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Abstract In the previous paper, we have shown the exis-
tence of magnetic monopoles in the pure SU (2) Yang–Mills
theory with a gauge-invariant mass term for the gluon field
being introduced. In this paper, we extend our previous con-
struction of magnetic monopoles to obtain dyons with both
magnetic and electric charges. In fact, we solve under the
static and spherically symmetric ansatz the field equations
of the SU (2) “complementary” gauge-scalar model, which
is the SU (2) Yang–Mills theory coupled to a single adjoint
scalar field whose radial degree of freedom is eliminated. We
show that the novel dyon solution can be identified with the
gauge field configuration of a dyon with a minimum mag-
netic charge in the massive Yang–Mills theory. Moreover, we
compare the dyon of the massive Yang–Mills theory obtained
in this way with the Julia–Zee dyon in the Georgi–Glashow
gauge-Higgs scalar model and the dyonic extension of the
Wu–Yang magnetic monopole in the pure Yang–Mills the-
ory. Finally, we identify the novel dyon solution found in this
paper with a dyon configuration on S1 ×R

3 space with non-
trivial holonomy and propose to use it to understand the con-
finement/deconfinement phase transition in the Yang–Mills
theory at finite temperature, instead of using the dyons con-
stituting the Kraan–van Baal–Lee–Lu caloron.

1 Introduction

Quark confinement is a long-standing problem to be solved
in the framework of quantum chromo-dynamics (QCD). One
of the most promising scenarios for quark confinement is the
dual superconductivity picture [1–3] for QCD vacuum. For
this hypothesis to be realized, the existence of the relevant
magnetic objects and their condensations are indispensable.
In the gauge-scalar model, it is indeed well known that the ’t
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Hooft–Polyakov magnetic monopole [4–6] exists as a topo-
logical soliton solution of the field equations of the Georgi–
Glashow gauge-Higgs scalar model in which a single scalar
field belongs to the adjoint representation of the gauge group
SU (2). However, such a scalar field is not introduced in the
original action of QCD. Thus, we are faced with the prob-
lem of showing the existence of magnetic monopoles in the
Yang–Mills theory in the absence of the scalar field. See e.g.,
[7] for a review.

In a previous paper [8], nevertheless, we have succeeded
to obtain the magnetic monopole configuration with a non-
trivial magnetic charge in the pure SU (2) Yang–Mills theory
when a gauge-invariant mass term for the gauge field [9] is
introduced without any scalar field. We call this theory the
massive Yang–Mills theory and call the resulting magnetic
monopole the Yang–Mills magnetic monopole. This result
follows from the recent proposal for obtaining the gauge
field configurations in the pure Yang–Mills theory from solu-
tions of field equations in the “complementary” gauge-scalar
model [9] in which the radial degree of freedom of a sin-
gle adjoint scalar field is frozen. The gauge-invariant mass
term is obtained through change of variables and a gauge-
independent description [9,10] of the Brout–Englert–Higgs
(BEH) mechanism [11–14], which neither relies on the spon-
taneous breaking of gauge symmetry nor on the assumption
of a non-vanishing vacuum expectation value of the scalar
field.

As first shown by Julia and Zee [16], it is possible to pro-
vide magnetic monopoles with electric charges, in fact, a
’t Hooft–Polyakov magnetic monopole [4–6] can have the
electric charge in addition to the magnetic charge, which is
called a dyon [17–19]. We show in this paper that the dyon
configuration exists in the pure SU (2) Yang–Mills theory
with a gauge-invariant mass term of the gauge field, i.e., the
massive Yang–Mills theory. We call this dyon the Yang–Mills
dyon. In fact, we solve under the static and spherically sym-
metric ansatz the field equations of the SU (2) “complemen-
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tary” gauge-scalar model and obtain a gauge field configu-
ration for a dyon with a minimum magnetic charge in the
massive Yang–Mills theory. In particular, we compare the
dyon obtained in this way in the massive Yang–Mills theory
with the Julia–Zee dyon in the Georgi–Glashow gauge-Higgs
model and the dyonic extension of the Wu–Yang magnetic
monopole [20] in the pure Yang–Mills theory.

It is well known that topological solitons play very impor-
tant roles in non-perturbative investigations of the Yang–
Mills theory. For example, the Kraan–van Baal–Lee–Lu
(KvBLL) caloron (instanton) [21–23] has been extensively
used to reproduce the confinement/deconfinement phase
transition in the Yang–Mills theory at finite temperature
[24,25]. The KvBLL caloron is a topological soliton solu-
tion of the (anti-)self-dual equation of the SU (2) Yang–Mills
theory on S1 × R

3 space with a nontrivial instanton charge
as the topological invariant, which consists of Bogomol’nyi–
Prasad–Sommerfield (BPS) dyons having both electric and
magnetic charges with a nontrivial holonomy at spatial infin-
ity. In contrast, our dyon solution is a non-BPS solution
of the (non-self-dual) field equation of the “complemen-
tary” gauge-scalar model. Our dyon has the non-vanishing
asymptotic value as the nontrivial holonomy at spatial infin-
ity, which is a common property to be comparable with
(anti-)self-dual dyons as the constituents of the KvBLL
calorons. The dyon solution of the “complementary” gauge-
scalar model is identified with the dyon configuration of the
massive Yang–Mills theory with a gauge-invariant mass term
of the gauge field without any scalar field, which is regarded
as the low-energy effective model of the Yang–Mills the-
ory with a mass gap. Thus, we can propose another sce-
nario for investigating the confinement/deconfinement phase
transition in the Yang–Mills theory at finite temperature
based on the novel non-self-dual dyon solution found in this
paper.

This paper is organized as follows. In Sect. 2, we review
the procedure [9] for obtaining the massive SU (2) Yang–
Mills theory from the “complementary” SU (2) gauge-
adjoint scalar model. In Sect. 3, we give a brief review of
the Julia–Zee dyon in the (3 + 1)-dimensional Minkowski
spacetime. In Sect. 4, we give a Yang–Mills dyon solu-
tion of an SU (2) gauge-scalar model in which the radial
degree of freedom of a single adjoint scalar field is frozen.
In Sect. 5, we give the decomposition of the gauge field for
the Yang–Mills dyon solution. In Sect. 6, we give the mag-
netic and electric fields of the Yang–Mills dyon solution. In
Sect. 7, we give the energy density and the static mass of a
Yang–Mills dyon. In Sect. 8, we discuss how the Yang–Mills
dyon might be responsible for confinement/deconfinement
phase transition of the Yang–Mills theory at finite temper-
ature. Finally, Sect. 9 is devoted to our conclusion and a
discussion.

2 The massive Yang–Mills theory “complementary” to
the gauge-adjoint scalar model

In this section, we review the procedure [9] for obtaining the
massive SU (2) Yang–Mills theory from the “complemen-
tary” SU (2) gauge-adjoint scalar model. For this purpose,
we introduce the two products for the Lie-algebra valued
fields P := P ATA and Q = QATA (A = 1, 2, 3):

P · Q := P AQA, (1)

P × Q := εABCTAP BQC , (2)

where TA are the generators of the Lie algebra su(2) of the
group SU (2). We choose the Hermitian basis TA by using
the Pauli matrices σA (A = 1, 2, 3) as

TA = 1

2
σA. (3)

We introduce the Hermitian SU (2) gauge fieldAμ(x) and
the Hermitian scalar field φ(x) by Aμ(x) := A A

μ (x)TA and
φ(x) = φA(x)TA as the su(2) Lie-algebra valued fields.
Then we introduce the SU (2) gauge-adjoint scalar model by
the Lagrangian density

LYM = − 1

4
Fμν · Fμν + 1

2

(
Dμ[A ]φ) · (

Dμ[A ]φ)

+ u
(
φ · φ − v2

)
, (4)

where u is the Lagrange multiplier field to incorporate the
radially fixing constraint

φ(x) · φ(x) = v2. (5)

Here Fμν denotes the field strength of the SU (2) gauge field
Aμ andDμ[A ]φ is the covariant derivative of the scalar field
φ(x) defined by

Fμν(x) := ∂μAν(x) − ∂νAμ(x) − gAμ(x) × Aν(x), (6)

Dμ[A ]φ(x) := ∂μφ(x) − gAμ(x) × φ(x). (7)

First of all, we construct a composite vector boson field
Xμ(x) from Aμ(x) and φ̂(x) as

Xμ(x) := g−1φ̂(x) × Dμ[A ]φ̂(x), (8)

by introducing the normalized scalar field

φ̂(x) := 1

v
φ(x), (9)

which can be identified with the color direction field n(x)
in the gauge-covariant field decomposition of the gauge
field; see [7,15]. Notice that Xμ(x) transforms according
to the adjoint representation under the gauge transformation
U (x) ∈ SU (2):

Xμ(x) → X ′
μ(x) = U (x)Xμ(x)U †(x). (10)
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Then the kinetic term of the scalar field is identical to the
mass term of the vector field Xμ(x):

1

2
Dμ[A ]φ · Dμ[A ]φ(x) = 1

2
M2

X X μ(x) · Xμ(x), (11)

with MX := gv > 0, as long as the radial degree of freedom
of the scalar field is fixed [9]. It is obvious that the obtained
mass term of Xμ(x) is gauge-invariant by observing (10).
Therefore, Xμ(x) can be identified with the massive com-
ponent without breaking the original gauge symmetry. This
gives a gauge-independent definition of the massive modes
of the gauge field at the operator level. It should be empha-
sized that we do not need to choose a specific vacuum of φ(x)
and hence no spontaneous symmetry breaking of the gauge
symmetry occurs.

