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Abstract We revisit the information on the two lightest a0

resonances and S-wave πη scattering that can be extracted
from photon–photon scattering experiments. For this purpose
we construct a model for the S-wave photon–photon ampli-
tudes which satisfies analyticity properties, two-channel uni-
tarity and obeys the soft photon as well as the soft pion con-
straints. The underlying I=1 hadronic T -matrix involves six
phenomenological parameters and is able to account for two
resonances below 1.5 GeV. We perform a combined fit of the
γ γ → πη and γ γ → KSKS high statistics experimental
data from the Belle collaboration. Minimisation of the χ2

is found to have two distinct solutions with approximately
equal χ2. One of these exhibits a light and narrow excited
a0 resonance analogous to the one found in the Belle anal-
ysis. This however requires a peculiar coincidence between
the J = 0 and J = 2 resonance effects which is likely
to be unphysical. In both solutions the a0(980) resonance
appears as a pole on the second Riemann sheet. The loca-
tion of this pole in the physical solution is determined to be
m − iΓ/2 = 1000.7+12.9

−0.7 − i 36.6+12.7
−2.6 MeV. The solutions

are also compared to experimental data in the kinematical
region of the decay η → π0γ γ . In this region an isospin vio-
lating contribution associated with π+π− rescattering must
be added for which we provide a dispersive evaluation.

1 Introduction

The a0(980) and f0(980) scalar mesons were the first
observed members of a family of exotic resonances in QCD
which are located very close to an inelastic two-particle
(or quasi two-particle) threshold (see the review [1]). The
a0(980) resonance was discovered a long time ago and seen
in both the K K̄ and the πη channels [2,3] but its properties
are still imprecisely known. This is partly becauseπη produc-
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tion experiments using an η beam, analogous to those which
have allowed to determine the ππ or πK phase shifts, are not
feasible. The a0(980) properties have to be determined solely
from final-state rescattering effects. As shown by Flatté [4],
who proposed a simple replacement for the Breit-Wigner
resonance formula accounting for the πη − K K̄ coupled-
channel dynamics, ambiguous results for the a0 width can be
obtained. In the PDG [5], indeed, its width is simply quoted
as lying in a range from 50 to 100 MeV. Beyond the value of
the width, one would like to determine the positions of the
poles on the unphysical Riemann sheets. For resonance states
close to an inelastic threshold, there are three sheets (II, III,
IV in the case of the a0) which are physically relevant (i.e.
a pole in one of these can be close to the physical region).
It is also clear that a better determination of the resonance
properties is closely tied to a better knowledge of the physical
scattering T -matrix.

A theoretically motivated treatment of final-state interac-
tions becomes prohibitively difficult for multiparticle final
states. In this regard, photon–photon to meson-meson scat-
tering amplitudes are very favourable processes.1 They are
free of initial-state interactions and satisfy dispersion rela-
tions which can be constrained, in the case of ππ or πη by
both soft photon [7,8] and soft pion [9] low-energy theorems.
As was illustrated in the seminal papers [10,11] a predictive
representation can be implemented at the level of the partial-
waves with a simple modelling of the left-hand cut. From
an experimental point of view γ γ → ηπ0 cross-sections
were first measured by the Crystal Ball collaboration [12].
Measurements with much higher statistics were recently per-
formed by the Belle collaboration [13]. There are also exper-
imental results on the η → π0γ γ decay amplitude [14,15].
Recent experimental data exist also for γ γ → K 0 K̄ 0 [16]

1 A renewed interest in such processes, both theoretical and experi-
mental, is motivated, more generally, by the problem of evaluating the
so-called hadronic light-by-light contribution to the muon g − 2 (see
e.g. [6]).
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and γ γ → K+K− [17] which will be considered in our
study.

There are two puzzling aspects in the data analysis
performed by the Belle collaboration which we wish to
reconsider: a) they find that the a0(980) peak seems to
be best described by an ordinary (i.e. essentially elas-
tic) Breit-Wigner function and b) they find an excited a0,
which could correspond to the a0(1450), but has a width,
Γ = 65+2.1

−5.4 MeV, much smaller than the PDG average
as well as a significantly smaller mass. These data have
been re-analysed recently [18] based on a specific meson-
meson T -matrix model [19] applied to the πη S-wave, from
which the corresponding γ γ amplitude is deduced from a
Muskhelishvili-Omnès (MO) construction [20,21]. Includ-
ing also the a2(1320) resonance but no a0(1450) resonance
a good description of the data up to 1.1 GeV and a qualitative
description up to 1.4 GeV has been achieved. The a0(980)

pole, in this model, lies on the fourth Riemann sheet. Inter-
estingly, an analogous pole location was found in a lattice
QCD calculation of the T -matrix [22] who implemented a
coupled-channel generalisation of Lüscher’s single-channel
method [23]. This result, however, corresponds to a pion mass
mπ = 391 MeV and it is not known how the pole location
evolves upon varying mπ (see, however, Ref. [24]). Fits
to the Belle data with a conventional a0(1450) were per-
formed in Ref. [25] but only the integrated cross-sections
were considered in that work. Detailed global descriptions
of photon–photon scattering to two mesons were proposed
also in Ref. [26] focusing mostly on the I = 0, 2 channels.
In the I = 1 sector, they considered the K K̄ channel but not
πη.

