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Abstract Radiative corrections in Lorentz violating (LV)
models have already received a lot of attention in the litera-
ture in recent years, with many instances where a LV operator
in one sector of the Standard Model Extension (SME) gen-
erates, via loop corrections, one of the LV coefficients in the
photon sector, which is probably the most understood and
well constrained part of the SME. In many of these works,
however, the now standard notation of the SME is not used,
which can obscure the comparison of different results, and
their possible phenomenological relevance. In this work, we
fill this gap, trying to build up a more general perspective
on the topic, bringing many of the results to the SME con-
ventional notation and commenting on their possible phe-
nomenological relevance. We uncover one example where a
result already presented in the literature can be used to place
a stronger bound on the temporal component of the bμ coef-
ficient of the fermion sector of the SME.

1 Introduction

The idea that Lorentz symmetry might be violated by new
physics at the Planck scale is one of the motivations for the
development of the Standard Model Extension (SME) [1,2]
as an effective field theory, based on the internal symmetries
and field content of the Standard Model, and incorporating
a general set of Lorentz violating operators. In the minimal
SME, power counting renormalizability is enforced, so only
operators with mass dimensions four or less are included,
while the non-minimal extension of the SME includes all
operators with higher mass dimensions [3–7], thus repre-
senting the most general description of low-energy Lorentz
violating effects originating from new physics at some very
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high energy scale. Lorentz symmetry being one of the cor-
nerstones of Quantum Field Theory (QFT) as we know it,
Lorentz violation (LV) brings with it many interesting the-
oretical questions. At the same time, a fruitful experimental
program have been using the SME framework to obtain new
and improved tests of Lorentz invariance from many experi-
ments and astrophysical observations [8,9].

The source of LV in the SME is generally assumed to be
new physics at some high energy scale, for example sponta-
neous symmetry breaking in a more fundamental theory such
as string theory [10], in which case the constant tensors that
couple to the LV operators arise as vacuum expectation values
of tensor fields in this theory. One may also consider explicit
breaking, which amounts to assume some unknown mecha-
nism generating LV at the fundamental level, and therefore
the LV background tensors are taken to assume, unspecified
non-zero values. In the non gravitational sector of the SME,
the difference between explicit and spontaneous LV breaking
is not essential in principle, but in the gravitational sector, one
finds that explicit breaking is in general incompatible with
the usual geometric picture of general relativity [11]. In this
work, we will be mostly interested in the non-gravitational
sector, so LV can be assumed to be explicit for simplicity.

The photon sector of the SME is probably its most well
studied part, being of utmost importance from the phe-
nomenological viewpoint since the most stringent constraints
on Lorentz violation are generally obtained by studying
LV effects on photon propagation. It is described by the
Lagrangian density

Lphoton = − 1

4
FμνFμν + 1

2
εκλμν Aλ

(
k̂AF

)
κ
Fμν

− 1

4
Fκλ(k̂F )κλμνFμν, (1)
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where

(k̂AF )κ =
∑
d odd

(k̂(d)
AF )

α1···α(d−3)
κ ∂α1 · · · ∂α(d−3)

, (2a)

(k̂F )κλμν =
∑
d even

(k̂(d)
F )κλμνα1···α(d−4)∂α1 · · · ∂α(d−4)

, (2b)

d ≥ 3 being the dimension of the corresponding operator
(for more details see [3]). The minimal photon sector of the
SME is obtained by the restriction to d = 3 and d = 4
for the CPT-odd and CPT-even terms, corresponding to the
original kAF and kF defined in [2]. Some of the fundamental
references regarding this sector of the SME are [12–15], and
the most recent experimental limits can be found in [8]. It
is noteworthy to recall that the kAF coefficient, and parts
of the kF , induce birefringence in the vacuum, which leads
to very strong experimental constraints, from astrophysics,
of order 10−43 GeV for kAF , and 10−37 for the birefringent
components of kF .

From the theoretical viewpoint, the quantum impacts of
the LV operators in the SME already received much atten-
tion. Lorentz symmetry being so essential do quantum field
theory, whether the full renormalization program can be car-
ried out consistently for the minimal SME, which is power
counting renormalizable, is an interesting question, which
has been positively answered for the QED [16], electroweak
[17], scalar and Yukawa [18] sectors. Interesting results have
also been obtained regarding the Källén–Lehman represen-
tation [19] and the properties of asymptotic states [20] due
to Lorentz violation, showing that much of the structure of
QFT survives the introduction of LV as done in the SME,
still allowing for nontrivial modifications.

Even from the phenomenological point of view, the study
of quantum corrections might be of interest, since they can
connect LV coefficients in different sectors of the framework,
thus making it possible to transfer bounds found in one sector
to the other. The general idea can be explained by recalling the
first example of this mechanism [2,21–24], where the inte-
gration over a fermion loop, including a LV operator involv-
ing an axial vector bμ, was shown to generate a finite correc-
tion to the photon effective action, proportional to the well
known Carroll–Field–Jackiw (CFJ) term [12]. Strong exper-
imental bounds on the CFJ coefficient were already derived
in [12], and theoretical consistency of the mechanism pre-
sented in [24] would allow one to translate this bounds to the
original bμ coefficient. However, from the start it was recog-
nized that the generated CFJ term was finite, yet ambiguous,
its value depending on the regularization scheme, thus being
one example of “finite but undetermined” quantum correc-
tions [25]. Several different approaches have been developed
to understand this ambiguity (see for example [26–28] and
references therein), and the conclusions seems to be that, in
this particular case, gauge invariance enforces the generated

CFJ term to vanish. In any case, this very first example in the
study of quantum corrections induced by the LV coefficients
of the SME already shows the complexity and the potential
for interesting theoretical and phenomenological discussions
related to this matter.

These investigations motivated many other, where spe-
cific LV operators where generated as radiative corrections.
Restriction to the minimal SME allows for more systemat-
ical studies such as the ones presented in [16], while the
non-minimal SME can only be understood as an effective
field theory. The case of finite and non ambiguous corrections
is particularly interesting since it could relate LV couplings
from different sectors of the framework, and present itself as
a consistent way to generate LV from some more “ funda-
mental ” setup (assuming for instance the integrated field not
to be one of the fields in the Standard Model). When diver-
gent corrections to a given LV operator are generated, this
operator has to be introduced from the very beginning to act
as a counterterm to cancel this divergence, leaving behind an
arbitrary finite constant that has to be fixed by some physical
condition. Even so, this approach have been used in litera-
ture to infer bounds on LV coefficients, either by implicitly
assuming all finite constants to be of order one, or by fixing
it using minimal subtraction [29,30].

