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Abstract Requiring the existence of a unitary, causal and
local UV-completion places a set of positivity bounds on the
corresponding effective field theories (EFTs). We discuss the
obstructions and possibility in applying the positivity bound
to cosmology, in particular the EFT of cosmological per-
turbations. Taking a cT = 1 beyond-Horndeski EFT as an
illustrative example, we derive such bounds, which incorpo-
rate the cosmological correction of order H2/�2, � being
the cutoff scale. The derived bounds are applied to slow-roll
inflation with beyond Horndeski operators. It is found that
the cosmological positivity bounds may be either stronger or
weaker than their flat space counterpart.

1 Introduction

The effective field theory (EFT) of cosmological perturba-
tions is a powerful tool to study perturbations around a given
cosmological background. Since the EFT of inflation [1], the
relevant idea has been also applied to other cosmological
fields, such as the EFT of dark energy [2–5] which captures
the physics of scalar-tensor theories [6–10] (for a review,
see [11,12]) at the cosmological scale. As another example,
based on the EFT approach, it has been found that fully stable
nonsingular cosmologies exist in theories beyond Horndeski
[13–20].

The full UV-complete theory of gravity is yet unknown.
Instead of starting top-down from a UV theory, usually one
works directly with the EFT, which captures the physics of
the underlying theory at certain scales. However, not all low-
energy EFTs have a consistent UV theory, see e.g. [21,22].
Assuming the UV-complete theory is causal, unitary and
local Lorentz-invariant, one can derive dispersion relations
relating the IR limit of a scattering amplitude with its UV
behavior, which place a set of bounds on the properties of
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the corresponding low-energy EFTs, the so-called positivity
bound [23–31]. The positivity bounds have been applied to
various EFTs [32–39].

Recently, Ref. [40] derived positivity bounds on a covari-
ant shift-symmetric Horndeski theory (which might explain
the current accelerated expansion), and paired these bounds
with a cosmological parameter estimation analysis. It is nat-
ural to ask what will happen if we incorporate the cosmolog-
ical background evolution. It is convenient for our purpose to
work with the EFT of cosmological perturbations. However,
the background evolution is itself the biggest obstruction in
applying the positivity arguments because it breaks time-
translation symmetry and makes Lorentz-invariant scattering
ill-defined. In the limit of a Lorentz-invariant background,
the positivity bounds saturated by the UV completions of
single-field inflation have been investigated in [41].

Theoretically, an EFT is obtained after one integrates out
physics above the cutoff scale �. On the other hand, the
curvature of a homogeneous FRW universe is proportional
to H2, Ḣ , so one can use H2, Ḣ as additional dimensionful
parameters in constructing the EFT [42–44]. In this paper, we
assume that the background varies slowly enough so that we
can treat the O(H2n/�2n, Ḣn/�2n) corrected Lagrangian
coefficients as constants [41,42,45,46] in calculation of the
scattering amplitude. Despite these corrections, positivity
argument in cosmology is still plagued by difficulties such as
asymptotic states and particle production in the cosmological
background, which are expected to introduce unknown cor-
rections scale as O(H2/M2), M being the scattering energy
scale, in the bound itself. We will argue in Sect. 3.2 that
under certain assumptions it might be possible to extract part
of the positivity information in cosmology even if one does
not know how to calculate the O(H2/M2) corrections in the
positivity bound. We then derive the bounds, incorporating
the cosmological background, for a specific cT = 1 beyond-
Horndeski EFT.

This paper is structured as follows. The effective Gold-
stone Lagrangian is derived in Sect. 2. Section 3.1 presents
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the familiar Minkowski positivity bound. Section 3.2 dis-
cusses existing obstructions in deriving a cosmological posi-
tivity bound, what corrections they may introduce and under
what circumstance can we neglect them. Then in Sect. 3.3, we
obtain bounds with leading cosmological correction. Appli-
cations of our bounds to the cosmological scenarios of inter-
est are discussed in Sect. 3.4.

2 The effective Goldstone Lagrangian

We first derive the EFT of cosmological perturbations to
be bounded by positivity. We want to focus on the Gold-
stone EFT, so we will work in the decoupling limit [1]. Such
limit, however, becomes subtle in a cT �= 1 theory [47]. It
is also noticed that the EFTs of modified gravity at cosmo-
logical scales have been strictly constrained by GW170817
to cT = 1 [48–51] (note that it may not be the case at scales
not observed by LIGO [52]). Also, as mentioned, the sta-
ble nonsingular cosmological models can be implemented
only in theories beyond Horndeski (We have little evidence
whether cT = 1 in the early universe though.). Thus we are
well-motivated to consider a cT = 1 beyond-Horndeski EFT
as an illustrative example.1

The shift-symmetric cT = 1 beyond-Horndeski theory
can be written as [9,49]

L = M2
p�

2
[
B(X)

R

�2 + G2(X) + G3(X)
�φ

Mp�2

− 4

X
BX

φμφνφμν�φ − φμφμνφλφ
λν

M4
p�

6

]
, (1)

where Mp is the reduced Planck mass and � is the EFT
cutoff.2 All coefficients B(X), G2,3(X) and fields are ded-
imensionalised by φ → φ/Mp, ∂ → ∂/� and X ≡
φμφμ/(M2

p�
2). Subscript X denotes partial derivatives with

respect to X , for instance BX ≡ ∂
∂X B.

