
model.

Fig. 4 The trend of velocity of sound against the radial coordinate r
for the solution I. For plotting of this figure, the values have been chosen
same as Fig. 3

5.2 Solution II: Mimic constraint for the density with same
ansatz for deformation function h(r):

We have adopted another alternative procedure which was
proposed by Ovalle [67] as

θ0
0 (r) = ρ(r), (68)

This gives the following first order differential equation,

r f ′(r) + f (r) = −8π r2 ρ (69)

which leads the following integral,

f (r) = −1

r

∫
8 π r2 ρ dr + C1

r
. (70)

For a non singular solution at the center r = 0, we must put
C1 = 0. Then the solution of the Eq. (70) is given as,

f (r) = −r2 (C2 + A2 + r2)

C2 (A2 + 2r2)
. (71)

Then deformed metric potential is given as,

e−λ(r) = (C2 − r2) (A2 + r2)

C2 (A2 + 2 r2)
− β

r2 (C2 + A2 + r2)

C2 (A2 + 2r2 ,

(72)

eν(r) = B2

A2 (A2 + r2) · exp

{
β

r2

A2

(
1 + r2

A2

)}
. (73)

and corresponding physical quantities { p̃r , p̃t , ρ̃} can be
written as,

p̃r (r) = p(r) − β θ1
1 (r), (74)

p̃t (r) = p(r) − β θ2
2 (r), (75)

ρ̃(r) = (1 + β)[3A4 + 2r2(C2 + 3r2) + A2 (3C2 + 7r2)]
8C2π (A2 + 2r2)2 ,

(76)
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Table 1 Case-I: The numerical values of central pressure, central density, surface density, surface red-shift and constants A, B andC of the different
compact objects for different values of β

β Central pressure Central density Surface density Surface redshift A(km) B C(km)

p̃c(dyne/cm2) ρ̃0(gm/cm3) ρ̃s(gm/cm3) zs

0.0 1.30×1035 5.30×1015 5.45×1014 0.291 5.7735 0.3198 18.2574.

0.01 1.28×1035 5.45×1015 6.41×1014 0.358 5.7735 0.3015 18.2574

0.02 1.27×1035 5.59×1015 6.83×1014 0.415 5.7735 0.2837 18.2574

Fig. 5 The M − R curve for solution I

Fig. 6 The trend of redshift against the radial coordinate r for the
solution I. For plotting of this figure, the following values have been
chosen as M0/R = 0.2, R = 10 km and A = 5.7735

where, the expression for θ1
1 (r) and θ2

2 (r) is given in
appendix. Now the matching conditions (38) and (39) pro-
vides,

B2

A2 (A2 + R2) · exp

{
β

R2

A2

(
1 + R2

A2

)}
= 1 − 2M

R
, (77)

2M0

R
− β f (R) = 2M

R
. (78)

where the matching condition (46) can be written as

p(R) − β θ1
1 (R) = 0, (79)

which provides the constant C as,

C2 = −(A2 + R2)
[
Ψ1(R) + Ψ2(R)

]
A6(1 + 3β) + A4(1 + 11β + 2β2) R2 + Ψ3(R)

, (80)

where, Ψ1(R) = A6(−1 + β) + A4(−3 + β + 2β2)R2,
Ψ2(R) = 6A2(−1 + β)bR4 + 4(−1 + β) β R6, Ψ3(R) =
2A2 β (5 + 3 β)R4 + 4 β(1 + β)R6.

However, the Schwarzschild mass M for this model can
be written as (using Eq. (61)),

M

R
= M0

R
− β R2 (C2 + A2 + R2)

2C2 (A2 + 2R2)
. (81)

Using the matching conditions (60) and (61), the constant B
can be determined by,

B2
(

1 + R2

A2

)
= 1 − 2M0

R
+ β f (R), (82)

Moereover, surface red-shift and the gravitational red-shift
inside the stellar model can be obtained by the same formula
(66) and 67, respectively.

For the solution II, we have chosen the same compact-
ness M0/R = 0.2 and A = 5.7735 with same two values
of coupling parameter β to describe the physical behavior of
this solution II. From Figs. 7 and 8 , the trend of pressure
and density are the same as solution I but effective central
pressure and effective density, at center and surface, both
having more value than the solution I (see Table 2). In the
present case, the anisotropy is also positive and increasing
throughout the stellar model which yields a more compact
object than isotropic one and has more value than the solu-
tion I at the surface (Fig. 9). From Fig. 10, it can clearly be
observed that the causality condition holds good through-
out the model. We have also plotted the M − R curve for
this solution II in Fig. 11. As can see that the maximum
mass and radius are Mmax = 1.961M�, R = 9.685 km,
Mmax = 2.012M�, R = 9.72 km, and Mmax = 2.062M�,
R = 9.799 km respectively for β = 0.0, 0.01 and 0.002.
Moreover, the compactness are M/R = 0.29865, 0.30532,
0.31038 for β = 0.0, 0.01, 0.02, respectively. We note that
the shape of M − R curves describes the similar shape of
the neutron star models. The variation of the gravitational
redshift can be seen in Fig. 12.
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Fig. 7 The trend of thermodynamic pressures against the radialcoor-
dinate r for the solution II. For plotting of this figure, the following
values have been chosen as M0/R = 0.2, R = 10 km and A = 5.7735