By using the definition of the massive vector field Xμ(x),
the original gauge field Aμ(x) is separated into two pieces
[7,9]:

Aμ(x) := Vμ(x) + Xμ(x), (12)

where the field Vμ(x) can be written in terms of Aμ(x) and
φ̂(x):

Vμ(x) = cμ(x)φ̂(x) + g−1∂μφ̂(x) × φ̂(x), (13)

where cμ(x) = Aμ(x) · φ̂(x). Here Vμ(x) is called the
restricted (or residual) part; it is expected to give the dominant
contribution to quark confinement, whileXμ(x) is called the
remaining (or broken) part; it is identified with the massive
mode which is expected to decouple in the low-energy or
long-distance region.

Then we regard a set of field variables {cμ(x),Xμ(x), φ̂(x)}
as obtained from {Aμ(x), φ̂(x)} based on a change of vari-
ables:

{Aμ(x), φ̂(x)} → {cμ(x),Xμ(x), φ̂(x)}, (14)

and identify cμ(x),Xμ(x) and φ̂(x) with the fundamental
field variables for describing the massive Yang–Mills theory
anew, which means that we should perform the quantization
with respect to the variables {cμ(x),Xμ(x), φ̂(x)} appearing
in the path-integral measure.

In the gauge-scalar model, Aμ(x) and φ̂(x) are indepen-
dent field variables. However, the Yang–Mills theory should
be described by Aμ(x) alone. Hence the scalar field φ(x)
must be supplied by the gauge field Aμ(x) due to the strong
interactions, or in other words, φ(x) should be given as a
functional of the gauge field Aμ(x).

Moreover, the independent degrees of freedom of the orig-
inal gauge fieldA A

μ (x) in the pure SU (2) Yang–Mills theory
in D-dimensional spacetime are [A A

μ (x)] = 3 × D = 3D.
Here, we have omitted the infinite degrees of freedom of
the spacetime points. On the other hand, the new field vari-
ables have independent degrees of freedom: [cμ(x)] = D,

[φ̂(x)] = 2, [X A
μ (x)] = 2 × D = 2D, where the massive

vector field Xμ(x) obeys the condition:

Xμ(x) · φ̂(x) = 0.

We can therefore observe that the theory with the new
field variables has two extra degrees of freedom if we wish to
obtain the (pure) Yang–Mills theory from the “complemen-
tary” gauge-scalar model. These extra degrees of freedom are
eliminated by imposing the two constraints which we call the
reduction condition. We choose e.g., the reduction condition

χ(x) := φ̂(x) × Dμ[A ]Dμ[A ]φ̂(x) = 0. (15)

The reduction condition indeed eliminates the two extra
degrees of freedom introduced by the radially fixed scalar
field into the Yang–Mills theory, since

χ(x) · φ̂(x) = 0. (16)

Following the Faddeev–Popov procedure, we insert the
unity to the functional integral to incorporate the reduction
condition:

1 =
∫

Dχθ δ
(
χθ

) =
∫

Dθ δ
(
χ θ

)
	red, (17)

where χθ := χ [A ,φθ ] is the reduction condition written in
terms of Aμ(x) and φθ which is the local rotation of φ(x)

by θ = θ(x) = θ A(x)TA and 	red := det
(

δχθ

δθ

)
denotes

the Faddeev–Popov determinant associated with the reduc-
tion condition χ = 0. Then we write the vacuum-to-vacuum
amplitude of the gauge-scalar model subject to the reduction
condition translated into the massive Yang–Mills theory with
the gauge-invariant mass term of the field X as

Z =
∫

Dφ̂DA δ (χ)	red exp {i SYM[A ] + i Skin[A ,φ]}

=
∫

Dφ̂DcDX Jδ (χ̃) 	̃red

× exp {i SYM[V + X ] + i Sm[X ]} , (18)

where the Jacobian J associated with the change of vari-
ables is equal to one, J = 1 [7]. Therefore, we obtain the
massive Yang–Mills theory which keeps the original gauge
symmetry:

LmYM = −1

4
Fμν[V + X ] · Fμν[V + X ]

+ 1

2
M2

X Xμ · X μ. (19)

The obtained massive Yang–Mills theory indeed has the same
degrees of freedom as the usual Yang–Mills theory because
the massive vector bosonXμ(x) is constructed by combining
the original gauge fieldAμ(x) and the normalized scalar field
φ̂(x) where φ̂(x) is now a (complicated) functional ofAμ(x)
obtained by solving the reduction condition (15).
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It should be remarked that the solutions of the field equa-
tions of the gauge-scalar model satisfy the reduction condi-
tion automatically, although the converse is not true [9]. For
more details, see Appendix A.

3 Julia–Zee dyon solution in the Georgi–Glashow model

In this section, we give a brief review of the Julia–Zee dyon
[16] in the (3+1)-dimensional Minkowski spacetimeR1,3 in
order to introduce our notations. The Georgi–Glashow model
is introduced by the Lagrangian density

LGG = − 1

4
Fμν · Fμν + 1

2

(
Dμ[A ]φ) · (

Dμ[A ]φ)

− λ2g2

4

(
φ · φ − v2

)2
, (20)

where g, λ and v > 0 are, respectively, the gauge coupling
constant, the scalar coupling constant and the value of the
magnitude |φ(x)| of the adjoint scalar field φ(x) at the vac-
uum which is to be realized at infinity |x | = ∞.

By varying the action

S =
∫

d4x LGG, (21)

with respect to the fields Aμ(x) and φ(x), the field equations
are obtained as

Dμ[A ]Fμν − gφ × Dν[A ]φ = 0, (22)

Dμ[A ]Dμ[A ]φ + λ2g2
(
φ · φ − v2

)
φ = 0. (23)

The Julia–Zee ansatz with a unit magnetic charge is given
by

gA A
0 (x) = x A

r
ã(r), gA A

j (x) = ε j Ak x
k

r

1 − f̃ (r)

r
,

φA(x) = v
x A

r
h̃(r), (24)

where Roman indices j, k run from 1 to 3 and r is the radius
r := √

x2 + y2 + z2 in the three-dimensional space with the
Cartesian coordinates (x, y, z). Note that the electric charge
cannot be specified at this stage in contrast to the magnetic
charge specified by the form of the ansatz (24) for A A

j (x)
which has the same form as that used for obtaining the ’t
Hooft–Polyakov magnetic monopole with a unit magnetic
charge [4–6]. This is because the electric charge depends on
the asymptotic value of the profile function ã(r) in A A

0 (x),
to be obtained by solving the coupled field equations simul-
taneously for the other unknown functions f̃ (r) and h̃(r), as
will be performed below.

The field equations (22) and (23) are rewritten in terms of
the profile functions ã, f̃ , and h̃ as

ã′′(r) + 2

r
ã′(r) − 2

r2 ã(r) f̃ 2(r) = 0, (25)

f̃ ′′(r) − f̃ 3(r) − f̃ (r)

r2 +
(
ã2(r) − g2v2h̃2(r)

)
f̃ (r) = 0,

(26)

h̃′′(r) + 2

r
h̃′(r) − 2

r2 h̃(r) f̃ 2(r)

− λ2g2v2
(
h̃3(r) − h̃(r)

)
= 0. (27)

The scaled dimensionless variable ρ, and the scaled functions
a, f , and h of ρ defined by

ρ := gvr, ã(r) := gva(ρ), f̃ (r) = f (ρ), h̃(r) = h(ρ),

(28)

are introduced to make the field equations (25)–(27) dimen-
sionless:

a′′(ρ) + 2

ρ
a′(ρ) − 2

ρ2 a(ρ) f 2(ρ) = 0, (29)

f ′′(ρ) − f 3(ρ) − f (ρ)

ρ2 +
(
a2(ρ) − h2(ρ)

)
f (ρ) = 0,

(30)

h′′(ρ) + 2

ρ
h′(ρ) − 2

ρ2 h(ρ) f 2(ρ) − λ2(h3(ρ) − h(ρ)) = 0,

(31)

where the prime denotes the derivative with respect to ρ here-
after.

In order to determine the boundary conditions, we con-
sider the static energy E given by

E = 4πMX

g2

∫ ∞

0
dρ e(ρ), (32)

where we have defined the mass scale MX by

MX := gv, (33)

and the energy density e(ρ) by

e(ρ) := 1

2
ρ2a′2(ρ) + a2(ρ) f 2(ρ) + f ′2(ρ) + ( f 2(ρ) − 1)2

2ρ2

+ 1

2
ρ2h′2(ρ)+h2(ρ) f 2(ρ)+ λ2

4
ρ2 (

h2(ρ)−1
)2

.