In the unitary gauge (δφ = 0), the Lagrangian (1) is equiv-
alent to [49]

L = M2
p�

2
[
G2(X) + Q(X)

K

�

+B(X)
R(3) + Kμ

νK ν
μ − K 2

�2

]
, (2)

where K ν
μ and R(3) are the extrinsic curvature tensor and

Ricci scalar of the spacelike uniform-φ hypersurface, respec-
tively, and Q(X) ≡ − ∫ √−XG3X (X)dX .

1 The theory may receive other strict constraints if one considers sta-
bility of gravitational waves [53–55].
2 In self-accelerating cosmologies one often takes � ∼ H in the
Galileon terms to have an order one effect on the background. We do
not consider such models in this paper and will always assume � � H .

An arbitrary time slicing (t, x) is related to the unitary
gauge time (t̃, x̃) by t̃ = t + π(t, x) and x = x̃, then

g̃00(t̃, x̃) = ∂ t̃

∂xμ

∂ t̃

∂xν
gμν(t, x)

= (1 + π̇)2g00 + 2(1 + π̇)∂iπg
0i + gi j∂iπ∂ jπ,

(3)

where π is a Goldstone field. Quantities in the unitary gauge
are labeled with tildes. Due to the derivative coupling, the
scattering process ππ → ππ is dominated by sub-Hubble
contribution, where the Goldstone mode decouples from
gravity [1]. We are thus allowed to choose the standard FRW
metric

ds2 = gμνdx
μdxν = −dt2 + a2(t)δi j dx

i dx j , (4)

as the metric in the new coordinate system (t, x). Relevant
Stuckelberg tricks are given in Appendix A.

It is convenient to define the dimensionless parameters

ε ≡ φ̇2/2

M2
pH

2 , εH ≡ − Ḣ

H2 , (5)

where εH describes evolution of the universe. We will assume
|φ̈/(H φ̇)| � 1, so that we can safely neglect φ̈. In a φ-
dominating universe, ε is determined by the Friedman equa-
tion and related to εH by the equation of motion of φ, in
particular, ε = εH if φ is canonical. We thus have the time
derivative of a function f as

d f

dt
=

(
−εH H2 ∂

∂H
+ ε

(1)
H

∂

∂εH

)
f, (6)

where ε̇H ≡ Hε
(1)
H 	 2Hε2

H if φ dominates.
At the tree level, it is sufficient to consider S(2), S(3) and

S(4). We assume S(2) dominates and S(3), S(4) are under per-
turbative control [56,57]. Exploiting the fact that the scatter-
ing process is almost instant compared to the variation of the
background field φ (i.e: X̄ ), after some integration by parts,
one has

S(2) = (Mp�)2
∫

dx4√−g

[
U π̇2 − V

(∂iπ)2

a2

]
, (7)

where

U = X̄ Ḡ2X − 6X̄

(
H

�

)2

B̄X − 6

(
H

�

)
(−X̄)3/2Ḡ3X

+2X̄2Ḡ2XX + · · · , (8a)

V = X̄ Ḡ2X − 4(7 − 4εH )X̄

(
H

�

)2

B̄X

−4(−X̄)3/2
(
H

�

)
Ḡ3X + · · · . (8b)
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All bared quantities are evaluated on the background X̄ =
−φ̇2/(M2

p�
2) = −2(H/�)2ε. In the rest of this paper, the

results are presented using ε and εH instead of X̄ and Ḣ . We
will also suppress the upper bar of background quantities for
simplicity. The sound speed squared is

c2
s ≡ V/U = 1 + 2

G2X
(4(−1 + εH )BX

+√
2ε1/2G3X + 2εG2XX

) (
H

�

)2

+ · · · , (9)

which is approximately constant since d
dt c

2
s /� ∼ εH H3/�3

is of higher order in H/�. Truncation to leading order
in H/� is valid if the correction is < O(1).3 For unity
BX , εG2XX , ε1/2G3X , it is sufficient to have H � 0.1�.
Rescale the spacial coordinates xi → acsxi and define the
canonically normalised field πc = √

2c3
sUMp�π , we have

L(2) = 1

2
(∂πc)

2, (10)

where (∂πc)
2 = π̇2

c − (∂iπc)
2.

The final Lagrangian for the UV scattering is (the subscript
c is omitted)

L = 1

2
(∂π)2 + 1

Mp�

[
α1π̇

3 + α2π̇(∂π)2
]

+ 1

M2
p�

2

[
β1π̇

4 + β2π̇
2(∂π)2 + β3[(∂π)2]2

]

+ β4

M2
p�

4

[
π̇∂i∂ jπ∂i π̇∂ jπ − π̇∂i π̇∂iπ∇2π

]
,

(11)

see Appendix B for the details of derivation.4 The explicit
expressions of α, β in terms of G2(X), G3(X) and B(X) in
(1) are given in Appendix C. The coefficients of the final
Lagrangian (11), as expected, do not contain B(X) or Q(X),
since in the covariant Lagrangian (1) the Ricci curvature R is
invariant and only the X dependent part of G3(X) is relevant,
though they appear in coefficients before individual vertices
(for example, Eq. (B.12) contains B(X)). This can serve as
a quick consistency check of calculation.

3 Now we have X̄ = −φ̇2/(M2
p�

2) ∼ const. and H/� < O(1).
To guarantee a slowly varying background, one should, in principle,
additionally require −εH H/� � 1. This condition is automatically
satisfied for physical value of εH when H/� � 1 is true.
4 The Lagrangian (11) is non-relativistic. Non-relativistic vertices with
odd number of derivatives may contribute amplitude proportional to
sn/2, resulting in new branch cuts in the s plane, see Ref. [41]. As is
shown in Appendix B, fortunately, higher derivative operators are under
control in the theory we consider and no new branch cuts are generated
at the order of interest. Also (11) does not contribute any other non-
analyticities more complicated than the familiar cuts and poles crossing
symmetric in the complex s plane.