In this work, we put in a more general and systematic per-
spective the problem of radiative corrections in the SME,
focusing mostly on its potential to provide new, indirect,
bounds on LV coefficients. We will fill some gaps in the lit-
erature, in the sense of presenting the results in the standard
SME notation, which greatly facilitates the comparison with
experimental results. In doing so, we will show that new and
interesting results can be obtained. We uncover an example
where a result already obtained in the literature, regarding
higher orders corrections induced by the axial vector bμ,
can actually provide better constraints than the ones already
known for one component of the bμ coefficient. This result
is surprising, since the relevant correction is second order in
bμ, as well as (being a quantum correction) suppressed by
powers of the coupling constant. We believe this example
points to an interesting direction, where many other indirect
bounds could be placed, from the study of loop corrections
in LV theories.

The technique employed within this paper in order
to obtain Lorentz-breaking contributions to the effective
Lagrangians has been used in [24] and afterwards, in many
other papers, is as follows. We suggest some new cou-
plings, involving Lorentz-breaking constant vectors or ten-
sors, between spinor and vector (or scalar) fields, and calcu-
late the contributions to effective action proportional to lower
orders of these Lorentz-breaking vectors (tensors). In many
cases, this approach is equivalent to expanding the fermionic
determinant in the Lorentz-breaking extension of a theory up
to lower orders in Lorentz-breaking parameters. Throughout
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this paper, we apply this technique to various extensions of
QED and Yukawa model.

The structure of the paper looks like follows. In Sect.
2, we discuss the radiative corrections generated by the b
coefficient only. In Sect. 3, we look at the minimal interac-
tions between gauge and spinor fields, and the corresponding
operators generated in the gauge sector, extending this study
for the non-minimal QED extension in Sect. 4. In Sect. 5,
we carry the same study for scalar-spinor couplings, and in
Sect. 6 for the contributions with external spinors. Finally,
Sect. 7 contains our conclusions and final remarks.

2 Radiative corrections: the case of the b coefficient

Maybe the most studied instance of the mechanism we are
interested in, already mentioned in the introduction, is the one
involving the axial vector bμ, mainly due to the fact that the
relevant calculation is puzzled by an ambiguity. Specifically,
we are interested in the corrections induced in the photon
sector from the LV minimal operator

Vb = bμψ̄γ μγ5ψ (3)

This LV insertion in a fermion loop contributing to the two-
point photon vertex function generates the CFJ term [2,24],

Le f f ⊃ C0e
2εμνλρbμAν∂λAρ, (4)

e being the electric charge. This amounts, in the SME nota-
tion, to the generation of a minimal kAF term with kAF ∼ b.
In this result, however, C0 is a finite and ambiguous con-
stant. The ambiguity is no surprise since it comes from a
triangular fermion loop with one insertion of the LV two-
fermion vertex bμγ μγ5, whose corresponding amplitude is
therefore quite similar to the well known anomalous tri-
angle diagram in the Standard Model, where one of the
external photon lines is taken at zero external momenta:
A (p)μ γ μγ5 → A (0)μ γ μγ5. It has also been shown that in
the non-Abelian case, for N > 1 spinor fields, the N -fields
generalization of the Vb operator generates the non-Abelian
extension of the CFJ term [31],

Le f f ⊃ C0ε
μνλρbμtr

(
g2Aν∂λAρ + 2g3

3
Aν AλAρ

)
, (5)

C0 being the same ambiguous constant. Several works in
the literature claim that gauge invariance actually enforces
C0 = 0 [28,32,33], so this mechanism can hardly be argued
to generate in a consistent way the minimal kAF term in the
photon sector of the SME.

It proves interesting to study higher order corrections
derived from the Vb insertion, both in the sense of an expan-
sion in derivatives of the electromagnetic field, as well as
higher orders in the LV coefficient. In the first sense, keep-
ing only one Vb insertion, but calculating higher derivative

contributions, the result yields the higher-derivative CFJ-like
term

Le f f ⊃ C1
e2

m2 εβμνρbβ Aμ�Fνρ, (6)

with C1 = 1/24π2 being a finite, well defined constant [34].
In the SME notation, this amounts to the generation of a
dimension five coefficient

(k̂(5)
AF )αβ

κ = C1
e2

2m2 bκηαβ. (7)

The interesting aspect of this calculation is that the result
is ambiguity-free, so one could hope to infer experimental
bounds on b from the constraints on the photon sector coeffi-
cient k̂(5)

AF . However, at the moment, experimental constraints
on dimension five photon coefficients are obtained only from
the study of free propagation of photons [8], which means
that leading LV effects may be obtained by imposing the usual
dispersion relation ημν pμ pν = 0 in the general expressions
for k̂AF given in Eq. (2). This, together with Eq. (7), means
that the LV operator in Eq. (6) does not contribute to wave
propagation. As a conclusion, in this example, even if the
generated LV operator is finite and free of ambiguities, its
particular form is such that no experimental constraints can
be inferred from this result at the present.

Now considering corrections at second order in b, Vb can
contribute to the CPT-even, minimal, kF coefficient. Consid-
ering two Vb insertions, one indeed obtains the aether term,

Le f f ⊃ −C2
e2

m2 b
μbλFμνF

λν, (8)

with C2 = 1/6π2. This result is finite by power counting
and therefore ambiguity-free [35,36], and corresponds to the
SME minimal coefficient

(k(4)
F )μναβ = −C2

e2

m2

(
bμbαηνβ − bνbαημβ

−bμbβηνα + bνbβημα
)
. (9)

We note that any charged particle with non-zero bT yields
non-zero contributions into (k(4)

F )μναβ .
This is a well defined quantum correction and, despite

being of second order in b, as well as suppressed by a power
of e2, it provides competitive constraints on some of the
bμ coefficients, given that birefringent components of kF
are strongly constrained at the order 10−37 due to birefrin-
gence effects in gamma ray bursts [37]. Therefore, from
Eq. (9) we could expect components of b to be limited by
b2 < 6π2m2/e2×10−37, amounting to |b| < 3×10−15 GeV
for protons and |b| < 1.5 × 10−20 GeV for electrons, for
example. We have to compare these with the current experi-
mental limits for the b coefficient, which are always quoted
in the Sun centered frame, taken as a standard frame for the
reporting of experimental bounds on LV coefficients [8]. As
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of 2019, we verify these bounds suggested by the radiative
corrections are not better than the ones already known for the
spatial components of bμ for protons and electrons, but they
are better than the ones obtained for the temporal components
of bμ, which are of order

∣∣(bT )p
∣∣ < 7 × 10−8 GeV for pro-

tons and |(bT )e| < 10−15 GeV for electrons [8], where the T
subscript is the standard notation for the temporal component
of a vector in the Sun centered frame.