(34)
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For the energy (32) to be finite, the regularity of the fields
at ρ = 0 is required:

a(0) = 0, f (0) = 1, h(0) = 0. (35)

For large ρ, for the same reason, the scalar field must go
to its vacuum expectation value at infinity:

|φ(x)| |x |→∞−−−−→ v ⇒ h(∞) = 1. (36)

As the gauge field A A
μ (x) goes to the pure gauge form at

ρ → ∞, the profile function f (ρ) should take

f (∞) = 0. (37)

In order to solve the field equations (29)–(31), however, the
asymptotic value a∞ of a(ρ) must be specified:

a∞ := a(∞). (38)

Notice that a∞ is not completely arbitrary. As will be shown
in Appendix B, indeed, for f (ρ) not to oscillate at large
ρ so that the spatial components A A

j (x) of the gauge field
become the pure gauge form at ρ ≈ ∞, the constant a∞
should take the value |a∞| < 1. Notice that, if a(ρ) is a
solution of Eqs. (29)–(31), then −a(ρ) is also a solution of
them. Therefore, a∞ is restricted to taking the non-negative
value 0 ≤ a∞ < 1 without loss of generality. The solution
a(ρ) ≡ 0 with a vanishing A0 component corresponds to
the ’t Hooft–Polyakov magnetic monopole, which leads to
a∞ = 0. Since the parameters g and v are factored out, dyon
solutions are distinguished by the value of a∞ and the scalar
coupling λ.

We define the chromomagnetic field BA
j (x) and chromo-

electric field E A
j (x) by

BA
j (x) := 1

2
ε jklF

A
kl (x), E A

j (x) := F A
j0(x), (39)

and the magnetic charge qm and electric charge qe by

qm :=
∫

d3x B j ·
(
D j [A ]φ̂

)
, (40)

qe :=
∫

d3x E j ·
(
D j [A ]φ̂

)
, (41)

where we have introduced the normalized scalar field

φ̂(x) := 1

v
φ(x). (42)

By using the asymptotic forms (B9)–(B10), the magnetic and
electric charges qm and qe are calculated as

qm := 4π

g

∫ ∞

0
dρ

d

dρ

[
h(ρ)

(
1 − f 2(ρ)

)]

= 4π

g

[
h(ρ)

(
1 − f 2(ρ)

)]
∣∣∣∣

ρ=∞

ρ=0
= 4π

g
, (43)

qe :=
∫

S2
d2S j E j · φ̂

= lim
ρ→∞

4π

g
ρ2 x

j x A

ρ2

×
[
x j x A

ρ2 a′(ρ) +
(

δAj

ρ
− x Ax j

ρ3

)
a(ρ) f (ρ)

]

=4π

g
lim

ρ→∞ ρ2
(
C

ρ2

)
= 4π

g
C = qmC, (44)

where we have assumed that the coordinates x j and ρ are
dimensionless. We find that the magnetic charge qm is indeed
nontrivial and has a minimal value in units of 4π/g. We also
find that the coefficient C of the next-to-leading term of a(ρ)

in (B9) is nothing but the ratio of the charges qe/qm :

a(ρ) = a∞ − C

ρ
+ · · · , C = qe

qm
. (45)

It should be noticed that, although some physical quantities
such as the chromoelectric fieldE A

j (x) and the electric charge
qe do not depend on the asymptotic value a∞ of a(ρ), they
depend on the next-to-leading coefficient C of a(ρ), namely,
the ratio of the charges. Therefore, in order to compare the
solutions and the corresponding physical quantities with the
same electric charge qe by varying the scalar coupling λ, we
adopt the following boundary condition:

ρ2a′(ρ)
ρ→∞−−−→ C = qe

qm
. (46)

If we restrict the solution a(ρ) to non-negative one a(ρ) > 0
as mentioned in the above, then we have only a∞ ≥ 0 and
C = qe/qm ≥ 0.

4 Construction of the Yang–Mills dyon

Next, we discuss the dyon in the massive SU (2) Yang–Mills
theory through the “complementary” SU (2) gauge-scalar
model. The field equations besides the constraint equation
(5) are obtained as

Dμ[A ]Fμν − gφ × Dν[A ]φ = 0, (47)

Dμ[A ]Dμ[A ]φ − 2uφ = 0. (48)

We take the inner product of (48) and φ(x) and use (5) to
obtain

u= 1

2v2 φ · (
Dμ[A ]Dμ[A ]φ)= 1

2
φ̂ ·

(
Dμ[A ]Dμ[A ]φ̂

)
,

(49)

which is used to eliminate the Lagrange multiplier field u in
(48). Indeed, the field equations (47) and (48) are rewritten
in terms of Aμ(x) and φ̂(x) into
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Dμ[A ]Fμν − gv2φ̂ × Dν[A ]φ̂ = 0, (50)

Dμ[A ]Dμ[A ]φ̂ −
(
φ̂ · Dμ[A ]Dμ[A ]φ̂

)
φ̂ = 0. (51)

Taking the Julia–Zee ansatz (24), the field equations (47),
(48), and the constraint (5) become

ã′′(r) + 2

r
ã′(r) − 2

r2 ã(r) f̃ 2(r) = 0, (52)

f̃ ′′(r) − f̃ 3(r) − f̃ (r)

r2 +
(
ã2(r) − g2v2h̃2(r)

)
f̃ (r) = 0,

(53)

h̃′′(r) + 2

r
h̃′(r) − 2

r2 h̃(r) f̃ 2(r) + 2u(r )̃h(r) = 0, (54)

h̃2(r) = 1. (55)

Here the last equation is nothing but the radially fixing con-
straint and can be used to eliminate h̃(r) from the other equa-
tions to obtain

ã′′(r) + 2

r
ã′(r) − 2

r2 ã(r) f̃ 2(r) = 0, (56)

f̃ ′′(r) − f̃ 3(r) − f̃ (r)

r2 +
(
ã2(r) − g2v2

)
f̃ (r) = 0, (57)

u(r) = 1

r2 f̃ 2(r). (58)

Hence, the Lagrange multiplier field u = u(r) can be deter-
mined through (58) once the remaining two Eqs. (56) and
(57) for ã(r) and f̃ (r) are solved.

In order to make the field equations dimensionless, we
define the dimensionless variable ρ = gvr and the rescaled
functions of ρ: ã(r) = gva(ρ), f̃ (r) = f (ρ). Then (56) and
(57) read

a′′(ρ) + 2

ρ
a′(ρ) − 2

ρ2 a(ρ) f 2(ρ) = 0, (59)

f ′′(ρ) − f 3(ρ) − f (ρ)

ρ2 +
(
a2(ρ) − 1

)
f (ρ) = 0. (60)

By repeating the same procedure for obtaining the boundary
condition as the Julia–Zee dyon, we find that it is sufficient
to impose the following boundary conditions for the Yang–
Mills dyon:

a(0) =0, f (0) = 1, (61)

ρ2a′(ρ)
ρ→∞−−−→C, f (∞) = 0, (62)

whereC is an arbitrary constant. We find that these conditions
are enough to guarantee the regularity of the fields at the
origin ρ = 0 to obtain a finite energy.

For large ρ, the Eqs. (59) and (60) reduce to (B6) and (B7)
respectively and therefore the profile functions behave like

the Julia–Zee dyon:

a(ρ) ≈ a∞ − C

ρ
, f (ρ) ≈ F exp

{
−

√
1 − a2∞ρ

}
. (63)

For small ρ, however, the asymptotic forms are much dif-
ferent from the Julia–Zee case. To realize this, we shall lin-
earize the field equations by assuming f (ρ) = 1 + g(ρ) and
|g(ρ)|, |a(ρ)| � 1. Then the field equations (59) and (60)
become

ρ2a′′(ρ) + 2ρa′(ρ) − 2a(ρ) = 0, (64)

ρ2g′′(ρ) − 2g(ρ) − ρ2g(ρ) = ρ2. (65)

The first equation (64) is solved as

a(ρ) ≈ A1ρ (ρ ≈ 0). (66)

The second equation (65) is the same as the Yang–Mills
monopole case and can be solved as [8]

f (ρ) − 1 = g(ρ) ≈ C̃2ρ2 + 1

3
ρ2 log ρ + · · · (ρ ≈ 0).

(67)

Here note that the equation cannot be satisfied by a simple
power-series of ρ without the logarithmic term.

The field equations (59) and (60) can be solved numeri-
cally, which is shown in Fig. 1 for e.g., C = 0.5. The Julia–
Zee dyon solution with a large coupling λ � 1 approaches
the Yang–Mills dyon except for the neighborhood of the ori-
gin ρ ≈ 0. This is a situation similar to the Yang–Mills
monopole. For a(ρ), the naive limit λ → ∞ of the Julia–
Zee dyon completely agrees with the Yang–Mills dyon.

In particular, f (ρ) ≡ 0 is also the solution of (60) and
hence the exact solution of (60) is given by

a(ρ) = a∞ − C

ρ
. (68)

These solutions, however, do not satisfy the boundary condi-
tions (61) for ρ → 0 and a(ρ) diverges at the origin ρ = 0 for
C = 0. In view of these, the dyon constructed by f (ρ) ≡ 0
and (68) has a diverging energy and is regarded as a dyonic
extension of the Wu–Yang monopole. For C = 0, the solu-
tion leads a(ρ) ≡ 0, which means that this solution is nothing
but the Wu–Yang monopole with a vanishing electric charge.