We perform here a global fit which takes into account
both πη and K K̄ photon–photon data including all the dif-
ferential cross-sections up to 1.4 GeV. In the I = 1 sector,
we use the S-wave coupled-channel T -matrix model devel-
oped in Ref. [27] which satisfies unitarity, proper analyticity
properties and matches to the chiral expansion up to the next-
to-leading order at low energy. The S-wave photon–photon
amplitudes are then deduced from a general MO representa-
tion involving two subtraction constants and implementing
a simple description of the left-hand cut from cross-channel
vector-meson exchanges. This is quite similar to Ref. [18],
we differ mainly by using SU (2) chiral symmetry, which
allows to fix one of the subtraction constants through a soft
pion theorem.2 The J = 2 partial-waves are described more
phenomenologically as a sum of cross-channel resonance
exchange and a direct a2(1320) Breit-Wigner amplitude. The
γ γ → (K K̄ )I=1 amplitudes are then combined with I = 0
amplitudes taken from a previous work [28] which consid-
ered γ γ → (ππ)I=0,2, (K K̄ )I=0 in order to reconstruct the

2 A further difference is that the soft photon constraints at s = 0 are
not imposed in the dispersion relations used in [18].

physical K+K−, K 0 K̄ 0 amplitudes. A global fit of photon–
photon to meson-meson data was performed some time ago
based on unitarised chiral amplitudes [29], this model was
also applied to the η → π0γ γ decay [30,31]. A remarkable
qualitative agreement with the data available at the time was
achieved using a single arbitrary parameter in the S-wave.
Today, a much larger data set is available and the precision
has increased significantly. We use here a model for the T -
matrix involving six parameters which will be determined by
performing fits to these data.

An interesting aspect of the γ γ → πη amplitudes is
that they can be probed experimentally both in the scattering
regime: sγ γ ≥ (mη + mπ )2 and in the decay regime: 0 ≤
sγ γ ≤ (mη − mπ )2. In the decay region the amplitudes are
largely dominated by the light vector meson exchanges in the
cross-channels: γπ → ρ, ω → γ η, which were first com-
puted in Ref. [32]. In this low-energy region the rescattering
contributions can be estimated in the SU (3) chiral expansion
[33]. They proceed essentially via γ γ → K+K− → π0η

but, at low energy, the π+π− contribution (which is isospin
violating) is not negligible and must also be included [33].
We will present a dispersive calculation of this contribu-
tion which gives rise to a cusp in the energy distribution
dΓ η→π0γ γ /dsγ γ .

The plan of the paper is as follows. After recalling some
general properties of photon–photon amplitudes and intro-
ducing the notation in Sect. 2, we write the unitarity relations
for the partial-waves in Sect. 3 and present the modelling of
the left-hand cut of these. In Sect. 4 we recall the derivation of
a MO representation for the S-waves. A dispersive represen-
tation for the isospin violating S-wave, valid at low energy,
is also derived. The comparison with the experimental data
on photon–photon scattering is performed in Sect. 5 and the
information that can be deduced on the a0 resonances are
discussed.

2 Basic ingredients

2.1 Kinematics

We consider two-photon to two-meson scattering amplitudes

γ (q1)γ (q2) → M1(p1)M2(p2) (1)

with M1M2 = πη or K K̄ . The Mandelstam variables are
defined as usual by

s = (q1 + q2)
2, t = (q1 − p1)

2, u = (q1 − p2)
2 . (2)

The various physical regions in the s, t−u Mandelstam plane
for the γ γ → πη, γπ → γ η and η → γ γπ processes
are shown on Fig. 1. In the centre-of-mass frame of the two
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Fig. 1 Physical regions for γ γ → πη, γπ → γ η scattering and
η → γ γπ0 decay. The black square indicates the soft pion point

photons the momenta are expressed as

q1 =
√
s

2

(
1
ẑ

)
, q2 =

√
s

2

(
1

−ẑ

)

p1 = 1

2
√
s

(
s + Δ12√
λ12(s) v̂

)
, p2 = 1

2
√
s

(
s − Δ12

−√
λ12(s) v̂

)

(3)

where

Δ12 = m2
1 − m2

2

λ12(s) = (s − (m1 + m2)
2)(s − (m1 − m2)

2) . (4)

Taking ẑ to a unit vector along the z axis and v̂ to be a unit
vector with polar angles θ , φ such that ẑ · v̂ = cos θ , we can
express t , u in terms of cos θ as,

t = 1

2

(
m2

1 + m2
2 − s +√

λ12(s) cos θ
)

u = 1

2

(
m2

1 + m2
2 − s −√

λ12(s) cos θ
)

. (5)

The polarisation vectors of the two photons ε1(q1, λ),
ε2(q2, λ

′) in this frame read

ε1(q1, λ) = 1√
2

⎛
⎜⎜⎝

0
−λ

−i
0

⎞
⎟⎟⎠ , ε2(q2, λ

′) = 1√
2

⎛
⎜⎜⎝

0
λ′
−i
0

⎞
⎟⎟⎠ (6)

and they satisfy ε1 · q1 = ε2 · q2 = ε1 · q2 = ε2 · q1 = 0 .