3 Positivity bounds in cosmology

3.1 Positivity in flat space

We briefly review the Minkowski positivity argument, see
e.g. [23,27,36] for details. In a Lorentz-invariant UV the-
ory with unitarity, locality and causality, the 2 → 2 scatter-
ing amplitude is expected to be an analytic function of the
Mandelstam variables (s, t, u) with poles and branch cuts,
satisfying the Froissart–Martin bound [58,59].

Consider a massive scalar field with mass m. The Man-
delstam variables are not independent s + t + u = 4m2. We
denote the 2 → 2 amplitude by A(s, t). For fixed t , it is
an analytic function At (s) of s. At (s) can be extended to
the complex s-plane by crossing symmetry and analytic con-
tinuation. Consider the following Cauchy integral at fixed t

∑
Res

( At (s)

(s − μ2)3

)
= 1

2π i

∮
C

At (s)

(s − μ2)3 ds. (12)

Exactly speaking, the LHS of (12) should be an integral over
all non-analyticities enclosed by C. However, since the ana-
lytic structure of (11) is simple, we explicitly write down
the integral as sum of residues. Typical positivity argument
then requires pushing to the forward limit (t → 0). How-
ever, such a limit is singular in a theory with massless gauge
particles, the gravitational theory in particular (see e.g. [23]).
Recently, it is suggested that such singularity can be regu-
lated by compatifying one spatial dimension [39]. The result-
ing amplitude (with the Kaluza–Klein modes substracted)
remains finite in the forward limit but receives additional
contribution from the dilaton and graviphoton generated by
compactification. Fortunately, in the theory (1) considered
here, the dilaton and graviphoton do not contribute at the
order of interest. Therefore, in effect, we can simply drop the
singular term ∼ s2

M2
pt

and continue with the standard pos-

itivity argument. Now we are allowed to pass to the for-
ward limit t → 0. Subscript t will be dropped whenever
we are in the forward limit. The analytic structure of A(s)
and the integration contour C are depicted in Fig. 1. By the
Froissart-Martin bound |At (s)| ∼ O(s ln2 s) as s → ∞
[58,59], the contribution from the semi-circular arcs of the
contour go to zero when pushed to infinity. We are thus left

with 1
π

(∫ 0
−∞ + ∫ +∞

4m2

)
Im(At (s))
(s−μ2)3 ds. By the optical theorem

we arrive at the following equality

1

2π i

∮
C

A(s)

(s − μ2)3 ds = 1

π

∫ +∞

4m2

√
1 − 4m2

s

×
(
sσ 2→any(s)

(s − μ2)3 + sσ 2→any(s)

(s − 4m2 + μ2)3

)
ds. (13)

123



421 Page 4 of 11 Eur. Phys. J. C (2020) 80 :421

Fig. 1 The analytic structure of A(s) in the forward limit and the inte-
gration contour C. The branch cut starts from the biparticle production
threshold and extends all the way to infinity

RHS is positive definite if 0 < μ2 < 4m2. There are three
poles included on LHS. Since the EFT (11) only contains
derivative interactions, residues at s = m2 and s = 3m2,
associated with propagators in the exchange diagrams, are
proportional to powers of m2 and thus become negligible
when s � m2. Then the final bound is

A′′(μ2) ≥ 0. (14)

Since s � m2 ∼ μ2, this is equivalently A′′(s →
0) ≥ 0. Besides, combine the optical theorem with the par-
tial wave expansion A(s, t) = 16π

√
s/(s − 4m2)

∑
l(2l +

1)Pl(cos θ)al(s), one obtains another bound for s ≥ 4m2

[60] (for recent exploitation of this bound, see e.g. [27])

∂n

∂tn
Im[A(s + iε, 0)]

∣∣∣
t=0

≥ 0. (15)

Apply this bound to Eq. (12), one reaches the positivity of
∂nt A′′(s → 0, t → 0).

3.2 Positivity in cosmology

Conventional EFTs (as well as the underlying UV theo-
ries) are Poincare invariant. The EFT of cosmological per-
turbations, on the other hand, are obtained by breaking the
time-diffeomorphism invariance with a gauge choice (uni-
tary gauge). When the time-translation symmetry is broken
because of the evolving background, the notion of Mandel-
stam variables becomes ill-defined. We focus on scattering
process with energy scale M2 � m2 because the Goldstones
are derivatively coupled, while keeping M2 � �2 so the
EFT remains valid.

The cosmological background evolution manifests in the
study of positivity mainly in two ways. One is the cosmolog-

ical correction in the Lagrangian coefficients, which we have
already considered in the previous section. In a slowly vary-
ing background, we will treat these Lagrangian coefficients
as constants when calculating the amplitude [41,45,46].
Another is that the time-dependent background affects the
perturbative calculation of the amplitude and breaks time
translation symmetry. These effects will further influence the
positivity derivation. We do not yet know how to obtain a
robust positivity bound in an evolving background. It has
to be pointed out that we will not derive a reliable bound
in some general time-dependent curved background in this
subsection. Instead, we will analyze the major obstructions in
obtaining such a bound and argue that when certain assump-
tions hold, one might use (14) and (15), neglecting cosmolog-
ical corrections to the bound, to extract some of the positivity
information in cosmology.