5 Gauge field decomposition for a dyon

In what follows, we shall omit the tilde (̃) for the profile
functions f̃ and h̃ to simplify the notation.

In the present ansatz (24), the normalized scalar field φ̂(x)
with h(r) = +1,

φ̂A(x) = x A

r
, (69)
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Fig. 1 (Top) The solutions a (left panel) and f (right panel) of the
Yang–Mills dyon Eqs. (59) and (60) as functions of ρ = gvr , which
are to be compared with the Yang–Mills monopole and the Julia–Zee
dyon solutions for λ = 0, 1, 10, 102, and 104 for C = 0.5. (Bottom)
The corresponding solution h for the scalar field as a function of ρ. The

radially fixing constraint h(ρ) ≡ 1 holds even at the origin ρ = 0 in
the Yang–Mills dyon, while the naive λ → ∞ limit of the Julia–Zee
dyon approaches the limit value, hJZ(ρ) → 1 only for ρ > 0 except
the origin ρ = 0

leads to the decomposed fields which are explicitly written
as

gV A
0 (x) = x A

r
ã(r), gX A

0 (x) = 0, (70)

gV A
j (x) = ε j Ak xk

r

1

r
, gX A

j (x) = −ε j Ak xk

r

f (r)

r
. (71)

Notice that the time component of Xμ(x) is identically zero
X0(x) = 0, according to (8) by taking into account the facts
that φ̂(x) is time-independent and that the time component
A0(x) of the gauge field and the normalized scalar field φ̂(x)
are parallel in the color space gA A

0 (x) = ã(r)φ̂A(x):

gX0(x) = φ̂(x) ×
(
∂0φ̂(x) − gA0(x) × φ̂(x)

)
= 0. (72)

In what follows, we adopt the polar coordinate system
(r, θ, ϕ) for the spatial coordinates. Then the decomposed

field has the following components:

gA0(x) =A0(r)Tr , gAr (x) = 0,

gAθ (x) =A(r)Tθ , gAϕ(x) = A(r)Tϕ, (73)

gV0(x) =V0(r)Tr , gVr (x) = 0,

gVθ (x) =V (r)Tθ , gVϕ(x) = V (r)Tϕ, (74)

gX0(x) =0, gXr (x) = 0,

gXθ (x) =X (r)Tθ , gXϕ(x) = X (r)Tϕ, (75)

and

A0(r) = V0(r) = ã(r), A(r) = 1 − f (r)

r
,

V (r) = 1

r
, X (r) = − f (r)

r
, (76)

123



454 Page 8 of 19 Eur. Phys. J. C (2020) 80 :454

Fig. 2 The fields of A0, A, V , and X as functions of ρ = gvr at
a∞ = 0.5. Here A(x) = V (x) + X (x) where V (x) agrees with the
Wu–Yang monopole and X (x) corresponds to the massive mode. The
time component A0(x) is finite by itself

where we have defined

Tr = 1

2

(
cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
, Tθ = 1

2

(
0 −ie−iϕ

ieiϕ 0

)
,

Tϕ = 1

2

(
sin θ − cos θe−iϕ

− cos θeiϕ − sin θ

)
. (77)

Figure 2 is the plot of the fields A0, A ,V , and X as func-
tions of ρ = gvr . We find that the spatial component A(r) of
the original gauge field Aμ(x) is indeed regular at the origin:

A(r) ≈ gv

[
C̃2r + 1

3
r log (gvr)

]
(r ≈ 0). (78)

It should be remarked that although both decomposed fields
V (x) and X (x) are singular at the origin, the singularities
cancel between the two decomposed fields to yield the regular
A(r). On the other hand, the time component A0(r) of the
gauge field is regular at the origin and behaves around the
origin

A0(r) = V0(r) = ã(r) ≈ gvA1r (r ≈ 0), (79)

although the time component X0(x) of the massive mode is
absent,X0(x) = 0 and the time component A0(r) is identical
to the restricted field V0(r).

By choosing the gauge transformation matrix U (x) as

U (x) =
(

cos θ
2 sin θ

2 e
−iϕ

− sin θ
2 e

iϕ cos θ
2

)
∈ SU (2), (80)

the fields are transformed into

gV ′
0 (x) = ã(r)T3, gV ′

r (x) = 0,

gV ′
θ (x) = 0, gV ′

ϕ(x) = 1 − cos θ

r sin θ
T3, (81)

gX ′
0 (x) =0, gX ′

r (x) = 0,

gX ′
θ (x) = − f (r)

r
T+, gX ′

ϕ(x) = − f (r)

r
T−, (82)

where we have defined

T+ := 1

2

(
0 −ie−iϕ

ieiϕ 0

)
, T− := 1

2

(
0 −e−iϕ

−eiϕ 0

)
.

(83)

We find that the dyonic contribution appears in the Wu–Yang
potentialV (x), while there are no effects in the massive mode
X (x).

6 Chromoelectric and chromomagnetic fields of a dyon

In this section, all the expressions are given for the Julia–
Zee dyon, i.e., radially variable case. The expressions for the
Yang–Mills (radially fixed) dyon can be easily obtained by
setting h(ρ) = 1.

In the similar way to the Yang–Mills monopole [8], we
examine the magnetic charge qm and electric charge qe
obtained by the chromomagnetic field BA

j (x) and chromo-

electric field E A
j (x):

gBA
j (x) := 1

2
gε jklF

A
kl (x)

= x Ax j

r4

(
1 − f 2(r)

)
−

(
δAj

r
− x Ax j

r3

)
d

dr
f (r),

(84)

gE A
j (x) := gF A

j0(x)

= x Ax j

r2

d

dr
ã(r) +

(
δAj

r
− x Ax j

r3

)
ã(r) f (r).

(85)

The magnetic charge qm and its density ρm(r) are defined by

qm =
∫

d3x BA
j

(
D j [A ]φ̂

)A

= 4π

g

∫ ∞

0
dr ρm(r), (86)

ρm(r) :=gr2BA
j

(
D j [A ]φ̂

)A
. (87)

Similarly, the electric charge qe and its density ρe(r) are
defined by

qe =
∫

d3x E A
j

(
D j [A ]φ̂

)A = 4π

g

∫ ∞

0
dr ρe(r),

(88)

ρe(r) := gr2E A
j

(
D j [A ]φ̂

)A
. (89)

123



Eur. Phys. J. C (2020) 80 :454 Page 9 of 19 454

Fig. 3 (Top panel) The magnetic charge densityρm and (Bottom panel)
electric charge density ρe as functions of ρ = gvr at the C = 0.5

The charge densities ρm(r) and ρe(r) can be written in terms
of the profile functions:

ρm(r) = d

dr

[
h(r)

(
1 − f 2(r)

)]
, (90)

ρe(r) = r2 d

dr
ã(r)

d

dr
h(r) + 2̃a(r)h(r) f 2(r). (91)

Figure 3 shows the plots of the charge densities ρm and
ρe as functions of ρ = gvr at C = 0.5.

We also illustrate the a∞-dependence of the ratio C of the
charges, C = qe/qm , which is shown in Fig. 4.

Next, we investigate the behavior of the chromomag-
netic fieldBA

j (x) and chromoelectric field E A
j (x), especially

around r ≈ 0. To do so, we return to the polar coordinate
representation:

gBr (x) = 1 − f 2(r)

r2 Tr , gBθ (x) = 1

r

d f (r)

dr
Tϕ,

gBϕ(x) = −1

r

d f (r)

dr
Tθ , (92)

Fig. 4 The a∞ dependence of the ratio qe/qm between two charges
qe, qm , namely C . Throughout in this paper, we fix the magnetic charge
qm to the unit 4π/g, which means that C is nothing but the electric
charge qe in units of 4π/g

gEr (x) = d̃a(r)

dr
Tr , gEθ (x) = − ã(r) f (r)

r
Tϕ,

gEϕ(x) = ã(r) f (r)

r
Tθ . (93)

In order to define the gauge-invariant field strength, we take
the inner product between (92) or (93) and φ̂(x),

gBr (x) := gBr (x) · φ̂(x) = 1 − f 2(r)

r2 , (94)

gEr (x) := gEr (x) · φ̂(x) = d

dr
ã(r), (95)

and the other components are zero.
Figure 5 is the plot of the gauge-invariant chromomagnetic

and chromoelectric field strengths as functions of ρ = gvr
at C = 0.5. The chromoelectric field Er (x) is regular at the
origin even for the Yang–Mills dyon. However, the chromo-
magnetic field Br (x) of the Yang–Mills dyon diverges loga-
rithmically at the origin, just like the Yang–Mills monopole.