Fig. 8 The trend of energy density against the radial coordinate r for
the solution II. For plotting of this figure, the values are been chosen
same as Fig. 7

6 Conclusion

In the present article, we have explained the gravitational
decoupling approach in the framework of complete geomet-
ric (CGD) to investigate or generalize the interior isotropic
solution for a self-gravitating system in the presence of
anis- otropic gravitational source. In order to describe this
approach, first we have defined the Einstein field equa-
tions (12)–(14) of the effective energy-momentum tensor T̃i j ,
which is combination of energy-momentum tensor Ti j and
extra source θi j , for spherically symmetric metric in terms
of two unknown gravitational potential eν(r) and eλ(r). The

Fig. 9 The trend of anisotropy against the radial coordinate r for the
solution II. For plotting of this figure, the values have been chosen same
as Fig. 7

Fig. 10 The trend of velocity of sound against the radial coordinate r
for the solution II. For plotting of this figure, the following values have
been chosen as M0/R = 0.2, R = 10 km and A = 5.7735

Fig. 11 The M − R curve for Solution II

Table 2 Case-II: The numerical values of central pressure, central density, surface density, surface red-shift and constants A, B and C of the
different compact objects for different values of β

β Central pressure Central density Surface density Surface redshift A(km) B C(km)

p̃c(dyne/cm2) ρ̃0(gm/cm3) ρ̃s(gm/cm3) zs

0.0 1.301×1035 5.29×1015 5.48×1014 0.291 5.7735 0.3198 18.2574.

0.01 1.295×1035 5.52×1015 6.47×1014 0.284 5.7735 0.3015 17.8849

0.02 1.292×1035 5.74×1015 7.33×1014 0.276 5.7735 0.2837 17.5437
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Fig. 12 The trend of redshift against the radial coordinate r for the
solution II. For plotting of this figure, the following values have been
chosen as M0/R = 0.2, R = 10 km and A = 5.7735

source Ti j associated with the isotropic sector (9) means the
perfect fluid matter distribution while the source θi j intro-
duces the anisotropy in the self-gravitating system. Next we
apply the Ovalle [1] transformations, known as extended geo-
metric deformation, ν = ξ + β h(r) and e−λ = μ + β f (r)
and split the original system (12)–(14) into two sub-system
namely Einstein system for perfect fluid distributions (25)–
(27) and quasi-Einstein Einstein system for the anisotropic
source θi j (29)–(31). Moreover, we would like to mention
that these two source acts only gravitationally and there is no
exchange of the energy-momentum.

We have also performed the matching conditions at the
boundary of the stellar system in detail for an exterior
Schwarzschild spacetime. Here we have derived an impor-
tant condition especially the second fundamental form (40)
which yields zero effective radial pressure on the surface
of the stellar model i.e. p̃r = 0 at r = R. It is note that
the effective radial pressure ( p̃r ) contains the isotropic pres-
sure (p), when β = 0, and both inner geometric deforma-
tion functions f (r) and h(r) due to extra source θi j . From
the Eq. (46), it is clear that the exterior Schwarzschild solu-
tion is compatible with the non-vanishing source θi j if the
isotropic pressure is negative at the boundary of the stellar
model i.e. p(R) < 0. In order to test this methodology in the
context of physical acceptability, we have taken Tolman IV
solution as a seed solution for the system (25)–(27) which
yields directly μ(r) and ν(r). To close the quasi-Einstein
system we have specified a particular form of deformation
function h(r) = (

r2/A2
) (

1 + r2/A2
)

and two different
conditions namely (i) The mimic constraints for the pres-
sure i.e. θ1