We start from the cosmological mode function

uk(τ ) =
√

π

4

√
τH (1,2)

ν (|kτ |). (16)

This mode function assumes flat space solution (up to a con-
stant phase shift) 1√

2k
e−ikτ on scales much smaller than

the curvature (|kτ | � 1). For the universe with a ∝ t p

(p = 1/2 if radiation dominant, p = 2/3 if matter domi-
nant), ν = |3p−1|

2|−p+1| , while for quasi-de Sitter space ν 	 3/2.
For inflationary universe τ ∈ (−∞, 0) so modes are initially
sub-Hubble, while for decelerated expansion τ ∈ (0,+∞)

so modes finally enter horizon. Due to the e±ikτ asymp-
totic behavior of uk(τ ) and the relation H (1)

ν (zeiπ ) =
−e−iνπ H (2)

ν (z) one can obtain the free field Feynman prop-
agator in the usual way by calculating free field two point
function5

DF (x, y) =
∫

dk4

(2π)4

ik0

k2 + iε

π

2

√
x0y0H (2)

ν (k0x0)

H (1)
ν (k0y0)eik·(x− y). (17)

The propagator depends on x and y separately since time
translation is broken. Using the asymptotic expansion of
Hankel functions the leading irreversible part of DF (x, y)

is estimated to be of order x0−y0

kx0 y0 ∼ 1
k2x0 y0 .

The first obstruction in evaluating the amplitude is the con-
struction of asymptotic state |�〉. Due to background evolu-
tion, the energy argument used in Minkowski to obtain |�〉 ∝
exp

(
−iT

∫ t0
−∞ HI dt

)
|0〉 is no longer applicable. More-

over, the amplitude 〈n1 . . . ni |�〉, 〈n1 . . . ni | being occupa-
tion states at some later time, is generally non-vanishing

5 There is possible divergence at k0 = 0 since H (1,2)
ν (z → 0) ∼ z−ν .

This is regulated by the negligible scalar mass m so that H (1,2)
ν (kτ) →

H (1,2)
ν (ωτ) with ω2 = k2 + m2 > 0, thus the integration does not

encounter any divergence at k0 = 0.
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because of the cosmological evolution. However, since we
only study sub-Hubble scattering process, we assume an
asymptotic state parallel to the Minkowski one

|�〉 ∝ exp

(
−iT

∫ τ0

τi

HI dτ

)
|0〉, (18)

where τ0 is the time of scattering and τi is some time well after
the scattered momentum modes entering horizon.6 By this
assumption we have neglected all particle production effects
(and in particular any non-perturbative non-analyticities they
may bring about) from the time-dependent background. It is
only valid for sub-Hubble high energy scattering, a more
careful treatment of asymptotic states in de Sitter space-
time is presented in [61]. Now the 2 → 2 amplitude is

〈p1 p2| exp
(
−iT

∫ +∞
τi

HI dτ
)

|p3 p4〉. The external legs are

sub-Hubble with definite momentum pi , we thus further
assume contraction of all external legs yields the flat space
solution e−i p·x . We should, however, keep the cosmologi-
cal mode function Hν in the propagator since the k0 integral
crosses k0 = 0. This assumption is crucial in preserving
crossing symmetry ω ↔ −ω, k ↔ −k at the Feynman dia-
gram level.

With assumptions discussed above, the only difference in
evaluating the tree level 2 → 2 amplitude is the integral∫
dx0 and

∫
dy0. In Minkowski, these two enforce energy

conservation between the initial and final states i.e: δ(p1 +
p2 − k0)δ(k0 − p3 − p4). In an evolving background, we
have to estimate

I =
∫ +∞

τi

dx0ei(p1+p2)x0
√

π

2

√
k0x0H (2)

ν (k0x0)

∼
∫ +∞

τi

dx0ei(p1+p2−k0)x0
(1 − ia(ν)

k0x0 )

∼ iei(p1+p2−k0)τi

p1 + p2 − k0 − ia(ν)

k0 �(0,−i |p1 + p2 − k0|τi ),
(19)

where a(ν) = (4ν2 − 1)/8. The last line is obtained by
slightly rotating the integration line in the complex plane
(i.e. ∞ → (1 ± iε)∞). The integrand of

∫
dk0/(2π)

is regular (note that the propagator i
k2+iε

has no pole on
the real line due to iε) so the first term in (19) is simply
−2π iδ(p1 + p2 − k0), which enforces energy conservation.
The correction term is characterized by an incomplete gamma
function, which peaks at k0 = p1 + p2 and oscillates and
decays as |p1 + p2 − k0| → ∞ with

∫ +∞
0 �(0,−i x)dx = i

6 In the rest of this subsection we assume that the universe is in decel-
erated expansion and modes enter horizon. The calculation is the same
for accelerated expansion with the substitution τ → −τ .

and limε→0
∫ +ε

−ε
�(0,−i x)dx = 0. In particular it is the cor-

rection part that contributes when p1 + p2 �= k0. Based on
these assumptions and observations we propose

iA(p1 p2→p3 p4)=iAminδ
(4)(�p)+iAcosρ(�E)δ(3)(� p),

(20)

where δ functions enforce energy and momentum conserva-
tion. Amin stands for the explicitly Minkowski part, which
is calculable using the standard techniques. Acos means cos-
mological correction. It is of order τ−2

i /p2 ∼ H2/M2. ρ

may be viewed as a distribution (possibly complex) over
�E = | p1| + | p2| − | p3| − | p4|. We have to emphasize
that we did not derive (20), but rather assumed it based on
observations in this subsection. This allows us to run positiv-
ity argument on Amin without worrying about the unknown
H2/M2 correction since δ(0) dominates over ρ(�E = 0)

and thus one might use (14) and (15) to extract part of the
positivity information for an EFT in the cosmological back-
ground.