7 Energy density and static mass of a dyon

We define the energy integral I as a function of a∞ and λ by
integrating the energy density e(ρ) defined by (34)

I (a∞, λ) =
∫ ∞

0
dρ e(ρ), (96)

so that the energy E takes the form

E = 4πMX

g2 I (a∞, λ). (97)

Figure 6 is the plot of the energy density e(ρ) as a function
of ρ obtained from the solution a(ρ), f (ρ) and h(ρ) at C =

123
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Fig. 5 The short-distance behaviors of (top panel) the gauge-invariant
chromomagnetic field Br and (bottom panel) the gauge-invariant chro-
moelectric field Er as functions of ρ = gvr at C = 0.5. The chromo-
magnetic field of the Yang–Mills dyon diverges at the origin logarith-
mically, just like the Yang–Mills monopole

0.5, which should be compared with the Julia–Zee solution.
We find that at the origin the energy density e(ρ) of the Yang–
Mills dyon takes the value e(0) = 1, while the Julia–Zee
dyons behave e(0) = 0 for any values of 0 ≤ λ < ∞. This
difference is caused by the radially fixing condition h(ρ) =
1. The sixth term h2(ρ) f 2(ρ) in (34) survives at the origin in
the Yang–Mills dyon due to h(0) = 1, while for the Julia–Zee
dyon it vanishes since h(0) = 0.

In the BPS limit λ = 0 of the ’t Hooft–Polyakov monopole
(a∞ = 0), the integral I takes the value one:

I (a∞ = 0, λ = 0) = 1, (98)

which leads to

E = 4πMX

g2 . (99)

For a fixed value of the scalar coupling λ, the energy E is
monotonically increasing in a∞ as seen in the top panel of
Fig. 7 or in C = qe/qm as seen in the bottom panel of Fig. 7.

Fig. 6 The energy density e of the Yang–Mills dyon as a function of
ρ = gvr at C = 0.5 to be compared with the Julia–Zee dyons for
λ = 0, 1, 10, 102, and 104, where the Wu–Yang monopole and the
Yang–Mills monopole are also plotted for reference. 0 ≤ ρ ≤ 6 (top
panel), 0 ≤ ρ ≤ 0.6 (bottom panel)

The bottom panel of Fig. 7 has been obtained in [26] for the
Julia–Zee dyon with finite values of λ and we have added the
Yang–Mills dyon, which partially corresponds to the limit of
λ → ∞ of the Julia–Zee dyon. For the Yang–Mills dyon and
the Julia–Zee dyon for a sufficiently large coupling λ � 1
above a critical value λ′ of λ, the electric charge qe cannot
reach the maximal limit qe/qm = 1: the maximal value of
qe/qm is obtained in a numerical way as

qe
qm

∣∣∣∣
a∞→1,λ→∞

= 0.828. (100)

By using the maximal value of the energy integral for the
Yang–Mills dyon,

I (a∞ → 1, λ → ∞) = 2.265, (101)

the maximal value of the static mass of the Yang–Mills dyon
can be estimated as

123
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Fig. 7 The a∞ dependence of the energy integral I for various values
of λ (top panel). The plot of the energy integral I versus the ratio of the
charges qe/qm (bottom panel). The circles stand for the end points of
the existence of the dyon, namely a∞ = 1

E = 4πMX

g2 I (a∞ → 1, λ → ∞) = 1.18 ± 0.05 GeV,

(102)

where we have used the value for the off-diagonal gluon
mass MX = 1.2 GeV obtained by the preceding studies on
a lattice [27] and the typical value of the running coupling
constant αs(p) := g2(p)/4π ≈ 2.3 ± 0.1 at p � MX ≈
1.2 GeV obtained in [28,29].

The Yang–Mills dyon mass, 1.18 GeV, obtained in this
paper is equal to the heaviest one in the family of Julia–Zee
dyons in the Georgi–Glashow model, since the energy inte-
gral (96) is monotonically increasing in the coupling constant
λ and the asymptotic value a∞ of the time component of the
gauge field. The Yang–Mills dyon mass, 1.18 GeV, is 27%
larger than the Yang–Mills monopole one: 0.93 GeV found
in [8], it still remains in the same order of the off-diagonal
gluon mass: MX = 1.2 GeV. In view of this, the existence
of the Yang–Mills dyon with a reasonable mass tells us that
the Yang–Mills dyons can play the role of the quark confiner

instead of the Yang–Mills monopoles if their condensations
occur according to the dual superconductor picture.

8 Confinement/deconfinement phase transition and the
Yang–Mills dyons

In this section, we consider the Yang–Mills dyons on S1×R
3

space. We introduce the coordinates x = (τ, x) ∈ S1 × R
3

with the “time” coordinate τ = x4 for S1 and spatial coordi-
nates x = (x1, x2, x3) for R3. Suppose we have performed
the Wick rotation to the coordinates and the field in the
Minkowski spacetime to obtain the Euclidean counterparts:
τ = i x0 and A4(τ, x) = −iA0(x0, x). Then the Euclidean
action SmYM

E is obtained as

SmYM
E =

∫ T−1

0
dτ

∫
d3x

[
1

4
Fμν · Fμν

+ 1

2

(
Dμ[A ]φ) · (

Dμ[A ]φ) + u
(
φ · φ − v2

)]
,

(103)

where Greek indices μ and ν run from 1 to 4. We have intro-
duced the period T−1 of the “time” direction τ , which is
regarded as the inverse of the temperature. Note that the fields
on S1 ×R

3 must be periodic in τ with the period T−1 on S1,
that is to say, the fields must satisfy the periodic boundary
condition

A A
μ (τ + T−1, x) = A A

μ (τ, x),

φ̂A(τ + T−1, x) = φ̂A(τ, x). (104)

8.1 The self-dual dyon and the KvBLL caloron in the
massless Yang–Mills theory

Before obtaining the Yang–Mills dyon solution, let us review
the conventional dyon solution in the pure massless SU (2)

Yang–Mills theory on S1×R
3 space. The action SYM

E is given
by removing the scalar field φ from (103):

SYM
E =

∫ T−1

0
dτ

∫
d3x

1

4
Fμν · Fμν. (105)

This action is non-negative and has a lower bound:

SYM
E =

∫ T−1

0
dτ

∫
d3x

[
1

8

(
Fμν ∓ �Fμν

)2

± 1

4
Fμν · �Fμν

]

≥
∣∣
∣∣±

∫ T−1

0
dτ

∫
d3x

1

4
Fμν · �Fμν

∣∣
∣∣, (106)
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where we have introduced the Hodge dual �Fμν of the field
strength tensor Fμν by

�Fμν := 1

2
εμναβFαβ. (107)

The equality of (106) holds if and only if the equation

Fμν = ±�Fμν (108)

is satisfied. Equation (108) is called the self-dual equation
(SD) for the plus sign on the right hand side, and the anti-
self-dual equation for the minus sign. In what follows, we
will concentrate the SD equation.

First, we adopt the ansatz for S1 × R
3 space

gA A
j (τ, x) = ε j Ak x

k

r

1 − f̃ (r)

r
, gA A

4 (τ, x) = x A

r
ã(r),

(109)

where Roman indices j and k run from 1 to 3 and r is the
radius in R

3, i.e., r = √
x j x j . In fact, the ansatz (130) is

τ -independent and hence it trivially satisfies the periodic
boundary condition (104).

The nontrivial components of the SD equation (108) with
the ansatz (109) are given by

F A
j4 = 1

2
ε jklF

A
kl , (110)

which is written in terms of the profile functions ã(r) and
f̃ (r) as

r2ã′(r) = 1 − f̃ 2(r), f̃ ′(r) = −ã(r) f̃ (r). (111)

The solution of the SD equation (111) is exactly obtained
as

ã(r) =V

(
coth(Vr) − 1

Vr

)
r→∞−−−→ V − 1

r
, (112)

f̃ (r) = Vr

sinh (Vr)
r→∞−−−→ 0, (113)

where V > 0 is an arbitrary parameter with a dimension
of mass, which is nothing but the asymptotic holonomy. For
later convenience, we set

V = MX a∞ = ã∞, MX = gv. (114)

In the usual (massless) Yang–Mills theory, the KvBLL
caloron and its constituent dyons satisfy the (anti-)SD equa-
tion (108). If we treat the “time” component of the gauge
fieldA4(x) as the (adjoint) scalar field φ(x), the SD equation
can be regarded as the three-dimensional static BPS equation
(110) with F j4 = D j [A ]A4 which is to be identified with
the relationship between the magnetic fieldBA

j and the scalar

field φA, B j = D j [A ]φ, where the static means ∂4A4 = 0.
Therefore,A4(x) can have a nontrivial asymptotic value, like
the scalar field φ(x) → v (|x | → ∞), which is identified
with the asymptotic holonomy. Then the solution of the SD

(or BPS) equation has a mass originating from the asymp-
totic holonomy, which is called the “Higgsing”. The mass
appeared in this way gives a unique physical scale in the
theory.

In our case, on the other hand, we start from the gauge-
scalar model. If we impose the radially fixing condition
|φ(x)| = v at every x for the (adjoint) scalar field φ(x), the
spatial components of the gauge field A j (x) acquire a mass,
which gives the same consequence as that, given by the con-
ventional Higgs or Brout–Englert–Higgs mechanism. Since
our argument does not rely on the SD condition, it is allowed
that the asymptotic value of A4(x) can be taken arbitrarily,
independently from the value of |φ(x)| = v. Therefore, our
model has two mass scales: a scale MX = gv coming from
the radial value |φ(x)| = v and another scale V originating
from the holonomy A4(x = ∞) and they are related by the
ratio (114), which is, however, not uniquely determined. See
the next subsection.