2.2 Amplitudes

We denote the γ γ → ηπ helicity amplitude as Lλλ′

<
out

η(p1)π(p2)|γ (q1, λ)γ (q2, λ
′) >

in

= ie2(2π)4δ(Pf − Pi ) ei(λ−λ′)φLλλ′(s, t) (7)

(we have factored out the electric charge e and the depen-
dence on the azimuthal angle φ) while for the γ γ → K K̄
amplitudes we use the same notation as in previous work:
Kc

λλ′(s, t) for charged kaons and Kn
λλ′(s, t) for neutral kaons.

Helicity amplitudes are convenient for performing the par-
tial wave expansion [34]. They can be expressed in terms of
tensor amplitudes using the reduction formulas, e.g.

ei(λ−λ′)φLλλ′(s, t)

= ε
μ
1 (q1, λ)εν

2 (q2, λ
′)Wμν(q1, q2, p1, p2) . (8)

By gauge invariance, the tensor amplitude Wμν must satisfy
the two Ward identities

qμ
1 Wμν = qν

2Wμν = 0 . (9)

One can form two independent tensors which satisfy (9)
which we take as

Tμν
1 = 1

2
sgμν − qν

1q
μ
2

Tμν
2 = 2sΔμΔν + 4q1.Δ q2.Δ gμν

−4q2.Δ qν
1 Δμ − 4q1.Δ qμ

2 Δν (10)

with

Δ = p1 − p2 . (11)

The tensor amplitude Wμν can then be expressed in terms of
two scalar amplitudes A, B

Wμν(q1, q2, p1, p2) = A(s, t, u)Tμν
1 + B(s, t, u)Tμν

2 (12)

which satisfy dispersion relations. Using Eqs. (5), (6) one
can easily express the helicity amplitudes Lλλ′ in terms of
the two scalar amplitudes,

L++ = L−− = s

2
A(s, t) + s

(
2m2

1 + 2m2
2 − s

)
B(s, t)

L+− = L−+ = sin2 θλ12(s)B(s, t) . (13)

Assuming unpolarised photon beams the differential cross-
section reads,

dσγγ→M1M2

d cos θ
= πα2

4s2

√
λ12(s)

(
|L++|2 + |L+−|2

)
. (14)

Concerning the η → πγ γ decay amplitude, the double dif-
ferential distribution in the Dalitz plot reads,

d2Γ η→γ γπ

dsdt
= α2

8πm3
η

(
|L++|2 + |L+−|2

)
(15)

and the distribution as a function of s only (which is the one
available experimentally) is given by

dΓ η→γ γπ

ds
= α2

32πm3
η

√
λ12(s)

×
∫ 1

−1
d cos θ

(
|L++|2 + |L+−|2

)
. (16)
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2.3 Isospin

Using the following (usual) isospin assignments for the pions
and the kaons
⎛
⎝π+

π0

π−

⎞
⎠ ∼

⎛
⎝−|11〉

|10〉
|1,−1〉

⎞
⎠

(
K+
K 0

)
∼
( | 1

2
1
2 〉

| 1
2

−1
2 〉
)

,

(
K̄ 0

K−
)

∼
( | 1

2
1
2 〉

−| 1
2

−1
2 〉
)

(17)

while η ∼ |0, 0〉, the relations between the amplitudes
γ γ → K+K−, K 0 K̄ 0 and the isospin amplitudes γ γ →
(K K̄ )I=0,1 read,

(
K 0

λλ′
K 1

λλ′

)
=
⎛
⎝−

√
1
2 −

√
1
2

−
√

1
2

√
1
2

⎞
⎠( Kc

λλ′
Kn

λλ′

)
, (18)

and the analogous relations between the amplitudes γ γ →
π+π−, π0π0 and the corresponding isospin I = 0, 2 ampli-
tudes (which will also be needed) is

(
H0

λλ′
H2

λλ′

)
=
⎛
⎝−

√
2
3 −

√
1
3

−
√

1
3

√
2
3

⎞
⎠(

√
2 Hc

λλ′
Hn

λλ′

)
. (19)

3 Partial waves: unitarity, analyticity

3.1 Right-hand cut and unitarity relations

It is convenient to collect the three I = 1 scattering ampli-
tudes πη → πη, πη → K K̄ and K K̄ → K K̄ into a 2 × 2
matrix

T ≡
(
T πη→πη T πη→K K̄

T πη→K K̄ T K K̄→K K̄

)
(20)

and we can define the partial wave expansions as

T (s, t, u) = 16π
∑

(2 j + 1)T j (s)Pj (cos θ) (21)

where θ is the scattering angle in the centre-of-mass system.
The unitarity relation for the partial waves are easily derived
and reads

Im [T j (s)] = T j (s)Σ(s)T∗
j (s) (22)

with

Σ(s) =
⎛
⎜⎝
√

λπη(s)

s
θ(s − (mπ + mη)

2) 0

0

√
λKK (s)

s
θ(s − 4m2

K )

⎞
⎟⎠ .

(23)

Concerning the I = 1 photon–photon amplitudes we define
the partial-wave expansion as(

Lλλ′(s, t)
K 1

λλ′(s, t)

)
=
∑
j

(2 j + 1)

(
l j,λλ′(s)
k1
j,λλ′(s)

)
d j
λ−λ′,0(θ) .