3.3 Applying the bounds

The tree level 2 → 2 amplitude corresponding to (11) in the
center of mass frame is

A(s, t) =
(

−9

4
α2

1 − 6α1α2 − 4α2
2 + 3

2
β1 + 2β2

)

s2

M2
p�

2 + 2β3
s2 + t2 + u2

M2
p�

2 + 1

2
β4

stu

M2
p�

4 .

(21)

Detailed calculation of (21) but with β4 = 0 has been pre-
sented in Ref. [41]. The Lagrangian (11) is actually non-
relativistic, in that uncontracted time derivatives are present.
However, if it indeed captures the physics of some UV-
complete theory below the high energy cutoff � and above
the decoupling scale Emix � ε

1/2
H H [1], positivity derived

from locality and unitarity should be inherited. To the leading
order in H/�, the positivity bound (14) reads (without loss
of generality we set G2X = −1/2 hereafter)

(1 + εH )BX + εG2XX

+
[

4B2
X (−61 − 34εH + 34ε2

H − 2ε
(1)
H )

+ 4ε(1 + 33εH )BXG2XX

+ 2
√

2ε1/2(−23 + 5εH )BXG3X

+ ε(15 + εH )BXX + 4ε2(2G2
2XX − G2XXX )

− 2εG2
3X + √

2ε3/2(4G2XXG3X − 3G3XX )

] (
H

�

)2

≥ 0.

(22)
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Applying bound (15) yields (n = 1)

− BX + 4

[
εBXX + (34 − 28εH )B2

X − 10εBXG2XX

− √
2ε1/2BXG3X

] (
H

�

)2

≥ 0.

(23)

We have to stress again that for (14) and (15) to be trustwor-
thy, all assumptions made in Sect. 3.2 have to hold.

In the calculation, we did not assume the correction is even
powers of H/�. But it turns out the leading order correction
is indeed H2/�2, as expected in the introduction section,
so the bounds do not distinguish between contraction and
expansion. As commented before, the cosmological evolu-
tion breaks time-translation symmetry of the EFT, so it is
not surprising that the bound in Minkowski spacetime (or
the limit H/� → 0) may be violated for a relatively large
H2/�2, even if H2/�2 < 1.

3.4 Discussion

In the limit H/� → 0

We can ignore the H2/�2 correction. Without the correc-
tions, the bounds (22) and (23) are

(1 + εH )BX + εG2XX ≥ 0, BX ≤ 0. (24)

For 1 + εH > 0, we have the positivity constraint on BX as

εG2XX ≥ −(1 + εH )BX ≥ 0. (25)

In comparison, the Minkowski bound only gives G2XX ≥ 0
(see Appendix D). Ref. [40] reports G4X ≤ 0 (in the notation
here, it corresponds to BX ≤ 0) for a shift-symmetric Horn-
deski Lagrangian with onlyG2(X) andG4(X). The covariant
theory (cT = 1) studied here is essentially different from that
in [40] (cT �= 1), in which the bound G4X ≤ 0 is actually
equivalent to the subluminal condition cT ≤ 1. In fact, the
G4X ≤ 0 bound in [40] is derived from Y (2,1) ≥ 0 in [27].
The second bound in Eq. (24) has similar origin to Y (2,1) ≥ 0
and it also implies BX ≤ 0. However, as BX also contributes
in the tree level ππ → ππ scattering, we have an additional
bound in Eq. (24) which further constrains BX .

In addition, the subluminality of c2
s brings another bound

√
2ε1/2G3X ≥ 4(1 − εH )BX − 2εG2XX . (26)

This relation is automatically satisfied if G3X ≥ 0 and εH <

1. However, if G3X = 0 and εH > 1, it requires εG2XX ≥
−2(εH −1)BX , which is stronger than (25) for εH > 3. Note
it is possible to have εH ∼ O(1) if the scattering energy scale
M satisfies H ∼ Emix � M � �.

With H2/�2 correction

An interesting example is the slow-roll inflation, where
0 < ε 	 εH � 1, so the bounds (22) and (23) with H2/�2

correction can be simplified. To see this, setting ε = εH = 0
in (22) and (23), we have

BX − 244B2
X

(
H

�

)2

≥ 0, −BX + 136B2
X

(
H

�

)2

≥ 0.

(27)

This suggests BX = 0 unless we consider the slow-roll sup-
pressed parts. This implies that for the potential-driving dS
inflation, the cT = 1 beyond-Horndeski EFT (1) reduces to
GR. However, for the φ̇-driving inflation, such as k-inflation
[62,63] and G-inflation [64], since ε � 1 may be violated,
the constraint on BX will be released.