By introducing the dimensionless variable ρ and functions
a and f in the same way as (28) and using the relation (114),
the solutions (112) and (113) are cast into

a(ρ) = a∞
(

coth(a∞ρ) − 1

a∞ρ

)
ρ→∞−−−→ a∞ − 1

ρ
, (115)

f (ρ) = a∞ρ

sinh (a∞ρ)

ρ→∞−−−→ 0. (116)

Notice that the solutions (115) and (116) of the SD equations
(111) also satisfy the second-order field equations

a′′(ρ) + 2

ρ
a′(ρ) − 2

ρ2 a(ρ) f 2(ρ) = 0, (117)

f ′′(ρ) − 1

ρ2

(
f 3(ρ) − f (ρ)

)
− a2(ρ) f (ρ) = 0, (118)

which is obtained by substituting the ansatz (109) to the
Yang–Mills field equation as suggested from (29) and (30)
by the replacement a → −ia and h → 0.

By recalling the asymptotic behavior (63) of the profile
function a(ρ), the ratio C of the charges for the SD dyon is
fixed

C = qe
qm

≡ 1, (119)

for any values of a∞.
The action SYM

E is also rewritten as

SYM
E = 4π

g2

gv

T
I (a∞), (120)
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where we have defined the dimensionless energy I by

I (a∞) :=
∫ ∞

0
dρ

[
1

2
ρ2a′2(ρ) + a2(ρ) f 2(ρ)

+ f ′2(ρ) +
(
f 2(ρ) − 1

)2

2ρ2

]
. (121)

The dimensionless energy I is calculated by using the solu-
tions (115) and (116) as

I (a∞) = a∞, (122)

and hence the action SYM
E reads

SYM
E = 4π

g2

gva∞
T

= 4π

g2

V

T
. (123)

The gauge field Aμ(x) for the SD dyon is asymptotically
written as

gAr ≈ 0, gAθ ≈ 0, gAϕ ≈ 1 − cos θ

r sin θ
T3,

gA4 ≈
(
V − 1

r

)
T3,

(
r � V−1

)
, (124)

by performing the gauge transformation to the unitary gauge
(or the stringy gauge) in which the A4 component is constant
and diagonal at spatial infinity.

Second, the pure massless SU (2) Yang–Mills theory has
another topological soliton solution. The KvBLL calorons
are the solution of the (anti-)SD equation (108) of the pure
massless Yang–Mills theory in S1 × R

3 space with a non-
trivial holonomy. Indeed, the gauge field Aμ(x) of a KvBLL
caloron is given by [21–23]

gAμ(τ, x) = V δμ4T3 + η̄3
μν∂ν log

ψ

ψ̂
T3

+ ψ

ψ̂
Re

[(
η̄1

μν − i η̄2
μν

)
(T1 + iT2)

× (∂ν + iV δν4) χ̃
]
, (125)

with the three functions ψ̂ , ψ , and χ̃ defined by

ψ̂ = − cos (2πT τ) + cosh
(
V̄ r

)
cosh (V s)

+ r2 + s2 − π2�4T 2

2rs
sinh

(
V̄ r

)
sinh (V s) , (126)

ψ = − cos (2πT τ) + cosh
(
V̄ r

)
cosh (V s)

+ r2 + s2 + π2�4T 2

2rs
sinh

(
V̄ r

)
sinh (V s)

+ π�2T

[
sinh (V s) cosh

(
V̄ r

)

s
+ sinh

(
V̄ r

)
cosh (V s)

r

]
,

(127)

χ̃ =π�2T

ψ

[
e−2π iT τ sinh (V s)

s
+ sinh

(
V̄ r

)

r

]
, (128)

x 3
xM xL

1/V
1/V

x

s r

xLM

Fig. 8 The coordinates of a KvBLL caloron in terms of the two con-
stituent dyons L , M

where η̄A
μν is the ’t Hooft symbol defined by η̄A

μν = εAμν −
δAμδν4 + δAνδμ4 and V̄ := 2πT − V . This solution indeed
has the periodicity T−1, i.e., Aμ(τ + T−1, x) = Aμ(τ, x).
Let xM be the location of the M dyon’s center of mass and
xL the location of the L dyon’s center of mass in R

3. For the
observation point x, we introduce the vector s := x − xM

and r := x− xL from the locations of the M and L dyons to
the point x respectively. Therefore, s = |s| = |x − xM | and
r = |r| = |x − xL | are, respectively, the distances from M
and L dyons located at xM and xL to the observation point x.
The relative position vector xLM := xL − xM between the
two dyons is given by xLM = π�2T e3 with � being the size
of the Belavin–Polyakov–Schwartz–Tyupkin (BPST) instan-
ton [30] where the direction is chosen to be along the third
spatial direction. The core sizes of the two dyons M, L are,
respectively, given by V−1 and V̄−1. See Fig. 8.

The nontrivial holonomy of the KvBLL caloron originates
from the first term of (125) for V = 0. If we take V = 0,
the KvBLL caloron reduces to the Harrington–Shepard (HS)
caloron solution with a trivial holonomy [31,32]. In the zero
temperature limit T → 0, the KvBLL caloron reduces to the
BPST instanton [30] of size �.

The constituent dyon can be identified if it is in the vicinity
of one of its constituent dyons and far away from the other,
namely, at large separations. For instance, near the M dyon
center and far away from the L dyon (r � 1/V̄ ), the KvBLL
caloron solution (125) exhibits the asymptotic behavior of the
M dyon

gAr ≈ 0, gAθ ≈ 0, gAϕ ≈ 1 − cos θ

s sin θ
T3,

gA4 ≈
(
V − 1

s

)
T3,

(
s � V−1

)
, (129)

by performing the gauge transformation to the unitary gauge
in which theA4 component is constant and diagonal at spatial
infinity. This is nothing but the SD dyon (124).

8.2 The Yang–Mills dyon on S1 × R
3 space
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Fig. 9 The solutions a (top panel) and f (bottom panel) of the field
equations (131) and (132) as functions of ρ. The broken lines are the
profile functions (115) and (116) of the SD dyon as a constituent of the
KvBLL caloron. The solid lines are the profile functions of the Yang–
Mills dyon for various values of a∞ from a∞ = 0 to a∞ → ∞ which
covers the shaded region in the bottom panel

Let us get back to the massive Yang–Mills theory (103). We
adopt the ansatz for S1 × R

3 space

gA A
j (τ, x) = ε j Ak x

k

r

1 − f̃ (r)

r
, gA A

4 (τ, x) = x A

r
ã(r),

φ̂A(τ, x) = x A

r
. (130)

This ansatz has the same form as the “static” Julia–Zee ansatz
on the (3+1)-dimensional Minkowski spacetimeR1,3, which
is obtained by the replacement ã(r) → −i ã(r) according to
the Wick rotation. Therefore, we can use the arguments in
the previous sections.

By introducing the dimensionless variable ρ and functions
a and f in the same way as (28), Eqs. (59) and (60) are
rewritten as

a′′(ρ) + 2

ρ
a′(ρ) − 2

ρ2 a(ρ) f 2(ρ) = 0, (131)

f ′′(ρ) − 1

ρ2

(
f 3(ρ) − f (ρ)

)
−

(
a2(ρ) + 1

)
f (ρ) = 0.

(132)

We set the boundary conditions of a(ρ) and f (ρ) as

a(0) = 0, a(∞) = a∞, (133)

f (0) = 1, f (∞) = 0. (134)

Notice that in the Euclidean space there is no restriction for
the asymptotic value a∞ of a(ρ), since the asymptotic form
of f (ρ) for large ρ

f (ρ) ≈ F exp

{
−

√
1 + a2∞ρ

}
, (ρ ≈ ∞) (135)

satisfies the boundary condition f (∞) = 0 and exhibits no
oscillating behavior for any values of a∞. This differs from
the dyons in the Minkowski spacetime. We find that, if a(ρ)

is a solution of the Eqs. (131) and (132), then −a(ρ) is also
a solution of them. Therefore, a∞ is restricted to take the
non-negative value a∞ ≥ 0 without losing generality.

Figure 9 is a plot of the solutions a and f of the Euclidean
field equations (131) and (132) as functions of ρ for various
values of the asymptotic value a∞ of a(ρ). These solutions
of the Yang–Mills dyon should be compared with the profile
functions (115) and (116) of the SD dyon.