For the sake of clarity, we can simply assume that

bμ =
(
bT , �0

)
in the Sun centered frame, and we take

into account that quantum corrections will induce a corre-
sponding (kF )μναβ of the form given in Eq. (9). One simple
parametrization for the components of kF relevant for bire-
fringence is in terms of the ten ka coefficients defined in
[13], and it is easy to verify that we generate in this way
non-vanishing birefringent coefficients ka = C2e2b2

T /m2

for a = 3, 4, which are subjected to the aforementioned
10−37 constraints. In summary, we conclude that the consis-
tency of the quantum corrections given in Eq. (8) imply in
the following constraint for the temporal component of the
bμ,

|bT | < πm/e
√

6 × 10−37, (10)

which is established in an indirect way, from the observa-
tional constraint on kF reported in [37]. This implies in new
stronger constraints on bT coefficients, for example
∣∣(bT )p

∣∣ < 3 × 10−15 GeV (11)

for protons and

|(bT )e| < 1.5 × 10−20 GeV (12)

for electrons.
One can look for even higher orders corrections in Vb,

even if these are not expected to lead to competitive bounds.
Considering three Vb insertions, one obtains a linear com-
bination of the higher-derivative CFJ-like term (6) and the
Myers–Pospelov term [38]

Le f f ⊃ e3

m4C3b
αFαμ(b · ∂)εβμνρbβFνρ, (13)

whereC3 is also an ambiguity-free constant [39]. This model
can be obtained from the general SME formalism by a spe-
cific choice of k̂(5)

AF , corresponding to a particular isotropic
limit of Lorentz violation, leading to modified dispersion
relations for photons (which were the original motivation
for the introduction of the model in [38]), see section IV-F
in [3] for more details. For more insertions, it is natural to
expect the appearance of terms including fourth and higher
orders in derivatives, meaning contributions to k(d)

F for d ≥ 6.
Up to now, apart from the general discussion in [3], further
consequences of these dimension six terms have only been
studied at the tree level [40].

Despite so much work have been devoted to the radiative
corrections induced by thebμ coefficient, the phenomenolog-
ical implications unveiled in this section have not been exten-
sively taken into account as far as we know of. In particular,
we stress the unexpected possibility of using higher order
LV corrections to infer competitive (but indirect) bounds on
some weakly bounded LV coefficients, provide we can relate
this with finite and well defined quantum corrections to the
strongly constrained kAF and/or kF coefficients.

3 The Minimal QED extension

The most generic Lorentz-breaking extension of QED con-
taining only terms of renormalizable dimensions, also called
the minimal QED extension, is given by the following
Lagrangian [2],

L = ψ̄(i�νDν − M)ψ + L(3,4)
photon, (14)

where

�ν = γ ν + cμνγμ + dμνγμγ5 + eν + i f νγ5 + 1

2
gλμνσλμ,

(15a)

M = m + aμγ μ + bμγ μγ5 + 1

2
Hμνσμν, (15b)

Dμ = ∂μ − ieAμ is the usual U (1) covariant derivative,

L(3,4)
photon is the restriction of the Lagrangian in Eq. (1) to min-

imal (dimension three and four) operators, and aμ, bμ, cμν ,
dμν , eμ, f μ, gλμν , Hμν are constant (pseudo)tensors, col-
lectively known as the LV coefficients of the QED sector of
the minimal SME, together with the κ

(4)
F and k(3)

AF defined by
Eq. (2).

While generality motivates Eq. (14), one should be aware
that some of the LV couplings present in it might not be
relevant to physics in most cases. The vector aμ can be
eliminated in a single fermion theory by a field redefini-
tion ψ → e−ia·xχ , so it is usually disregarded (the situa-
tion changes when gravity is taken into account, however
[11]). The antisymmetric part of the cμν coefficient can be
removed by a redefinition of the gamma matrices, so cμν

is usually taken to be symmetric; also, the antisymmetric
part of dμν , the trace and totally antisymmetric parts of the
gλμν terms are not expected to generate physical effects [2].
The f μ coefficient can be shown to generate effects that can
be exactly mimicked by the symmetric part of cμν [41], so
it is also usually disregarded. A detailed discussion of the
removal of spurious LV operators via field redefinitions can
be found in [42] (see also [43] for a related discussion on
the bμ coefficient, and [44] for singular spinor fields and
torsion).
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The photon sector of the SME being so well understood
theoretically, and so well constrained by experiments, makes
particularly interesting the study of the structure of quantum
corrections that can be induced from different LV couplings
in this specific sector of the SME. For the remainder of this
section, we restrict ourselves to the original couplings being
present in the minimal QED extension, as described in (14)
(notice, however, that in several instances, the generated LV
operators are themselves non-minimal), and discuss the most
interesting cases of radiative corrections.

The quantum consequences of theb coefficient in Eq. (15b)
have already been discussed in the previous section, so we
will consider hereafter the other relevant minimal couplings.
We start with the operator proportional to the tensor cμν ,

Vc = icμνψ̄γμ(∂ν − ieAν)ψ, (16)

where cμν is taken to be symmetric. A minimal scenario
including only the cμν coefficient was discussed in [45],
where it was shown that the presence of the cμν coefficient
as the only LV in the model does not modify the usual picture
of the Adler–Bell–Jackiw anomaly and index theorem (for
a more general discussion regarding the effects of LV in the
discussion of anomalies in chiral gauge theories, see [46]).
As for the radiative generation of corrections in the photon
sector, calculations have been performed only considering a
particular form of cμν , parametrized by a constant vector uμ,

cμν = uμuν − ζ

4
ημνu

2, (17)

so that, at ζ = 0 we have the simplest form cμν = uμuν ,
and at ζ = 1 the cμν is traceless. Respecting CPT invari-
ance, quantum corrections involving the Vc insertion will
contribute to the CPT-even photon coefficient kF , starting
at the first order, and the explicit form of this contribution
involving up to three cμν insertions has been calculated in
[47]. The most interesting case to quote is the first order in
the traceless cμν , where the leading (divergent) corrections
generate the simple term

Le f f ⊃ e2

2π2ε
cμρηνσ F

μνFσρ, (18)

corresponding to

(kF )μνρσ ∼ cμρηνσ − cνρημσ − cμσ ηνρ + cνσ ημρ. (19)

For ζ = 0, one obtains in particular the aether-like photon
coefficient in Eq. (9), together with a rescaled Maxwell term
proportional to u2FμνFμν . However, unlike in the results
generated from the CPT-odd couplings [35,36], in the case
of the cμν insertions the aether term logarithmically diverges.
Nevertheless, it should be noted that this aether-like divergent
contribution disappears after a proper redefinition of fields
and derivatives introduced in [16], so, afterwards, only the
renormalization of the Maxwell term persists.