Inspired by the previous example, we look at the GR limit
(we no longer assume ε � 1 here), in which φ is not coupled
to the Ricci scalar (B ≡ 1/2). The corresponding EFT is
called Galileon [24]. Assuming G2XXX = G3XX = 0 for
simplicity, we have

εG2XX +
[
8(εG2XX )2 + 4(εG2XX )(

√
2ε1/2G3X )

−(
√

2ε1/2G3X )2
] (

H

�

)2

≥ 0. (28)

The cosmological positivity bound itself might be weaker
than its Minkowski counter part. For example, let G3X = 0
then cosmological bound (28) also allows for a negative
branch of εG2XX in addition to εG2XX ≥ 0. We are also
interested in the possibility of obtaining stronger bounds. The
combined constraint of the cosmological bound (28), the sub-
luminal condition (26) and the Minkowski bound G2XX ≥ 0
is plotted in Fig. 2 with a color coding for different val-
ues of (H/�)2. The phase space of εG2XX and

√
2εG3X

becomes more constrained as (H/�)2 gets larger. Another
point worth mentioning is one can now answer whether its
UV completion would require the Minkowski bounds to get
weaker/stronger when extended to cosmology. It is an inter-
esting issue since future data/theoretical restrictions might be
able to indicate whether the cosmological positivity bound
is stronger or weaker than its flat space counterpart.

4 Conclusion

We have investigated the application of positivity bounds
in the EFT of cosmological perturbations. As an illustrative
example, we considered a cT = 1 beyond-Horndeski EFT
(1). We explicitly showed by calculation that the leading cos-
mological correction to positivity bounds indeed comes at
H2/�2 and Ḣ/�2 order, consistent with our observation in
the introduction. It is also observed that the positivity bounds
found in the limit H/� → 0 (or in Minkowski spacetime)
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Fig. 2 The constrained phase space of εG2XX and
√

2εG3X by Eqs.
(26), (28) together with the Minkowski bound G2XX ≥ 0. The black
dashed line is given by Eq. (26). The curved lines are given by Eq.
(28). It can be seen that as cosmological evolution becomes important
(i.e:(H/�)2 gets larger), the phase space becomes more constrained for
non-zeroG3X . Constraint lines with (H/�)2 > 0.1 are not plotted since
assumptions used to derive the bound break down when the scattering
energy scale is comparable to the Hubble scale, hence the gray region
in the plot

might be violated when H is not far smaller than the cutoff
scale �, since the coefficient before H2/�2 correction is at
102 order. The bound with cosmological corrections could
be either weaker or stronger. We also discussed the applica-
tions of our bound. It is found that positivity favors a sup-
pressed BX (comparable in size with εG2XX or

√
2ε1/2G3X )

for slow-roll inflation.
Lagrangian (1) can be used to implement fully stable cos-

mological bounce. Nonpathological bouncing models built
in Refs. [15,17–20]7 all have G2XX/G2X < 0 somewhere,
which seems to be inconsistent with the bound (24) at first
sight. There is no tension for now. Typically, to violate the
null energy condition (NEC, see [67] for a review), one
requires that the operator X2 is not negligible (depending
on the value of φ) at the NEC-violating regime, while the
beyond-Horndeski operator takes effect as a stabiliser that
controls gradient stability. Usually, such models display obvi-
ous φ-dependence and nonnegligible φ̈ around the bounce
point, which invalidates the assumptions we used to derive
the bounds here. Thus our bounds cannot be directly applied
to the bouncing models. It is possible to relax these assump-

7 By “nonpathological” we require the bouncing models to be free of
gradient and ghost instability throughout the whole evolution history
of the universe. In all the models cited, due to the higher derivative
operators in theories beyond Horndeski, c2

s is always positive, thus there
is no strong coupling problem and perturbative unitarity is preserved,
see e.g. [65], see also [66] for showing the strong coupling problem in
the P(X) theory.

tions in more complete study. We might come back to relevant
issues in future works.

It is also interesting to integrate out the IR part of the
RHS of (13) within the regime of validity of the EFT to give
a more precise bound [36]. Recently, the positivity bounds
with heavy spinning intermediate states have been studied in
inflation but from a covariant point of view [68], and also Ref.
[69] has explored positivity in the Higgs-Dilaton inflation
model. It is also well-motivated to go beyond the decoupling
limit and study the EFT with graviton and high-spin particles
included [45,70].
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Appendix A The Stuekelberg trick

In the unitary guage

X ≡ ∂μφ∂μφ = φ̇2 g̃00, (A.1)

where g̃00 is given in Eq. (3). To expand Lagrangian (2), we
still need the expression of the extrinsic tensor. The normal
of the uniform-φ hypersurface is

nμ = ∂μ t̃√
−∂μ t̃ gμν∂ν t̃

= δ0
μ + ∂μπ√−g̃00

. (A.2)

Recall that we are allowed to raise and lower indices with the
unperturbed FRW metric in the decoupling limit

nμ = −δ
μ
0 + ∂μπ√−g̃00

. (A.3)
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The extrinsic curvature K is

K = −∇μn
μ, Kμ

νK
ν
μ = ∇μn

ν∇νn
μ, (A.4)

with the relevant expressions as follows

∇0n
0 = ∂0

(
−1 − π̇√−g̃00

)
, (A.5a)

∇0n
i = ∂0

(
∂iπ/a2√−g̃00

)
+ H∂iπ/a2√−g̃00

, (A.5b)

∇i n
0 = ∂i

(
−1 − π̇√−g̃00

)
+ H∂iπ√−g̃00

, (A.5c)

∇i n
j = ∂i

(
∂ jπ/a2√−g̃00

)
− (1 + π̇)Hδ

j
i√−g̃00
. (A.5d)

As a quick consistency check, one can use the above results
to expand K = −∇μnμ to quadratic order in π