The last term − f (ρ) on the left hand side of (132) orig-
inates from the kinetic term of the radially fixed scalar field
φ̂(x), or equivalently, the gauge-invariant gluon mass term.
If the term − f (ρ) is absent from the Eq. (132), which means
the absence of the gauge-invariant gluon mass term, the sys-
tem (103) reproduces the pure massless Yang–Mills theory
(105). If a∞ is sufficiently large, a∞ � 1, the term − f (ρ) in
(132) can be negligible and hence the field equation (132) can
be approximated by (118). This means that the Yang–Mills
dyon behaves as the SD dyon (115) and (116) for large a∞
except the neighborhood of the origin ρ ≈ 0. From (119),
we observe that the ratio C of the charges for the Yang–Mills
dyon is equal to 1 for large a∞:

C = qe
qm

≈ 1, (a∞ � 1). (136)

In the Yang–Mills dyon, the asymptotic value a∞ of the
profile function a(ρ) can be regarded as a function of the ratio
C of the charges qe and qm , namely, C = qe/qm . Figure 10
is a plot of the ratio C of the charges as a function of a∞
for the fixed magnetic charge qm = 4π/g. We find that the
electric charge qe of the Yang–Mills dyon depends on the
asymptotic value a∞ of the profile function a(ρ), while the
electric charge of the SD dyon is fixed qe = qm . We confirm
numerically that the Yang–Mills dyon differs from the SD
dyon for any finite a∞, but approaches the SD dyon in the
limit a∞ → ∞. This means that the upper bound of the
electric charge qe exists and is given by
∣∣
∣∣
qe
qm

∣∣
∣∣ � 1. (137)
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Fig. 10 The ratio of the charges qe/qm as a function of a∞ for the
fixed magnetic charge qm = 4π/g. The broken line stands for the SD
dyon, while the solid line stands for the Yang–Mills dyon

The action (103) for a single Yang–Mills dyon is given by
using (96) and (97)

S = 4π

g2

MX

T
I (a∞) , MX := gv, (138)

where we have defined the dimensionless energy integral
I (a∞) by

I (a∞) :=
∫ ∞

0
dρ

[
1

2
ρ2a′2(ρ) + a2(ρ) f 2(ρ) + f ′2(ρ)

+ ( f 2(ρ) − 1)2

2ρ2 + f 2(ρ)

]
, (139)

which should be compared with (121) for the SD dyon. The
function I (a∞) ofa∞ is monotonically increasing ina∞ with
the lower bound I (a∞) ≥ I (a∞ = 0) = 1.787 based on the
numerical calculations as given in the top panel of Fig. 11.
The action for a KvBLL caloron is given by S = 8π2/g2,
which is T -independent. This is not the case for both the SD
dyon (123) and the Yang–Mills dyon (138).

The a∞-dependence of I (a∞) is obtained as follows. By
taking the derivative of (139) with respect to a∞, we have

dI (a∞)

da∞
=

∫ ∞

0
dρ

[
2 f ′(ρ)

d f ′(ρ)

da∞

+ 2

{
1

ρ2

(
f 3(ρ)− f (ρ)

)
+

(
a2(ρ)+1

)
f (ρ)

}
d f (ρ)

da∞

+ ρ2a′(ρ)
da′(ρ)

da∞
+ 2a(ρ) f 2(ρ)

da(ρ)

da∞

]

=
[

2 f ′(ρ)
d f (ρ)

da∞

]∣∣∣∣

ρ=∞

ρ=0
+

[
ρ2a′(ρ)

da(ρ)

da∞

]∣∣∣∣

ρ=∞

ρ=0

+
∫ ∞

0
dρ

[
2

{
− f ′′(ρ) + 1

ρ2

(
f 3(ρ) − f (ρ)

)
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Fig. 11 The energy integral (139) of the Yang–Mills dyon as a function
of a∞ (top panel) and qe/qm (bottom panel), which are denoted by the
solid lines. The broken lines are the energy integral (121) of the SD
dyon as a constituent of the KvBLL caloron

+
(
a2(ρ) + 1

)
f (ρ)

} d f (ρ)

da∞

+
{
−ρ2a′′(ρ) − 2ρa′(ρ) + 2a(ρ) f 2(ρ)

} da(ρ)

da∞

]
,

(140)

where we have integrated by parts. The first term of (140)
vanishes, since the boundary conditions (134) of f (ρ) is a∞-
independent. The third term of (140) also vanishes due to the
field equations (131) and (132). Thus, we obtain

dI (a∞)

da∞
=

[
ρ2a′(ρ)

da(ρ)

da∞

]∣
∣∣∣

ρ=∞

ρ=0
= C(a∞), (141)

where we have used the boundary conditions (133) of a(ρ).
By solving this equation with the initial condition I (a∞ =
0) = I (0) = 1.787, I (a∞) is written as

I (a∞) = I (0) +
∫ a∞

0
ds C(s). (142)

We find that from (136) and (141), I (a∞) behaves as

dI (a∞)

da∞

∣
∣∣∣
a∞�1

= C(a∞ � 1) ≈ 1, (143)
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and hence I (a∞) linearly diverges in a∞:

I (a∞) ≈ a∞ → ∞, (a∞ � 1). (144)

This is consistent with the numerical calculation shown in
the top panel of Fig. 11.

Notice that the gauge field Aμ of the Yang–Mills dyon
has the asymptotic behavior dominated by Vμ, Aμ ≈ Vμ, at
long distance, e.g., in the unitary gauge,

gA ′
r ≈ 0, gA ′

θ ≈ 0, gA ′
ϕ ≈ 1 − cos θ

r sin θ
T3,

gA ′
4 ≈

(
ã∞ − C

r

)
T3,

(
r � M−1

X

)
, (145)

which is the same as the asymptotic field (129) of a con-
stituent dyon of the KvBLL caloron and hence the asymptotic
field (124) of the SD dyon. Note that the self-dual dyon and
Yang–Mills dyon no longer have τ -dependence and hence
they are trivially periodic, unlike the KvBLL caloron.

8.3 The Yang–Mills dyon versus the SD dyon from the
KvBLL caloron toward confinement/deconfinement
phase transition

In order to discuss the confinement/deconfinement phase
transition in the Yang–Mills theory at finite temperature, we
define the Polyakov loop operator L(x) as

L(x) := 1

tr(1)
tr

{

P exp

[
ig

∫ T−1

0
dτ A4(τ, x)

]}

, (146)

whereP denotes the path-ordering prescription. The asymp-
totic holonomy P∞ is defined by the Polyakov loop operator
at the spatial infinity

P∞ := lim|x|→∞ L(x). (147)

By performing the gauge transformation to the unitary gauge
φ̂A(x) = δA3, so that the “time” component A4(x) of the
gauge field becomes diagonal

gA4(x) ≡ gA A
4 (x)TA = ã(r)

σ3

2
= gva(ρ)

σ3

2
, (148)

the asymptotic holonomy can be calculated as

P∞ = lim|x|→∞
1

2
tr exp

[
i
∫ T−1

0
dτ ã(r)

σ3

2

]

= lim
r→∞

1

2
tr exp

[
i ã(r)

2T
σ3

]
= lim

r→∞ cos
ã(r)

2T

= cos

[
gva∞

2T

]
, (149)

where we have used (28): ã(∞) = gva(∞) = gva∞. Fig-
ure 10 implies that the asymptotic holonomy P∞ depends on

the electric charge qe through a∞:

P∞(qe) = cos

[
gv

2T
a∞(qe)

]
, (150)

since we have fixed the magnetic charge qm to the unit
qm = 4π/g. In the limit of vanishing electric charge qe → 0,
the Yang–Mills dyon reduces to the Yang–Mills monopole
and the asymptotic holonomy P∞ becomes trivial P∞ → 1
according to a∞ → 0. In other words, the asymptotic holon-
omy P∞ becomes nontrivial as long as the Yang–Mills dyon
has a nonzero electric charge.

Note that this is not the case of the SD dyon. Since the
electric charge qe of the SD dyon is fixed (119), the asymp-
totic holonomy P∞ of the SD dyon does not depend on the
electric charge

P∞ = cos

[
gva∞

2T

]
= cos

V

2T
. (151)

The KvBLL calorons are extensively used to reproduce
the confinement/deconfinement phase transition in the Yang–
Mills theory at finite temperature [24,25] by using the dyon
gas model derived from the Yang–Mills theory where the
interactions among dyons are calculated from quantum fluc-
tuations around the dyon solution [33]. It should be remarked
that the essential degrees of freedom responsible for con-
finement/deconfinement are not the KvBLL calorons them-
selves, but the constituent dyons characterized by the asymp-
totic behavior (129) with nontrivial holonomy at spatial infin-
ity.

The (non-self-dual) Yang–Mills dyon obtained in this
paper also has the nontrivial holonomy and therefore can be
used to explain the confinement/deconfinement phase transi-
tion in the Yang–Mills theory at finite temperature, instead of
using the KvBLL calorons or the SD dyons. In fact, it is pos-
sible to calculate the effective potential for the Polyakov loop
in the same framework of the massive Yang–Mills model and
show the existence of confinement/deconfinement transition
at a certain critical temperature Tc, which is obtained as a
definite ratio to the gluon mass M ; see [34]. The evaluation
assumes a non-vanishing uniform background field for the
component A4 and takes into account the quantum fluctu-
ations to one-loop order. This procedure is regarded as the
first approximation for the non-uniform gauge field A4 orig-
inating from the Yang–Mills dyon solution. Therefore, the
existence of the Yang–Mills dyon with nontrivial holonomy
(150) justify the calculation of the effective potential of the
Polyakov loop operator in a constant background [34] based
on the same framework.

An advantage of using the Yang–Mills dyon is to give a
successful explanation for quark confinement at zero tem-
perature as the zero temperature limit of the finite tempera-
ture case. In the zero temperature limit T → 0, the Yang–
Mills dyon reduces to the Yang–Mills magnetic monopole

123



Eur. Phys. J. C (2020) 80 :454 Page 17 of 19 454

[8]. It has been already shown that such Yang–Mills mag-
netic monopoles successfully explain quark confinement at
zero temperature from the viewpoint of dual superconductiv-
ity; see e.g. [7] for a review. In contrast, the KvBLL caloron
reduces to the BPST instanton in the zero temperature limit
T → 0. To the best of the author knowledge, however, the
BPST instantons have not yet succeeded to explain quark
confinement at zero temperature from the first principles
without assuming additional inputs; see, e.g., [35].