(24)

The unitarity relations for the S-waves, as will be imple-
mented below, read

Im

(
l0++(s)
k1

0++(s)

)
= T∗

j (s)Σ(s)
(
l0++(s)
k1

0++(s)

)
, (25)

which also give the discontinuities of the partial-waves
(extended to complex values of s) across the right-hand cut.

3.2 ππ (isospin violating) contribution in S-wave unitarity

The unitarity relation written above (25) collects the contri-
butions from the πη and the K K̄ states. Let us also consider
the contribution from the π+π− state, which has the form

Im [〈π0η|T |γ γ 〉]ππ = 1

2

∫
dΦ(p+, p−) 〈π0η|T |π+π−〉

×〈π+π−|T †|γ γ 〉
(26)

where dΦ is the phase-space integration measure. This con-
tribution, being proportional to the ππ → ηπ amplitude, is
isospin violating but it is enhanced at low energy due the large
size of the γ γ → π+π− amplitude [33]. The ChPT evalua-
tion performed in Ref. [33] amounts to using the O(p2) tree-
level amplitudes for both ππ → ηπ and γ γ → π+π− in
Eq. (26). An evaluation which goes beyond the chiral expan-
sion can be performed which we now discuss.

We consider only the S-wave contribution in Eq. (26) and
a restricted kinematical region such that s, t, u < 1 GeV2. In
such a region, the π+π− → ηπ0 amplitude can be approxi-
mated in terms of three one-variable functions M0, M1, M2

(see [36,37]),

T π+π−→ηπ0
(s, t, u) = −εL

[
M0(s)−2

3
M2(s)+(s−u)M1(t)

+(s−t)M1(u)+M2(t)+M2(u)

]
.

(27)

An isospin violating parameter εL has been factorised which
may be taken as [38]

εL =

(
m2

K 0 − m2
K+
)
QCD

3
√

3F2
π

. (28)

The three MI functions obey a set of coupled Khuri-Treiman
integral equations, see Ref. [38] for a complete review of
work on this subject. We will use here the evaluation of the

123



Eur. Phys. J. C (2020) 80 :436 Page 5 of 22 436

K 0 − K+ QCD mass difference from Ref. [39] (updated
in [38]) based on experimental data on η → 3π decays:(
m2

K 0 − m2
K+
)
QCD

= (6.24 ± 0.38) × 10−3 GeV2, which

gives

εL = 0.141 ± 0.009 . (29)

The amplitudes corresponding to a given ππ isospin state
I, Iz

MI Iz ≡ 〈ηπ |T |ππ; I Iz〉 (30)

are easily expressed using crossing symmetry and the
Wigner-Eckart theorem. In the unitarity relation (26) the
amplitudes with I = 0, 2, M00 and M20, are needed which
have the following expressions

M00(s, t, u) = √
3 εL

[
M0(s) + 1

3
M0(t) + 10

9
M2(t)

+2

3
(s − u)M1(t) + (t ↔ u)

]

M20(s, t, u) = −2
√

6

3
εL

[
M2(s) + 1

2
M0(t) + 1

6
M2(t)

− 1

2
(s − u)M1(t) + (t ↔ u)

]

(31)

in terms of the MI functions. We denote the angular integrals
of these amplitudes as

1

2

∫ 1

−1
dzM00(s, t, u) ≡ √

3 εL

(
M0(s) + M̂0(s)

)

1

2

∫ 1

−1
dzM20(s, t, u) ≡ −2

√
6

3
εL

(
M2(s) + M̂2(s)

)
.

(32)

With this notation, the ππ contribution to the unitarity rela-
tion is finally expressed as follows,

disc [l0,++(s)]ππ = εL

√
3

32π

√
s − 4m2

π

s

×
[ (

h0
0,++(s)

)∗
(M0(s) + M̂0(s))

−2
√

2

3

(
h2

0,++(s)
)∗

(M2(s) + M̂2(s))

]
(33)

where

disc [l0,++(s)]ππ ≡ l0,++(s + iε) − l0,++(s − iε)

2i
, (34)

and hI
0,++(s) are the two S-wave γ γ → (ππ)I ampli-

tudes with I = 0, 2. This ππ discontinuity of l0++ can be
estimated from Eq. (33) using inputs from Ref. [28] for
γ γ → ππ and from [27] for ππ → ηπ . The result of this

Fig. 2 Discontinuity of the γ γ → πη S-wave amplitude (real part)
across the π+π− cut computed using dispersive results for the γ γ →
ππ and ππ → ηπ amplitudes, compared to the chiral O(p4) result

estimate is illustrated on Fig. 2 and compared with the chi-
ral calculation at NLO. The dispersive evaluation displays a
square-root singularity at s = (mη − mπ )2 induced by the
endpoint of the left-hand cut in the functions M̂0, M̂2 which
overlaps with the right-hand cut as a result of the instability
of the η. As a further consequence, the phase of the partial-
waves MI + M̂I violate Watson’s theorem and do not cancel
with the phases of hI

0,++ such that the discontinuity has both
a real and an imaginary part.