One more interesting example of study regarding the oper-
ator (16) is presented in [48], where the particular case of cμν

characterized by only one constant ce, with (kF )μνρσ also
described by a constant cγ , is considered, and in this case
the two-point function of the photon is obtained explicitly in
all orders in ce, cγ , displaying a logarithmic dependence on
ce − cγ .

Early works concerning radiative corrections generated
from the term proportional to the coefficient dμν ,

Vd = idμνψ̄γμγ5 (∂ν − ieAν) ψ. (20)

include [16,45]. From a general perspective, the dμν is CPT
even and therefore can only contribute to the CPT even pho-
ton coefficient kF , however, since dμν is a pseudotensor, the
possible LV contributions generated in the photon sector will
involve even orders in dμν , starting from a minimal term of
the general form dμαdνβFμνFαβ , corresponding to the gen-
eration of a kF term with

(kF )μναβ ∼ dμαdνβ − dναdμβ. (21)

A first-order term, whose only possible structure respecting
observer Lorentz invariance would be like εμναρFμνdα

λ F
λρ ,

would correspond to (kF )μναβ ∼ εμναρd λ
α , which does not

possess the necessary symmetry properties except in the triv-
ial case dα

ν ∼ δα
ν , ; moreover, the absence of first order in

dμν corrections has been verified through direct calculations
[16]. The second order contribution is divergent: actually, its
pole part has been shown in [49] to possess the same structure
as the second order in cμν corrections found in [47].

Despite Vc contributing to kF already at the first order,
and Vd at the second order, a phenomenological analysis of
these results is obscured by the fact that these corrections are
divergent, and that only a particular choice of these tensors
have been used in the literature to obtain explicit results.

The term proportional to eμ can contribute in the quan-
tum corrections starting at the second order: being a vector
instead of a pseudo-vector, it cannot be used at first order to
construct the kAF term, and being a CPT-odd term, it can only
contribute to kF at second order. The same applies to f μ, as
can be checked through straightforward calculations [49]. It
turns out that both corrections have exactly the same form,
amounting to divergent aether-like corrections like the ones
in (8). Since the calculations in [49] where performed with
an implicit regularization method, we can quote the results
for the generated corrections to kF as

(kF )μνρσ = e2

12
Ilog

(
m2

) (
ηρμeνeσ

−ηρνeμeσ − ησμeνeρ + ησνeμeρ
)
, (22)

with the corresponding expression for f μ being obtained by
simply substituting eμ by f μ, and Ilog

(
m2

)
being a loga-
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rithmically divergent expression that may be calculated in
different regularization schemes.

The term proportional to gμνλ yields the finite and well
defined higher-derivative contribution [50]

Le f f ⊃ e2

24mπ2 Gμνραβ Aα∂ρ∂α∂β Aν , (23)

e being the charge and m the mass of the integrated fermion,
and

Gμνραβ = gμναηρβ + gμνβηρα − gμραηνβ

−gμρβηνα − gρναημβ − gρνβημα. (24)

In the SME notation, this amounts to a contribution to k̂(5)
AF

of the form

(k̂(5)
AF )αβ

κ = e2

24 × 3!mπ2 εκλμνGλμναβ . (25)

Despite being finite and well defined, this correction actually
does not contribute to photon propagation in leading order.
This can be seen by noticing that either the leading order
dispersion relation [70]
(
p2

)2 − 4
(
pμ (kAF )μ

)2 ≈ 0 (26)

or the relevant Stokes parameter [71]

ς3 = −pμ (kAF )μ /ω2 (27)

are modified by the combination pμ (kAF )μ, which can be
shown to vanish. Indeed, from the antisymmetry of gμνλ in
the first two indices, it can be shown that

(kAF )μ = (k̂(5)
AF )αβ

μ pα pβ = 6εμνρσ g
νρα pα p

σ , (28)

and therefore pμ(kAF )μ = 0 . Current limits on dimension
five photon coefficients all are derived from astrophysical
observations of photon propagation and, therefore, cannot be
used to impose limits on gμνλ based on the induced term (23).

Finally, we note that for the particular case of com-
pletely antisymmetric gμνλ = εμνλρhρ , Eq. (23) yields the
finite higher-derivative CFJ-like result (6), with an appropri-
ate multiplying factor. The finite temperature behavior of this
term is discussed in [51]. In the second order in gμνλ, for the
same case of a completely antisymmetric gμνλ, one arrives
at the logarithmically divergent aether-like result (8), with bμ

replaced by hμ.
To close the discussion of the minimal part, it remains

to discuss the impacts of the Hμν term. One can naturally
conclude that the lowest order contribution involving this
insertion should be at least of the second order (the first-order
contribution evidently vanishes by symmetry reasons), and
it must be superficially finite by dimensional arguments. It
is natural to expect expression of the form HμνHαβFμαFνβ .
However, explicit calculation shows that this term identically
vanishes at the one-loop order [49].

4 Non-minimal extensions of QED

It is very natural to study quantum corrections in the mini-
mal SME, which is proven to be a renormalizable model. In a
more general perspective, the SME is an effective field theory
arising in the low-energy limit of some fundamental theory at
a very high energy scale �, therefore it depends on this char-
acteristic energy scale, and includes non-minimal operators
of mass dimension greater than four, which are, in princi-
ple, proportional to negative powers of � [52,53]. While the
restriction to dimension three and four operators, correspond-
ing to the minimal SME, leads to a consistent quantum field
theory by itself, the general picture is certainly less clear
for the non-minimal SME, since higher-dimension kinetic
operators, due to the presence of higher derivatives, typically
yield ghost excitations, while higher-derivative interactions
are essentially non-renormalizable. So, it is not expected that
consistent quantum corrections can be calculated in general,
however specific terms can be shown to provide interesting
results, and indeed several examples have been reported in
the literature. Up to now, most of these studies focused on
the leading, dimension-five, operators, with the dimension
six case being discussed recently in [40] for the gauge sec-
tor, and in [54] for the spinor sector.