K = 3H − ∂2π

a2 + 1

2
H(∂iπ)2 + π̇∂2π + 2∂i π̇∂iπ + O(π3).

It coincides with eq. (B.12) of Ref. [71] (neglecting metric
fluctuations) except for the term 3H(t−π) = 3H−3(Ḣπ +
1
2 Ḧπ2) + O(π3), an negligible mass term suppressed by
Ḣ = −εH H2. According to the Gauss–Codazzi formula,
the 3d Ricci scalar R(3) is

R(3) = R + 2Rμνn
μnν − K 2 + Kμ

νK
ν
μ. (A.6)

On the RHS, the Ricci scalar R is invariant and Rμν can be
easily calculated using the spatially flat FRW metric

R00 = −3
ä

a
, Ri j = (aä + 2ȧ2)δi j . (A.7)

Now we are well-equipped to expand Lagrangian (2) in pow-
ers of π and its derivatives.

Appendix B Derivation of Goldstone Lagrangian (11)

The equation of motion (EoM) of the free Goldstone field is

π̈ + 3H π̇ − c2
s
∇2π

a2 = 0. (B.1)

Each π field can have at most two derivatives. In fact, only
Kμν contributes second derivatives of π . Thus the n-th order
Lagrangian L(n) contains at most (n+2) derivatives. We first
consider the part of L(3) with up to four derivatives

g1π̇
3 + g2π̇

(∂iπ)2

a2 + g3π̇
∂i π̇∂iπ

a2

+g4π̈
(∂iπ)2

a2 + g5π̇
2 ∇2π

a2 + g6π̈
π̇2

a2 , (B.2)

which includes all possible three point interactions with at
most four derivatives that may yield nonvanishing amplitudes
in the center of mass (CM) frame. Note that in the CM frame,
vertices with no time-derivatives (e.g: ∂i∂ jπ∂iπ∂ jπ ) do not
contribute in exchange diagrams since the exchanged virtue
particle has vanishing 3-momentum. After some integration
by parts, we have

S(3) = M2
p�

2
∫

dx4a3
{
g1π̇

3 + (g2 − D1g4)π̇
(∂iπ)2

a2

+π̇2
[
g6π̈ − (g3/2 − g4 − g5)

∇2π

a2

]}
, (B.3)

where Dn ≡ nH + d/dt is defined, and gn, n = 1, 2, . . . , 6
are only dependent on time. Insert the EoM (B.1) and switch
to the rescaled coordinates and normalised field, we get

S(3) = M2
p�

2
∫

dx4√−g

{[
g1 + g2

c2
s

− D1g4

c2
s

− 1

3
D3g6

+(3H − D3/3)
−g3/2 + g4 + g5

c2
s

]
π̇3
c

+
(

−g2

c2
s

+ D1g4

c2
s

)
π̇c

(∂πc)
2

a2

}
1

(
√

2c3
sUMp�)3

≡
∫

dx4√−g

[
α1π̇

3
c + α2π̇c

(∂πc)
2

a2

]
1

Mp�
.

(B.4)

Now consider the part with higher-order derivatives

1

a4

[
g7

(
π̇(∇2π)2 − π̇(∂i∂ jπ)2

)

+g8(∂i π̇∂iπ∇2π − ∂i π̇∂ jπ∂i∂ jπ)
]
. (B.5)

After some integration by parts, we find that the higher
derivatives cancel out and

− 1

a4 (−H + d

dt
)
g8 − g7

2
∇2π(∂ jπ)2 (B.6)

remains, which can be safely neglected in the CM frame.
The calculation of S(4) is similar but more involved. In par-
ticular, higher-order derivative operators may contribute in
contact diagrams. We first consider operators with at most
five derivatives and then look at the higher derivative part.
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The part of S(4) with at most five derivatives is

h1π̇
4 + h2π̇

2 (∂iπ)2

a2 + h3
(∂iπ)4

a4 + h4
∂i π̇∂iπ(∂ jπ)2

a4

+ h5π̇
∂i∂ jπ∂iπ∂ jπ

a4

+ h6π̇
∇2π(∂ jπ)2

a4 + h7π̇ π̈
(∂iπ)2

a2 + h8π̇
2 ∂i π̇∂iπ

a2

+ h9π̇
3 ∇2π

a2 + h10π̈(π̇)3

→
[
h1 + (3H − D3/4)

(
h9

c2
s

− h8

3c2
s

+ h7

3c2
s

+ h6

3c4
s

− h5

6c4
s

)

−D3

4
h10

]
π̇4

+
[
h2 + (D1/4 − 3H/2)

(
h5

c2
s

− 2h6

c2
s

)
− D1

2
h7

]

π̇2 (∂iπ)2

a2

+
[
h3 − D−1

8
(2h4 − h5)

]
(∂iπ)4

a4

≡Aπ̇4 + Bπ̇2(∂iπ)2 + C(∂iπ)4

→
[(

A + B

c2
s

+ C

c4
s

)
π̇4
c −

(
B

c2
s

+ 2C

c4
s

)
π̇2
c (∂πc)

2

+C

c4
s
(∂πc)

4
]

1

(
√

2c3
sUMp�)4

≡ 1

M4
p�

4

[
β1π̇

4
c + β2π̇

2
c (∂πc)

2 + β3(∂πc)
4
]
.

(B.7)

The highest derivative part of S(4) divides into to two sec-
tors. The first sector consists solely of spacial derivatives

∼h11

[
(∂kπ)2(∂i∂ jπ)2 − (∂kπ)2(∇2π)2

]

+ h12(∂iπ∂i∂ jπ∂ j∂kπ∂kπ − ∂i∂ jπ∂iπ∂ jπ∇2π).