3.3 Left-hand cut: born amplitudes

A left hand cut in the γ γ partial-waves is generated by singu-
larities in the cross-channels γ P1 → γ P2. In the case when
P1 = P2 = K+ or π+ the leading singularity is the kaon or
pion pole and the corresponding (so-called Born) amplitudes
read

ABorn
P (s, t, u) = s(

t − m2
P

) (
u − m2

P

)
BBorn
P (s, t, u) = 1

2
(
t − m2

P

) (
u − m2

P

) (35)

with P = K+, π+. We will need the I = 1 component
of the K+ Born amplitude projected on the S-wave which
reads,

k1,Born
0,++ (s) = −2

√
2m2

K+
s

LK+(s) ,

LK+(s) = 1

βK+(s)
log

1 + βK+(s)

1 − βK+(s)
(36)

with βP (s) =
√

1 − 4m2
P/s. We also recall the expressions

of the J = 2 Born helicity amplitudes
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k1,Born
2++ (s) = − 2m2

K+

s β2
K+(s)

[(
β2
K+(s) − 3

)
LK+(s) + 6

]

k1,Born
2+− (s) =

√
6

4sβ2
K+(s)

[ (
1 − β2

K+(s)
)2

LK+(s)

+ 10

3
β2
K+(s) − 2

]
. (37)

3.4 Left-hand cut: vector meson exchanges

Leading contributions to the left-hand cut in the π0η ampli-
tudes are modelled from the ρ, ω, φ vector meson exchanges.
We define the V Pγ coupling constants GV P through simple
Lagrangians

LV Pγ = eGV P εμναβFμν∂αPVβ (38)

from which one can relate their values to the decay widths
of the vector mesons via

ΓV→Pγ = αC2
V P

(
m2

V − m2
P

)3
6m3

V

. (39)

The vector-exchange contributions to the γ γ → P1P2

amplitudes are easily computed,

AP1P2
V (s, t, u) = GV P1GV P2

−4t − 2m2
1 − 2m2

2 + s

2
(
m2

V − t
)

+(t ↔ u)

BP1P2
V (s, t, u) = GV P1GV P2

1

4
(
m2

V − t
) + (t ↔ u) . (40)

They give rise to poles in the zero-width approximation,
which is adequate in the kinematical regions of interest here.
The helicity amplitudes are

LP1P2
V,++(s, θ) = CV P1CV P2

−st

m2
V − t

+ (t ↔ u)

LP1P2
V,+−(s, θ) = CV P1CV P2

sin2 θλ12(s)

4(m2
V − t)

+ (t ↔ u) (41)

and the corresponding partial-waves with J = 0, 2 have the
following form

lV0,++(s) = CVπCVη 2s
(

1 − m2
V LV (s)

)

lV2,++(s) = CVπCVη m
2
V s

{
(1 − 3X2

V (s))LV (s)

+ 6XV (s)√
λ12(s)

}

lV2,+−(s) =
√

6

8
CVπCVη

{
λ12(s)(1 − X2

V (s))2 LV (s)

−2

3

√
λ12(s)XV (s)(3X2

V (s) − 5)

}
(42)

with

XV (s) = s − m2
1 − m2

2 + 2m2
V√

λ12(s)
(43)

which is the cosine of the scattering angle when t = m2
V .

The function LV (s) is given by the angular integral

LV (s) =
∫ 1

−1
dz

s + 2m2
V − m2

1 − m2
2

λ12(s)(1 − z2) + 4m2
V (s − sV )

(44)

with

sV = −
(
m2

V − m2
1

) (
m2

V − m2
2

)
m2

V

, (45)

it can be expressed in terms of XV as

LV (s) = log(XV (s) + 1) − log(XV (s) − 1)√
λ12(s)

. (46)

We note that the partial-wave lV0++(s) has a soft pion Adler
zero at s = sA which can be approximated as

sA = m2
η + m2

π

(
1 + m2

η

m2
V

(
−2

3
+ 4

135

mπ
2m2

η

m4
V

− 8

8505

mπ
4m4

η

m8
V

+ · · ·
))

. (47)

From the integral representation (44) one sees that the
function LV has endpoint singularities at z = ±1 when
s = sV , which thus corresponds to a branch point of LV (s).
Another endpoint singularity occurs when s = ∞. When
s > sV , the denominator remains strictly positive. Therefore,
LV is an analytic function of s with a cut on the negative real
axis: −∞ < s < sV . The discontinuity of LV along the cut
is easily determined

Im [LV (s + iε)] = − π√
λ12(s)

θ(sV − s) (48)

from which one deduces the left-cut discontinuities of the
vector-exchange partial-waves

1

π
Im

[
lV0,++(s)

]
= 2CVπCVη

s m2
V√

λ12(s)
θ(sV − s)

1

π
Im

[
lV2,++(s)

]
= CVπCVη

s m2
V√

λ12(s)

(
3X2

V (s) − 1
)

×θ(sV − s)

1

π
Im

[
lV2,+−(s)

]
= −

√
6

8
CVπCVη

√
λ12(s)

(
1 − X2

V (s)
)2

×θ(sV − s) . (49)