In this section, we will study some radiative corrections
produced by non-minimal LV operators in the photon sec-
tor. We will focus mostly in results already present in the
literature, which are put in a more systematic perspective. In
Sect. 6, non-minimal corrections produced in the spinor will
be systematically studied, and we will present new results
for several dimension five coefficients.

The first non-minimal coupling to be studied at the quan-
tum level is the dimension five magnetic one [55], involving
a single LV vector uβ ,

V1 = guβ ψ̄γαψ εαβγ δFγ δ = −1

2
(a(5)

F )αβγ ψ̄γαψFβγ ,

(29)

where (a(5)
F )αβγ = 2g εραβγ uρ . There are at the moment

no experimental constraints reported on these non-minimal
coefficients [8,72]. One remarkable fact related to this vertex
is that the contribution to the two-point function of the gauge
field generated by two such vertices, although quadratically
divergent by power counting, unexpectedly yields a finite
aether-like result similar to Eq. (8), but with

(kF )μναβ = −4C4m
2g2 (

uμuληνρ − uνuλημρ

−uμuρηλρ + uνuρημλ
)

, (30)

C4 being an ambiguous dimensionless finite constant dis-
cussed in detail in [36]. When this mechanism is considered
at finite temperature, the situation becomes more involved,
for example, an aether-like term involving only spatial com-
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ponents like uiuk Fi j Fk j becomes possible [56]. The non-
Abelian generalization of this calculation is possible as well.
The ambiguity in the calculation of the constant C4 in prin-
ciple precludes a confident phenomenological analysis, with
the objective of transferring the bounds on the generated kF
to a bound in a(5)

F , which would be a very important result.
Other corrections arising from the presence of the V1 ver-

tex are possible. If one consider the contribution involving
one V1 and one usual vertex −eψ̄ /Aψ , for example, the CFJ
term proportional to the same ambiguous constant C4 would
be obtained. Calculating the higher-derivative contributions
to the two-point function generated by Feynman diagrams
involving either two non-minimal V1 vertices or one V1 and
one usual QED vertex, with one or two minimalVb insertions,
the result will be superficially finite, being a linear com-
bination of the Myers–Pospelov term (13) and the higher-
derivative CFJ term (6), just as it occurs for the case when
both vertices are minimal [39]. One of the contributions to
each of these terms will be ambiguous. The complete result
for the linear combination of these terms, generated by the
presence of both interactions, contains (13) as one of the con-
tributions, and looks like

Le f f ⊃
(

2g2C1 + eg

6π2m2 + 4e2

45π2m4

)

× uαFαμ(b · ∂)uβεβμνλFνλ

+
(

2g2C1 + eg

6π2m2 + × e2

9π2m4

)

× u2uβεβμνλAμ�Fνλ, (31)

where C1 is the same finite and ambiguous constant involved
in the generation of the CFJ term (4), as described in the pre-
vious section. Again, the remarkable property is the finite-
ness of this result, despite the initial power counting of the
Feynman diagrams involved.

Another non-minimal, CPT odd vertex have been dis-
cussed in the literature (see f.e., [57]) in connection with
axion physics,

V2 = vβ ψ̄γ αψ Fαβ , (32)

which is also of the same form as Eq. (29), but with

(a(5)
F )αβγ = − (

vβηγα − vαηγβ
)

. (33)

Notice that, here, vβ has dimension of inverse of mass. It
has been shown in [57] that a triangle graph similar to that
one studied in [24], but with one external field eAα replaced
by the V2 vertex and the insertion /bγ5 replaced by ϑ/aγ5,
with ϑ = ϑ(x) being the axion field, will generate in the
effective action the usual coupling between the photon and
an axion-like-particle, i.e.,

Le f f ⊃ C1eε
μναβbαu

ρϑFμνFρβ

= 2C1eg (u · b) ϑ
( �E · �B

)
, (34)

where C1 is the same ambiguous constant defined in (4).
In obtaining this result, it was assumed that the integrated
fermion ψ is very massive, so that it makes sense to extract
from the relevant integrals only the dominant results when
its mass is very large compared to any other scale (so it is
sufficient to keep the first term in a derivative expansion for
ϑ(x)). Interestingly enough, this LV mechanism yields an
isotropic correction that exactly mimics the standard axion-
photon coupling, which is relevant for many experimental
searches for axion-like-particles [58]. Despite being finite,
this calculation suffers from the same sort of ambiguities
present in the generation of the CFJ term. The possibility of
a phenomenological relevance of the generated term (34) was
hinted in [57], however, a proper examination of the ambigu-
ity in this correction is still missing. Finally, as a comment,
we note that if we replace the magnetic coupling in (29) by
the one in (32) within the study of the aether term carried out
in the paper [55], in the four-dimensional case, we will also
obtain the aether term with the same ambiguous multiplier
C4 defined in (30).

The interaction vertex in (32) was further studied in a
series of articles devoted to its quantum effects in the photon
sector. The groundwork was developed in [59], considering
the functional determinant

Sef f ⊃ iTr ln
(
i /∂ − e /A − m − γ αFαβvβ

)
, (35)

which was calculated using the zeta function method, and the
result was expressed in a power series of the electromagnetic
field strength. Wave propagation was studied with the domi-
nant LV corrections that are generated in the photon sectors,
as well as the leading non-linear corrections, i.e.,

Sef f ⊃
∫

d4x

(
LF4 + g

12π2 ln

(
M2

μ2

)
vαFμν∂

μFνα

)
,

(36)

where LF4 stands for the usual Lorentz invariant Euler-
Heisenberg Lagrangian, with the surprising result that the
LV background decouples from wave propagation in vac-
uum, in this approximation. It is interesting to notice that this
calculation does not suffer from any ambiguities of the sort
involved in the generation of the CFJ term, yet the leading
LV correction present in the last equation is divergent, thus
needing a renormalization. Also, from these results one could
extract additional LV non-linear terms for the field strength,
which is a topic still quite unexplored in the literature. A full
classification for the LV operators in gauge field theories of
arbitrary dimension, including non-linear terms, have been
unveiled quite recently in [7].
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Now we focus our attention to non-minimal CPT-even
couplings. The first calculation of quantum corrections
involving one of these was presented in [30], involving the
dimension five vertex