1 (r) = p(r), and (ii) The mimic constraints for
the density i.e. θ0

0 (r) = ρ(r). We have solved the quasi-
Einstein’s system for both conditions and obtained the solu-
tion for effective energy-momentum tensor T̃i j by combing
the solutions of both systems. We have constructed the self-
gravitating compact objects by taking particular values of the

coupling parameter β. This because for β > 0.02, the trans-
verse sound speed near the surface becomes imaginary. Also,
here we choose the same values of some parameters such as
M, R, A and M0/R in both the solutions so that we can com-
pare their behaviour and nature of equation of states. One can
be seen that the nature of energy density, pressures, redshift
and anisotropy are almost the same however, the trends of
sound velocity is different. Although, the anisotropy is more
for solution II as compared to I and in contrast, the central
redshift is more for solution I than II. From Figs. 4 and 10 we
can see that the velocity of sound is also more for solution
II than I implying that the solution II has stiffer equation of
state than I. As a consequence the Mmax is more for solution
II than I. Interestingly, the Mmax yielded from solution I is
independent of the coupling parameter β. However, this is
not the same for solution II as one can see that when the cou-
pling strength (β) increases the Mmax increases. Therefore,
it can be concluded that solution I’s Eos has no effect from
the coupling strength while for solution II the stiffness of the
EoS increases with coupling strength.

Finally, we emphasize that the minimal geometric defor-
mation (MGD) is not just a tool for exploring new physi-
cally reliable solution for anisotropic matter distribution, but
gives a strong and effective approach to introduce the gravi-
tational decoupling in concern physical problems. However,
the extension of this MGD i.e. deformation over both grav-
itational potential, or complete geometric deformation pro-
vides a more complex system of equations. The solution to
this complex system is not a trivial task. Only a few solu-
tions are available in the literature. Therefore, still we need
to discover an effective way by using gravitational decou-
pling in the framework of CGD to solve this complex system
for different matter or scalar fields.
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Appendix

Solution-I: The mimic constraint for the pressure
θ1

1 (r) = p(r)

θ0
0 (r) = { − 3A16 + 16A2βr12(7C2 − 25r2)

+32βr14 (C2 − 3r2) + A14[9C2 − (35 + 2β)r2]
+24A4r10 [(5 + 6β)C2 − 7(1 + 4β)r2]
+A12r2[6(10 + β)C2 − (161 + 26β)r2]
+A10r4[(187 + 24β)C2 − (401 + 122β)r2]
+4A6r8[(80 + 23β)C2 − (120 + 151β)r2]
+2A8r6[(170 + 23β)C2 − (296 + 167β)r2]}/
×[

8 π C2 (A2 + 2r2)2(A6 + A4(3 + 2β)r2

+6A2βr4 + 4βr6)2],
θ2

2 (r) = −{
A24 + 384A2β3r20(C2 − r2)

+64β3r22 (C2 − r2) + 64A4 β2r18[(2 + 15β)C2

−2(1 + 7β)r2] + A22[−C2 + (11 + 3β)r2]
+16A6β2r16[(40 + 81β)C2 − (40 + 61β)r2]
+A20r2[(1 + 2β)C2 + 2(20 + 18β + 3β2)r2]
+4A10βr12[(121 + 324β + 117β2)C2

+3(−37 − 54β + 25β2)r2]
+4A8βr14[(31 + 318β + 255β2)C2

−(29 + 276β + 87β2)r2]
+A18r4[(26 + 37β + 2β2)C2

+(51 + 141β + 70β2 + 4β3)r2]
+A16r6[(77 + 201β + 34β2)C2

−(13 − 191β − 302β2 − 44β3)r2]
+A14r8[(91 + 525β + 222β2 + 12β3)C2

+2(−34 − 52β + 285β2 + 96β3)r2]
+A12r10[(36 + 719β + 726β2

+116β3)C2 − (30 + 515β − 276β2 − 400β3)r2]}
×[

8π A8C2(A4 + 3A2r2 + 2r4)(A6+A4(3+2β)r2

+6βA2r4 + 4βr6)2]−1
.

Solution-II: The mimic constraint for the density
θ0

0 (r) = ρ(r)

θ1
1 (r) = −{

A8 + 4r6[(1 + β)C2 + (−1 + β)r2]
+2A2r4[(5 + 3β)C2 + 5(−1 + β)r2]
+A6[3C2 + 2(1 + β)r2] + A4r2[(11 + 2β)C2

+(−5 + 8β)r2]
)

/
[
8π A4C2(A4 + 3A2r2 + 2r4)

]
,

θ2
2 (r) = −{

A12 + 4βr10[(3 + 2β)C2 + (−3 + 2β)r2]
+4A2βr8[(9 + 4β)C2 + 3(−3 + 2β)r2]
+A10[3C2 + (1 + 3β)r2] + A8r2[3(5 + 2β)C2

−(13 − 16β − 2β2)r2] + A6r4

×[(23 + 33β + 2β2)C2 + 4(−7 + 4β + 3β2)r2]
+A4r6[(12 + 55β + 10β2)C2(14 + 21β − 26β2)r2]}
/
[
8π A8C2(A4 + 3A2r2 + 2r4)

]
.
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