We will use these discontinuities in the Muskhelishvili-
Omnès representations below. We must consider also the vec-
tor exchange contributions for the γ γ → (K K̄ )I=1 ampli-
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Table 1 Radiative widths of vector mesons and corresponding coupling
constants. The relative signs of the couplings are determined assuming
flavour symmetry

Γ (keV) CV P (GeV−1)

ρ0 → π0γ 69 (9) 0.368 (24)

ρ0 → ηγ 44 (3) 0.789 (30)

ω → π0γ 713 (26) 1.160 (20)

ω → ηγ 3.8 (4) 0.222 (11)

φ → π0γ 5.5 (2) 0.067 (1)

φ → ηγ 55 (1) 0.345 (4)

K ∗± → K±γ 50 (5) 0.418 (22)

K ∗0 → K 0γ 116 (11) −0.636 (30)

tudes, we denote the relevant combination of coupling con-
stants as

C̃ (1)
K ∗ ≡ 1√

2

(
−C2

K ∗K+ + C2
K ∗K 0

)
. (50)

The imaginary parts of the J = 0, 2 partial-wave amplitudes
along the left-hand cut read

1

π
Im

[
kV0,++(s)

]
= 2C̃ (1)

K ∗
s m2

K ∗√
λKK (s)

θ(sK ∗ − s)

1

π
Im

[
kV2,++(s)

]
= C̃ (1)

K ∗
s m2

K ∗√
λKK (s)

(
3X2

K ∗(s) − 1
)

×θ(sK ∗ − s)

1

π
Im

[
kV2,+−(s)

]
= −

√
6

8
C̃ (1)
K ∗
√

λKK (s)
(

1 − X2
K ∗(s)

)2

×θ(sK ∗ − s) . (51)

The updated values of the couplings CV P are collected in
Table 1 below. (a)

4 Representations of the J = 0, 2 partial-waves

4.1 Muskhelishvili-Omnès representations for the S-waves

In order to write a dispersive representation for l0++ some
knowledge concerning its asymptotic behaviour is needed.
Let us then consider the angular integral,

l0++(s) ≡
∫ 1

0
dz L++(s, t) (52)

in the s → ∞ limit. There are two regions of the angular
variable z for which the behaviour of the integrand is known:
(a) when z is close to 0, then t ∼ u ∼ −s ∼ −∞. In
this regime, L++(s, t) can be estimated from QCD-based
methods [40,41] according to which one has

L++(s, t) � L+−(s, t) ∼ αs(s)

s
. (53)

(b) When z is close to 1, then |t | << s which is the region
where Regge theory applies, the leading contribution from
the vector meson trajectory gives

L++(s, t) ∼ βV (t)(α′s)αV +α′t (54)

with αV � 0.5, α′ � 0.9 GeV−1 and βV (t) is a smooth func-
tion when t < 0. Assuming only that the integrand evolves
smoothly between these two regimes when 0 ≤ z ≤ 1, one
deduces that the l0++(s) should not grow faster than

√
s when

s → ∞.
Furthermore, the J = 0 partial-waves obey soft-photon

theorems [7,8] which imply that the ratios l0++(s)/s and
(k1

0++(s) − k1,Born
0++ (s))/s remain finite when s → 0. There-

fore, they can be expressed as unsubtracted dispersion rela-
tions in terms of the left-hand and right-hand cuts disconti-
nuities,

l0++(s) = s

[
1

π

∫ sV

−∞
ds′ Im [l0++(s′)]

s′(s′ − s)

+ 1

π

∫ ∞

m2+
ds′ Im [l0++(s′)]

s′(s′ − s)

]

k1
0++(s) = k1,Born

0++ (s) + s

[
1

π

∫ sK∗

−∞
ds′ Im

[
k1

0++(s′)
]

s′(s′ − s)

+ 1

π

∫ ∞

m2+
ds′ Im

[
k1

0++(s′)
]

s′(s′ − s)

]
(55)

with m+ = mπ + mη. The isospin symmetry limit has been
assumed here, implying that the η meson is stable and the
discontinuities are real. At low energies the left-cut discon-
tinuities are dominated by the vector meson exchanges. We
will introduce subtractions, in order to reduce the influence
of the higher energy regions where the discontinuities are
not known. The right-cut discontinuities are given by the
unitarity relations. Unitarity is known to be saturated with
two channels to a very good approximation in the region of
the a0(980) resonance. We will assume that elastic unitarity
holds below the K K̄ threshold and that two-channel unitarity
remains a sufficiently good approximation up to

√
s = 1.4

GeV. Under the assumption of two-channel unitarity the dis-
persion relations (55) form a set of coupled inhomogeneous
Muskhelishvili equations. They can be solved in terms of a
two-channel MO matrix which satisfies a homogeneous set
of coupled equations in terms of the T matrix3

Ω0(s) = 1

π

∫ ∞

m2+

ds′

s′ − s
T (s)Σ(s)Ω∗

0(s) . (56)

3 The πη and K K̄ scalar form factors are expected to go like 1/s at
infinity (up to log’s) in QCD and must be proportional to the matrix
elements of the MO matrix (up to a polynomial). Consequently, the
MO matrix elements must vanish when s → ∞ like 1/s at least, which
is assumed in Eq. (56).
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Asymptotic conditions on the phase-shifts are imposed which
ensure that the set of equations (56) has a unique solution
once initial conditions at s = 0 are given (see Sect. 3.2 in
Ref. [27] and references therein). At s = 0 one can take