V3 = 1

2
κμνλρψ̄σμνψFλρ = −1

4
H (5)μναβ
F ψ̄σμνψFαβ ,

(37)

where H (5)μναβ
F = − 1

2κμνλρ in this case. In the QED exten-
sion with this additional vertex, radiative corrections at first
and second order of the LV coefficients were presented in the
literature. The dominant contributions are given by [30]

Le f f ⊃ me

8π2ε
κμνλρFμνFλρ + finite, (38)

which matches the minimal CPT-even kF term in the
SME, contributing to its renormalization. At the second
order, besides a minimal kF term of the form (kF )μνλρ ∝
κμναβ (κ)

λρ
αβ , one also will obtain the higher-derivative terms

Le f f ⊃ 1

π2ε

(
C5κ

μναβκ
λρ
αβ Fμν�Fλρ

+C6κ
μναβκ

γλρ
β Fμν∂α∂γ Fλρ

)
+ finite, (39)

where C5 and C6 are dimensionless numerical constants. In
the two last expressions, finite parts, in the UV leading order,
reproduce the same tensorial structures as the pole parts.

A natural modification of the previous example consists
in introducing a pseudotensor coupling [60],

V4 = −igκμνλρ ψ̄σμνγ5ψ Fλρ

= −1

4
H (5)μναβ
F ψ̄σμνψ Fαβ , (40)

where now H (5)μναβ
F = −2gκμνλρε

αβ
λρ . In this case, the

resulting quantum corrections to the photon sector we will
involve a “ twisted ” tensor F̄μν = κμνλρFλρ , together with
the dual F̃μν = 1

2εμναβFαβ . Again, as in the previous case,
we will have contributions involving both second and higher
derivatives, and they are divergent. The explicit result, as well
as some consequences derived from it, have been studied in
[61].

Another interaction considered in the literature, in order
to generate higher-derivatives contributions in the gauge sec-
tor, is based on the Myers–Pospelov approach [38]. The idea
is that additional derivatives appear in the action being con-
tracted to some constant vector, which as a result prevents
the arising of ghosts, and in the Lorentz-invariant limit the
higher derivatives disappear completely. One may start by
adding to the QED Lagrangian the following term,

V5 = 1

Mn−1 ψ̄γ5/v(v · D)nψ, (41)

with n ≥ 2. Here M is the energy scale supposed of the
order of the Planck mass. This operator has mass dimensions

equal to n + 3, and have been studied in the case n = 2
[62], where the linear combination of the higher-derivative
CFJ-like term (6) and the Myers–Pospelov term (13) was gen-
erated, both being divergent. In principle, many other terms
can be generated from the couplings (41), for example, it is
natural to expect that the aether term can arise at least for
some values of n.

5 Spinor-scalar LV couplings

The spinor-scalar LV couplings are studied in a smaller num-
ber of papers compared with the ones discussed so far, yet
several interesting results have been presented in the liter-
ature. For example, the Yukawa potential was calculated in
[63] considering LV just in the scalar sector, and in [64] for
a LV modification of the spinor-scalar coupling of the form
ψ̄Gψφ, with G being of the form

G = g + ig′γ5 + aμγμ + bμγ5γμ + 1

2
Lμνσμν . (42)

Also, the one loop renormalization of a general model includ-
ing fermions and scalars interacting including the aforemen-
tioned general LV Yukawa coupling was worked out in [18].

Lorentz violating Yukawa couplings have also appeared
in other studies that looked into radiative corrections. The
particular LV coupling

Y1 = aμ ψ̄γ μψ φ , (43)

has been used in [55] in order to generate the CPT-even
aether-like term for the scalar field,

Le f f ⊃ C7φ(a · ∂)2φ , (44)

where C7 is a constant which diverges in four-dimensional

space-time. This contributions amounts to
(
k(4)
c

)μν =
C7aμaν in the SME conventions put forth in [65]. Actu-
ally, the aether term for the scalar field is the simplest
Lorentz-breaking contribution for the scalar sector in the
four-dimensional space-time, and in [66], it has been shown
to arise also for the Lorentz-breaking spinor-scalar theory
with the usual Yukawa coupling, but with Myers–Pospelov-
like higher-derivative modified kinetic term for the spinor,
being finite in this case.

Another interesting coupling in this sector is the pseu-
doscalar one,

Y2 = bμψ̄γ μγ5ψ ϑ, (45)

where ϑ(x) is a pseudoscalar field. This vertex has been used
in [57] as a part of a mechanism to generate the photon-axion
term (34), as discussed in the previous section.

It is clear that, in principle, terms with more derivatives
can be generated in the scalar sector as well, by the same
couplings above, considering the derivative expansion of the
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two-point vertex function of the scalar, where the finiteness of
these terms will be guaranteed by the renormalizability of the
couplings (43, 45). In principle, these couplings can be used
to generate the interaction terms for the Lorentz-breaking
Higgs sector, although these calculations were not carried
out up to now, at least in the approach we are considering. It
is easy to see that since these couplings are dimensionless,
the corresponding contributions to the vertices in the Higgs
sector will be logarithmically divergent. Finally, it is worth
mentioning the study of the Lorentz-breaking Higgs sector
carried out for the scalar QED in [67], where the spontaneous
symmetry breaking is considered in detail, including one-
loop quantum corrections.

6 LV contributions in the spinor sector

The number of studies concerning the generation of LV cor-
rections in the fermion sector of the SME is much smaller
than for the scalar and the gauge sectors. At tree level, the LV
extension of the spinor sector of the Standard Model was first
described in the seminal papers [1,2], with the restriction
of minimal (renormalizable) operators. The non-minimal
fermionic sector with LV was described in [5], presenting
a general parametrization for the LV coefficients, as well as
discussing several aspects of these models such as disper-
sion relations, exact Hamiltonian and eigenstates, together
with some first numerical estimations for these Lorentz-
breaking parameters. More recently, the LV interaction terms
involving spinors and gauge fields, with arbitrary dimension
(including non-linear terms in both fields) have been system-
atically described in [7].