9 Conclusion and discussion

In this paper, we have constructed the dyon configurations
in the pure SU (2) Yang–Mills theory both in the (3 + 1)-
dimensional Minkowski spacetimeR1,3 and in S1×R

3 space
by incorporating a gauge-invariant gluon mass term even in
the absence of the scalar field. Such a gauge-invariant mass
term is obtained through a gauge-independent description
of the BEH mechanism proposed in [9]. The procedure for
obtaining the relevant dyon is guided by the “complemen-
tarity” between the SU (2) gauge-adjoint scalar model with
a single radially fixed scalar field and the massive SU (2)

Yang–Mills theory. In fact, we have obtained the static and
spherically symmetric dyon configuration in the SU (2) mas-
sive Yang–Mills theory by solving the field equations of the
“complementary” SU (2) gauge-adjoint scalar model with a
single radially fixed scalar field. We have found that the static
energy or the rest mass of the obtained Yang–Mills dyon is
finite and proportional to the mass MX of the Yang–Mills
gauge fieldA representing the existence of the massive com-
ponent X .

In the long-distance region, we observed that the Yang–
Mills dyon configuration A reduces to the restricted field V ,
which agrees with the dyonic extension of the Wu–Yang mag-
netic monopole as a consequence of the suppression of the
massive modes X in the long-distance region. This feature
is similar to the usual Julia–Zee dyons. In the short-distance
region, on the other hand, the Wu–Yang magnetic monopole
becomes singular, while the Julia–Zee dyon remains non-
singular even at the origin. In the Yang–Mills dyon, we found
that the massive components X play the very important role
of canceling the singularity of V in the short-distance region
such that the original gauge field A remains non-singular at
the origin. This regularity of the Yang–Mills dyon is guar-
anteed by the logarithmic behavior of the gauge field itself
without the aid of the scalar field, which vanishes at the ori-
gin as seen in Julia–Zee dyons. This behavior renders the
energy of the Yang–Mills dyon finite even if the magnitude
of the scalar field is fixed. It should be remarked that the
chromomagnetic field B is divergent at the origin due to the
logarithmic behavior of the solution f (ρ), which is, how-
ever, unessential for obtaining finite physical quantities such

Table 1 Properties of the KvBLL caloron and the Yang–Mills caloron
for comparison. The Shnir’s caloron found in [37] contains the HS
caloron in a minimal topological charge sector. Moreover, in the limit
V → 0, the massive Yang–Mills theory reduces to the ordinary massless
Yang–Mills theory, since the scalar field φ decouples

KvBLL caloron “Yang–Mills caloron”

Self-dual Yes No

Constituents (anti-)SD dyons Yang–Mills dyons

T → 0 BPST instanton Yang–Mills monopole chain

V, v → 0 HS caloron Shnir’s caloron

as energy, magnetic and electric charge density, and mag-
netic flux. Moreover, in the Yang–Mills dyon configuration,
the time component of the gauge field A0 is regular, whose
regularity is supported by the absence of the time component
of the high-energy massive mode: X0 ≡ 0.

Furthermore, we estimated the static mass of the Yang–
Mills dyon by using the values of the previous studies [27–
29]. We found that the heaviest static mass of the Yang–Mills
dyon Mdyon ≈ 1.18 GeV is around the off-diagonal gluon
mass MX ≈ 1.2 GeV. This is a quite reasonable result for
quark confinement to be realized due to condensation of the
relevant Yang–Mills monopoles according to the dual super-
conductor picture. We need, however, more careful investi-
gations to conclude whether or not the interactions among
monopoles are indeed sufficient for realizing the monopole
condensations, as examined by Polyakov [36] in the three-
dimensional case.

We observed that the Yang–Mills dyon cannot acquire the
electric charge which is equal to the magnetic one. This is
caused by a gauge-invariant mass term. In the contexts of
instantons, the electric charge is equal to the magnetic one
by definition, i.e., the (anti-)SD condition. However, there
do not exist such (anti-)SD objects in our theory due to the
mass term. We found that the Yang–Mills dyon in S1 × R

3

space has a nontrivial holonomy. This implies that our (non-
self-dual) dyon with nontrivial holonomy P∞ can be used
to explain the confinement/deconfinement phase transition
in the Yang–Mills theory at finite temperature based on the
dual superconductor picture for confinement, instead of using
the traditional KvBLL calorons or the SD dyon.

Finally, we give a conjecture that there will exist a caloron
in the massive Yang–Mills theory so that the (non-self-dual)
Yang–Mills dyon found in this paper could be identified
with a constituent of the caloron. We call such a caloron
the Yang–Mills caloron. In [37], the non-self-dual calorons
which have the axial symmetry were constructed in the pure
massless SU (2) Yang–Mills theory in the four-dimensional
Euclidean space. Such axially symmetric solutions were also
found in the Yang–Mills–Higgs model, i.e., the radially vari-
able model by adopting the Kleihaus–Kunz ansatz [38–42].

123



454 Page 18 of 19 Eur. Phys. J. C (2020) 80 :454

We are therefore led to consider the axially symmetric Yang–
Mills calorons in the massive Yang–Mills theory. In the zero
temperature limit T → 0, the Yang–Mills dyon reduces
to the Yang–Mills magnetic monopole [8]. This property
is expected to hold in the Yang–Mills calorons, which will
reduce to the Yang–Mills monopole-antimonopole chains.
See Table 1 for the properties of the KvBLL caloron and the
conjectured Yang–Mills caloron. This issue will be explored
in near future.
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Appendix A: The relation between the reduction condi-
tion and the field equations

In this appendix, we show that the solutions of the field equa-
tions of the gauge-scalar model satisfy the reduction condi-
tion automatically.

By applying the covariant derivative Dν[A ] to Eq. (50),
the reduction condition is naturally induced:

0=Dν[A ]Dμ[A ]Fμν =gv2φ̂ × Dν[A ]Dν[A ]φ̂=gv2χ .

(A1)

Moreover, by taking the exterior product of (51) and φ̂(x),
the reduction condition is induced again:

0 = φ̂ × Dμ[A ]Dμ[A ]φ̂−
(
φ̂ · Dμ[A ]Dμ[A ]φ̂

) (
φ̂ × φ̂

)

= φ̂ × Dμ[A ]Dμ[A ]φ̂ = χ . (A2)

Hence, the simultaneous solutions of the coupled field equa-
tions (50) and (51) automatically satisfy the reduction condi-
tion (15). From this relation, we find that the solutions of the
coupled field equations of the gauge-scalar model (50) and
(51) can become the field configurations satisfying the reduc-

tion condition (15), which gives the field configuration to be
taken into account in constructing the massive Yang–Mills
theory through the path-integral (18).

Appendix B: Asymptotic behaviors of the Julia–Zee dyon

We give the asymptotic forms of the profile functions. For
small ρ, ρ ≈ 0, we assume the power-series expansion in ρ

a(ρ) =
∞∑

n=1

Anρ
n, f (ρ) = 1 +

∞∑

n=1

Fnρ
n,

h(ρ) =
∞∑

n=1

Hnρ
n . (B1)

By substituting the above power-series expansion into the
field equations (29)–(31), the asymptotic forms for small ρ

are obtained

a(ρ) ≈ A1

[
ρ + 2

5
F2ρ

3 + · · ·
]
, (B2)

f (ρ) ≈ 1 + F2ρ
2 + 3F2

2 + H2
1 − A2

1

10
ρ4 + · · · , (B3)

h(ρ) ≈ H1

[
ρ + λ2 + 4F2

10
ρ3 + · · ·

]
, (B4)

in agreement with the boundary conditions (35) for small ρ.
For large ρ, ρ → ∞, by introducing b(ρ) and k(ρ) by

a(ρ) := a∞ + b(ρ), h(ρ) := 1 + k(ρ), (B5)

the field equations (29)–(31) reduce to the linear differential
equations

b′′(ρ) + 2

ρ
b′(ρ) ≈ 0, (B6)

f ′′(ρ) +
(
a2∞ − 1

)
f (ρ) ≈ 0, (B7)

k′′(ρ) + 2

ρ
k′(ρ) − 2λ2k(ρ) ≈ 0. (B8)

These equations can be solved independently under the
boundary conditions b(∞) = 0, f (∞) = 0, and k(∞) = 0
as

b(ρ) ≈ −C

ρ
, (B9)

f (ρ) ≈ F exp

{
−

√
1 − a2∞ρ

}
, (B10)

k(ρ) ≈ H
e−√

2λρ

ρ
, (B11)

where C, F and H are arbitrary constants. The asymptotic
solution (B10) for large ρ indicates that, for the profile func-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2020) 80 :454 Page 19 of 19 454

tion f (ρ) of the spatial components A j (x) of the gauge
field not to oscillate at large ρ, the constant a∞ should
take the value |a∞| < 1. Therefore, a∞ can be restricted
to 0 ≤ a∞ < 1 without loss of generality.
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