Ω0(0) =
(

1 0
0 1

)
. (57)

Multiplying the amplitudes (l0++, k1
0++) by the inverse of

the matrix Ω0 removes the right-hand cuts. We can use this
property in writing once-subtracted dispersion relations for
the two functions(

φ1(s)
φ2(s)

)
≡ Ω−1

0 (s)

(
l0++(s)/s

(k1
0++(s) − k1,Born

0++ (s))/s

)
. (58)

This provides MO-type dispersive representations for the γ γ

amplitudes l0++(s), k1
0++(s) in terms of their imaginary parts

on the left-cut and two parameters, bl , bk(
l0++(s)
k1

0++(s)

)
=
(

0
k1,Born

0++ (s)

)

+s Ω0(s)

(
bl + L1(s) + R1(s)
bk + L2(s) + R2(s)

)
. (59)

The functions Li (s) are dispersive integrals over the left-
hand cuts. We express them in a way which allows to easily
implement the presence of an Adler zero at s = sA in the
amplitude l0++ (see “Appendix B”)

Li (s)= s − sA
π

{∫ sV

−∞
ds′

s′(s′ − sA)(s′ − s)
Di1(s

′) Im
[
lV0++(s′)

]

+
∫ sK∗

−∞
ds′

s′(s′ − sA)(s′ − s)
Di2(s

′) Im
[
kV0++(s′)

]}
(60)

where the functions Di j (s) are the matrix elements of the
inverse of the Omnès matrix,

D(s) ≡ Ω−1
0 (s) . (61)

The functions Ri (s), secondly, are the dispersive integrals
over the right-hand cut,

Ri (s) = − s − sA
π

×
∫ ∞

4m2
K

ds′

s′(s′ − sA)(s′ − s)

×Im [Di2(s
′)] k1,Born

0++ (s′) . (62)

A relation between the parameters bl and bk can be derived
from imposing that the amplitude l0++ has an Adler zero at
s = sA,

bl = −bkΩ12(sA)/Ω11(sA) . (63)

The parameter bk will eventually be fitted to the experimental
data but we can estimate its order of magnitude by match-
ing the amplitude k1

0++ with the SU (3) chiral expansion.
Including the order p4 contributions (see “Appendix B”) and

Fig. 3 The S-wave amplitude l0++ from the dispersive construction
using the central values of the fitted parameters

an estimate of the order p6 from the vector-meson exchange
amplitudes, we obtain

bk + L2(0) + R2(0) � −2
√

2

F2
π

(L9 + L10)

−√
2
(
G2

K ∗0K − G2
K ∗+K

) m2
K

m2
K ∗

� −(0.57 ± 0.03) GeV−2 (64)

using the determination L9 + L10 = (1.44 ± 0.08) · 10−3

taken from Ref. [42]. Below, the value of bk will be fit-
ted to the experimental data, the resulting combination
bk + L2(0) + R2(0) turns out to have a sign compatible
with (64) and a magnitude smaller by a factor of two. The
result of the dispersive construction of the S-wave amplitude
l0++ is illustrated in Fig. 3. The corresponding result for the
K K̄ amplitude k1

0++ is shown in “Appendix C” (see Fig. 13).

4.2 Dispersive construction of the isospin-violating S-wave

In Sect. 3.2 we have considered the unitarity contribution
to the γ γ → πη S-wave amplitude induced by the π+π−
intermediate state, which is isospin violating. Let us call L̃++
the isospin-violating part of the γ γ → πη helicity amplitude
and l̃0++ the corresponding S-wave. L̃++ can be defined as
a matrix element,

L̃++ ≡ 1

2
(md − mu)

×〈π0(p1)η(p2)|(ūu−d̄d)|γ (q1,+)γ (q2,+)〉 .(65)

We will attempt here to estimate the amplitude l̃0++ at low
energy only and we write a dispersive representation keeping
only the contribution from the ππ cut,
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l̃0,++(s) ≡ s

(
λ̃ + s − sA

π

∫ ∞

4m2
π

ds′

s′(s′ − sA)(s′ − s)

× disc [l0,++(s′)]ππ

)
. (66)

We have used two subtractions in Eq. (66) in order to strongly
reduce the influence of the energy region above 1 GeV. One
subtraction constant is fixed from imposing the soft pho-
ton zero. We can then estimate the parameter λ̃ in Eq. (66)
by using the soft pion limit. This limit provides a relation
between the amplitude l̃0++(s = sA) and a matrix ele-
ment of the pseudo-scalar operator p0 = i(ūγ 5u + d̄γ 5d)

which, in turn, can be estimated using ChPT. This is detailed
in “Appendix B.3”. Using Eqs. (B.22), (B.23) from this
appendix we obtain the following result for λ̃

λ̃ = 3εL

8π2sA

(
1 − m2

π

3F2
π

) (
Gπ (sA) − 1

2
GK (sA)

)
(67)

where the loop functions Gπ , GK are given in Eq. (B.1).
The discontinuity disc [l0++(s)]ππ (given in Eq. (33)) has a
singularity at the pseudo-threshold s = (mη −mπ )2 induced
by the ππ → ηπ partial-wave (see Fig. 2). The integral in
Eq. (66), however, is finite. It is defined by using the m2