Regarding the quantum corrections, for the minimal sec-
tor, an exhaustive study of the one-loop divergent contribu-
tions to the spinor sector for the QED sector of the SME has
been presented in [16], where the full one-loop renormal-
ization of this sector was studied. In the non-minimal sector,
one first result was that the CPT-odd term

S1 = cμνψ̄γμ∂νψ , (46)

was shown to arise in the non-minimal extension of the QED
developed in [55] based on the non-minimal magnetic cou-
pling (29), where cμν ∼ bμbν , the proportionality involving
a divergent constant that needs to be renormalized. The con-
tribution of the same structure was shown in [68] to arise also
from the CPT-even coupling (37), where, however, a partic-
ular form of the κμνλρ tensor completely described by one
vector uμ has been used. Again, this contribution diverges.
Also, in [66], the Lorentz-breaking extension of the Yukawa
model with the extra term

S2 = ψ̄(αm + g(a · ∂)2)/aψ (47)

×
>

×
>

×

> × >

Fig. 1 One loop corrections induced from the non-minimal LV oper-
ators given in Eq. (48), where the cross indicate a LV insertion. We
consider only contributions of first order in LV coefficients

α being a constant, has been considered and divergent quan-
tum corrections where shown to arise for the first term in
S1.

For a more systematic study of the radiative corrections
involving non-minimal LV coefficients, we follow [7] and
quote some of the dimension five operators involving the
interaction between the fermion and the gauge field, as fol-
lows

L(5)
ψF = − 1

2
mαβ

F ψ̄Fαβψ − i
1

2
mαβ

5F ψ̄γ5Fαβψ

− 1

2
aμαβ
F ψ̄γμFαβψ − 1

2
bμαβ
F ψ̄γ5γμFαβψ

− 1

4
Hμναβ
F ψ̄σμνFαβψ + · · · , (48)

where the dots stand for terms with second derivatives act-
ing on ψ , which will be considered elsewhere (some aspects
have already been discussed in [62]). We note that only the
last term is CPT-even. It is interesting to mention that the
contribution of the second order in aμαβ

F to the spinor sector
have already been calculated in [55] and shown to yield an
aether-like term, but the first-order contribution was not con-
sidered yet. As for the Hμναβ , in [68] some results for a very
particular form of Hμναβ were presented. We will now study
in systematic form the radiative corrections that are induced,
in the spinor sector, from these operators.

The Feynman diagrams we consider are given in Fig. 1,
and the corresponding contributions, in the Feynman gauge,
can be cast as

S1 = 1

2

∫
d4 p

(2π)4 ψ̄(−p)

×
∫

d4k

(2π)4

[
γμ

1
/k − m

Tν[k − p] ημν

(k − p)2

]
ψ(p),

(49)
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S2 = 1

2

∫
d4 p

(2π)4 ψ̄(−p)

×
∫

d4k

(2π)4

[
Tμ[−(k − p)] 1

/k − m
γν

ημν

(k − p)2

]
ψ(p),

(50)

where Tμ[k] is a matrix factor originating from the cor-
responding non-minimal vertex, depending on the incom-
ing/outcoming momentum k associated to the gauge propa-
gator (we note that in these vertices, there is no derivatives
acting on spinors). Using the Feynman representation we
arrive at

S1 = 1

2

∫
d4 p

(2π)4 ψ̄(−p)
∫

d4k

(2π)4

×
∫ 1

0
dx

[
γ μ(/k + /px + m)Tμ[k − p(1 − x)]
[k2 + p2x(1 − x) − m2(1 − x)]2

]
ψ(p),

(51)

S2 = 1

2

∫
d4 p

(2π)4 ψ̄(−p)
∫

d4k

(2π)4

×
∫ 1

0
dx

[
Tμ[−k + p(1 − x)](/k + /px + m)γ μ

[k2 + p2x(1 − x) − m2(1 − x)]2

]
ψ(p).

(52)

It remains to calculate these expressions for various cases of
Tμ, corresponding to different operators present in Eq. (48).
It should be noted that while the case of Tμ proportional
to aμαβ

F = εμαβγ bγ was considered in [55], and the second-
order contribution was found, here we obtain the contribution
of first order in the Lorentz-breaking parameter. It is clear
that for any Lorentz-breaking vertex, this contribution will
diverge.

As a first example, we consider the vertex proportional to
Hμναβ
F , which corresponds to Tμ = − 1

2 Hαβλμσαβ∂λ. In this
case, the calculations will be analogous to [61], with the only
difference being the presence of the γ5 factor which results
in the mapping Hαβλμ → 1

2 H
σρ
αβ εσρλμ. Therefore, we can

write

�1(p) = egHμνλρ
F ψ̄(−p)σμν

×
∫

d4k

(2π)4

/k − m

k2 − m2 γ α 1

(p − k)2 (pλ − kλ)ηραψ(p) ,

(53)

�2(p) = −egHμνλρ
F ψ̄(−p)

× ×int
d4k

(2π)4 γ α /k − m

k2 − m2
1

(p − k)2 σμν(pλ − kλ)ηραψ(p),

(54)

which yields, for the divergent part,

S1(p) = 1

2

egHμνλρ
F

16π2ε
ψ(−p)σμν

×
((

m2

4
− p2

12

)
γλγρ +

(
/p

6
− m

2

)
pλγρ

)
ψ(p) + · · · ;

(55)

S2(p) = 1

2

egHμνλρ
F

16π2ε
ψ(−p)

×
((

m2

4
− p2

12

)
γλγρ −

(
/p

6
− m

2

)
pλγρ

)
σμνψ(p) + · · · .

(56)

So, the whole result for the first-order correction in Hαβλμ

is found up to the second derivatives. We note that unlike in
[68], these expressions do not include any restriction on the
structure of Hμναβ . We note that our result diverges, while
the third- and higher-derivative orders of these contributions
will be explicitly finite.

We now consider the remaining operators from (48),
which can be obtained by similar calculations. We note that
the radiative corrections for all of them also diverge. We note
that unlike in the gauge sector [36,55], it is highly improba-
ble to arrive at finite contributions in the spinor sector whose
structure is much less restricted, which precludes the search
for new constraints on LV coefficients, as we have done in
Sect. 2. For example, for the mαβ

F insertion, we find

S1(p) = egmλρ
F

16π2ε
ψ(−p)

((
m2

4
− p2

12

)
γλγρ

+
(

/p

6
− m

2

)
pλγρ

)
ψ(p) + · · · , (57)

S2(p) = egmλρ
F

16π2ε
ψ(−p)

((
m2

4
− p2

12

)
γλγρ

−
(

/p

6
− m

2

)
pλγρ

)
ψ(p) + · · · . (58)

We note that there is no restrictions on the symmetry of mαβ
F ,

so, in principle it can be antisymmetric while up to now,
only symmetric second-rank constant tensors were consid-
ered within the Lorentz-breaking context, see f.e. [47]. The
presence of the antisymmetric constant tensor could be use-
ful within the context of study of relation between Lorentz
symmetry breaking and space-time noncommutativity which
is typically based on use of a second-rank antisymmetric con-
stant tensor. Similar expressions can be found for all other
operators presented in (48).