(B.8)

It is easy to check that both the h11 and h12 vertices cancel
out in the CM frame. Vertices in the other sector are

h13

(
π̇2(∂i∂ jπ)2 − π̇2(∇2π)2

)

+ h14(π̇∂i∂ jπ∂i π̇∂ jπ − π̇∂i π̇∂iπ∇2π)

+ h15

(
(∂i π̇)2(∂ jπ)2 − π̈(∂iπ)2∇2π

)

+ h16

(
(∂i π̇∂iπ)2 − π̈∂i∂ jπ∂iπ∂ jπ

)

→(h14 − 2h13)(π̇∂i∂ jπ∂i π̇∂ jπ − π̇∂i π̇∂iπ∇2π)

+ h15

(
(∂i π̇)2(∂ jπ)2 − π̈(∂iπ)2∇2π

)

+ h16

(
(∂i π̇∂iπ)2 − π̈∂i∂ jπ∂iπ∂ jπ

)
.

(B.9)

with the coefficients

h13 = 6B + 6

(
φ̇

Mp�

)2

BX + 4

(
φ̇

Mp�

)4

BXX ,

h14 = 24B + 16

(
φ̇

Mp�

)2

BX , h15 = −h16 = 4B.

(B.10)

Performing integration by part again to the terms proportional
to B(X), we have

[
4

(
φ̇

Mp�

)2

BX − 8

(
φ̇

Mp�

)4

BXX

]

(π̇∂i∂ jπ∂i π̇∂ jπ − π̇∂i π̇∂iπ∇2π)

+ D−1(6B)π̇∇2π∂ jπ
2 − B

2

d2

dt2 [(∂iπ)4].

(B.11)

So in conclusion, the higher derivative operators introduce
one new vertex (π̇∂i∂ jπ∂i π̇∂ jπ − π̇∂i π̇∂iπ∇2π) and mod-
ify the coefficients

h3 → h3 − B

2
(1 + εH )H2, h6 → h6 − 6BH. (B.12)

Putting together all the results in this Appendix, we get
Lagrangian (11).

Appendix C Coefficients in (11)

We list here the explicit expressions of the coefficients in
(11), calculated to the leading order in H/�,

α1 = 1

ε1/2(−G2X )3/2

(
H

�

) [
(2 + 8εH /3)BX + √

2ε1/2G3X

]
,

(C.1)

α2 = 1

ε1/2(−G2X )3/2

(
H

�

)
[2(−1 + εH )BX

+1

2

√
2ε1/2G3X + εG2XX

]
, (C.2)

β1 = 1

εG2
2X

{
2BX (−3 + εH )

3

+ 1

3G2X

[
− 12B2

X

(
5ε2

H − 36εH + ε
(1)
H + 35

)

−14BX ε(εH − 9)G2XX

+3
√

2BX ε1/2(3εH + 5)G3X

+BXX ε(εH − 27)G2X

] (
H

�

)2
}

, (C.3)

β2 = 1

εG2
2X

{
BX (3 − εH )

+ 1

G2X

[
4B2

X

(
10ε2

H − 53εH + ε
(1)
H + 49

)

+4BX ε(4εH − 15)G2XX
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−2
√

2BX ε1/2(εH + 2)G3X

+ε
(

12BXXG2X − εG2XG2XXXX + 2εG2
2XX

+√
2ε1/2G2XXG3X

) ](
H

�

)2 }
, (C.4)

β3 = 1

εG2
2X

{
BX (3εH − 5) + εG2XX

8

− 1

8G2X

[
4B2

X

(
42ε2

H − 121εH + 85
)

+4BX ε(29εH − 42)G2XX

+2
√

2BX ε1/2(3εH − 5)G3X + 6BXX εG2X

+√
2ε3/2(3G2XG3XX + 2G2XXG3X )

+20ε2G2
2XX

](
H

�

)2
}

. (C.5)

β4 = 1

εG2
2X

[
BX

2

(
H

�

)−2

+
(34 − 28εH )B2

X − BX

(
10εG2XX + √

2ε1/2G3X

)
− 2εBXXG2X

G2X

⎤
⎦

(C.6)

Appendix D Positivity in the Minkowski spacetime

To derive positivity bounds in the Minkowski spacetime for
(1), one should switch back to φ̇2 and Ḣ by inserting (5),
and pass to the H, Ḣ → 0 limit. The extrinsic curvature K
vanishes in the Minkowski spacetime. Thus positivity only
constrains G2(X) and its derivatives. The Minkowski bound
as well as the sound speed are (G2X = −1/2)

G2XX +
(

4G2
2XX − 2G2XXX

) (
φ̇

Mp�

)2

+
(

40G3
2XX − 4G2XXG2XXX + G2XXXX

2

)

×
(

φ̇

Mp�

)4

+ · · · ≥ 0, (D.1)

c2
s = 1

1 + 4G2XX

(
φ̇

Mp�

)2 . (D.2)

Absence of superluminality places the bound G2XX ≥ 0. An
interesting case is that ifG2(X) ∼ Xn , in which Xn is the first
nonnegligible higher-order derivative operator in the G2(X)

polynomial, the positivity bound (D.1) implies G2XXX ≤ 0
if G2XX = 0 and G2XXXX ≥ 0 if G2XX = G2XXX = 0,
consistent with the result of Ref. [29].
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