Another set of dimension-five operators defined in [7]
involves covariant derivatives and looks like

L(5)
ψD = − 1

2
mαβψ̄i D(αi Dβ)ψ − i

1

2
mαβ

5 ψ̄γ5i D(αi Dβ)ψ

− 1

2
aμαβψ̄γμi D(αi Dβ)ψ
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Fig. 2 Contribution to the
two-point spinor function with a
modified spinor propagator

× >

− 1

2
bμαβψ̄γ5γμi D(αi Dβ)ψ

− 1

4
Hμναβψ̄σμν i D(αi Dβ)ψ + h.c. (59)

In [62], the two-point function for the ψ has been obtained
for the particular case of bμαβ = vμvαvβ . It should be noted
that in this case not only new spinor-vector vertex arises, but
the quadratic action of the spinor field is also modified, and
we have, besides of the Feynman diagrams depicted at Fig. 1,
also the graph given by Fig. 2.

In the case of a more generic, but completely symmetric,
bμαβ , we can directly generalize the results obtained in [62]
and get for the two first graphs given by Fig. 1,

T12(k) = − ie2

48π2ε
ψ̄(−k)

[
bμ
μλγ

λ
(
k2 − 3m2

)

−20kμkνbμνλγ
λ + 10bμ

μλk
λ/k

]
γ5ψ(k) + . . . , (60)

and for the graph given by Fig. 2,

T3(k) = − ie2

96π2ε
ψ̄(−k)

[
(k2 − 6m2)bμ

μλγ
λ

−6bμ
μλk

λ/k + 2bμνλk
μkνγ λ

]
γ5ψ(k). (61)

In a similar way, this result can be generalized for other inser-
tions. As before, all these corrections are divergent.

7 Conclusions

There have been extensive activities in the search for possible
Lorentz violation in the last decades, which have resulted in
a solid experimental program [8], as well as in a deep under-
standing of the theoretical questions involved in incorporat-
ing CPT and/or Lorentz breaking in the context of effective
field theory. From the theoretical viewpoint, the question
of quantum corrections and its effects when LV operators
are considered is one of the most studied, since the seminal
papers [2,24]. In this work, we revisit this question, filling
many gaps present in the literature, when results were not
written in the standard SME notation, or their phenomeno-
logical implications not fully addressed. In many instances,
the generated operators are “ finite but undetermined ”, or
divergent, however there are examples where finite, well
defined corrections can be shown to exist, and these may
lead to improved experimental bounds on some LV coeffi-
cients. In Sect. 2 we discussed one such case, showing how a

finite quantum correction to the kF photon coefficient, despite
being of second order in the bμ coefficient that originates
it, still provide a competitive constraint on some LV coeffi-
cients. This is a surprising result, since it defies the common
understanding that second order LV contributions should be
irrelevant for physics for being too small.

We also present some results in the spinor sector of the
SME, which have not been extensively studied so far in the
literature. We discuss how quantum corrections induced by
dimension five LV operators, recently categorized in a sys-
tematic way in [7], can be calculated. However, in the spinor
sector, we find these contributions to be divergent, on general
grounds.

We conclude that still there is space for studying quantum
corrections in LV theories, and that this program may even
help the experimental task of constraining Lorentz violation
via different experiments. Particular care should be taken to
finite corrections induced in the photon sector either by non-
minimal LV operators, or by higher order in the minimal
ones, since the possible phenomenological implications of
these have not been properly addressed in the literature.
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Appendix 1: summary table

In this Appendix, we present a table summarizing the results
concerning the generation of effective operators in the pho-
ton sector of the SME, originating from the LV operators in
the spinor sector, as a summary of the results discussed in
Sects. 3 and 4. In formulating these tables, it is assumed that
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Table 1 Summary table of the generation of Lorentz-breaking opera-
tors in the photon sector of the SME. Notice that CPT-odd coefficients
can generate CPT-even corrections at second order. Also, the axion case
(pseudo-scalar field ϑ) is not written in SME notation since the induced

correction is actually Lorentz invariant, so it is not included in the trace-
less coefficient kF . The columns D and A indicate whether the diagrams
generating the given operator are divergent or ambiguous, respectively

LV operator CPT Generated term D A References

aμ O 0 [49]

bμ O (k(4)
AF )μ ∼ bμ X [2,21–24]

(k̂(5)
AF )

αβ
κ ∼ bκηαβ [34]

(k(4)
F )μναβ ∼ bμbαηνβ + · · · [35,36]

cμν E (k(4)
F )μνρσ ∼ cμρηνσ + · · · X [47]

dμν E (k(4)
F )μνρσ ∼ dμρdνσ − dμσ dνρ X [49]

eμ O (k(4)
F )μνρσ ∼ ηρμeνeσ + · · · X [49]

f μ O (k(4)
F )μνρσ ∼ ηρμ f ν f σ + · · · X [49]

gμνλ O (k̂(5)
AF )

αβ
κ ∼ εκλμν

(
gμναηρβ + · · · ) [50]

(a(5)
F )αβγ = 2g εραβγ uρ O (k(4)

F )μναβ ∼ bμbαηνβ + · · · X [55]

(a(5)
F )αβγ = − (

uβηγα − uαηγβ
)

O Le f f ⊃ εμναβbαuρ ϑFμνFρβ X [57]

ψ̄γ5γ
μψ bμ ϑ O

H (5)μναβ
F = − 1

2 κμνλρ E (k(4)
F )μνλρ ∼ kμνλρ X [30]

H (5)μναβ
F = −2gκμνλρε

αβ
λρ E (k(4)

F )μνλρ ∼ kμναβε
αβ
λρ X [60]

the usual vertex ∼ eψ̄γ μψ Aμ can be combined with each of
the Lorentz-violating vertices involving the gauge field. For
the dμν coefficient, the form presented in the table is derived
from covariance and symmetry arguments, since no explicit
results are available. For simplicity, non-Abelian generaliza-
tions are not included, but they are cited in the main text.
Also, all Lorentz invariant contributions that are generated
are omitted in the table, exception made for the case involv-
ing the axion field ϑ , which is also the only one where the
generation mechanism involves two different LV couplings
(see Table 1).
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