η +
iε limiting prescription exactly in the same way as those
which appear in the Khuri-Treiman equations for theη → 3π

amplitude (see e.g. [36,43]).
The result, in the low energy region relevant for η → πγ γ

is shown in Fig. 4 and compared to the corresponding chiral
O(p4) result from Eq. (B.6). The chiral and dispersive real
parts agree at s = m2

η, as a result of the soft pion relation,
but the two amplitudes differ substantially at lower energy:

• The cusp at the ππ threshold is much more pronounced
in the dispersive amplitude which is approximately five
times larger in magnitude than the p4 amplitude at s =
4m2

π .
• The p4 amplitude has a zero at s = 4/3m2

π in contrast
to the dispersive amplitude which has no zero in this
region. This is because this zero is unrelated to a soft
photon constraint and is an accidental feature of the p4

amplitude.

4.3 D-wave amplitudes modelling

For the J = 2 partial-waves one can write unsubtracted dis-
persion representations analogous to those for J = 0, e.g.,

l2λλ′(s) = s|λ+λ′|/2λ12(s)

×
[

1

π

∫ sV

−∞
ds′ Im [l2λλ′(s′)]

(s′)|λ+λ′|/2λ12(s′)(s′ − s)

Fig. 4 Dispersive calculation of the isospin-violating component of
the η → πγ γ S-wave amplitude (divided by s), compared to the chiral
result at order p4. The shaded area shows the physical region

+ 1

π

∫ ∞

m2+
ds′ Im [l2λλ′(s′)]

(s′)|λ+λ′|/2λ12(s′)(s′ − s)

]
(68)

displaying the kinematical zeros at s = m2± and s = 0. In
the case of J = 2, however, it seems difficult to derive useful
constraints from unitarity as in the case of J = 0 because
in the important energy region of the a2(1320) resonance
there are too many contributing channels. We will therefore
content with a simple Breit–Wigner estimate of the right-
hand cut integral in Eq. (68).

We parametrise the coupling of the a2 resonance to the
ηπ channel by a constant Ca2

ηπ defined from the Lagrangian

La2ηπ = Ca2
ηπ Tμν(x)∂

μη(x)∂νπ0(x) . (69)

The couplings to the γ γ channel involve two constants

LT γ γ = e2 Tμν(x)

{
Ca2

γ γ Fμβ(x)Fν
β (x)

+Da2
γ γ

m2
T

∂μFαβ(x)∂νFαβ(x)

}
. (70)

The first term in (70) contributes to the +− helicity state,
which is expected to be dominant, and the second term to
the ++ helicity state. The expressions for the decay widths
read,

Γ [a2 → ηπ ] =
(
Ca2

ηπ

)2
60π

(
qηπ (m2

T )
)5

m2
T

Γ [a2 → γ γ ] = e4m3
T

80π

((
Ca2

γ γ

)2 + 1

6
(Da2

γ γ )2
)

. (71)

where qηπ (s) = √
ληπ (s)/4s. The experimental values of

the branching fractions of the main hadronic decay modes
are [5]

Bηπ = (14.5 ± 1.2)%, BK K̄ = (4.9 ± 0.8)%,

B3π = (70.1 ± 2.7)%, Bωππ = (10.6 ± 3.2)% (72)
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and the 2γ width given by the PDG is

Γ a2
γ γ = 1.00 ± 0.06 keV . (73)

From this, one obtains the following values for the coupling
constants

Ca2
ηπ = (10.8 ± 0.5) GeV−1

×
√(

Ca2
γ γ

)2 + 1

6

(
Da2

γ γ

)2 = (0.115 ± 0.005) GeV−1

(74)

choosing Ca2
ηπ to have a positive sign. Upon performing fits

to the differential cross-sections (see below) the two cou-
plings Ca2

γ γ , Da2
γ γ will get separately determined. Defining a

coupling constant Ca2

K K̄
in the same way as Ca2

ηπ we get,

Ca2
KK = −(10.5 ± 0.9) GeV (75)

where the negative sign derives from flavour symmetry. The
Breit–Wigner model for the a2(1320) contributions is then
taken as

l BW2++(s′) = Da2
γ γC

a2
ηπ

60m2
T

√
W2(qηπ (m2

T )R)

W2(qηπ (s′)R)

× s′ληπ (s′)
m2

T − s′ − imTΓT (s)

l BW2+−(s′) =
√

6Ca2
γ γC

a2
ηπ

60

√
W2(qηπ (m2

T )R)

W2(qηπ (s′)R)

× ληπ (s′)
m2

T − s′ − imTΓT (s)
. (76)

This form is obtained by first computing the amplitudes from
the Lagrangians (69) and (70) and then modifying them by
introducing a width function ΓT (s) in the denominator, for
which we use the same modelling4 as in Ref. [13]

ΓT (s) = Γηπ(s) + ΓK K̄ (s) + Γρπ(s) + Γω2π (s) (77)

and a Blatt-Weisskopf related function (with W2(x) = 9 +
3x2 + x4). Finally, the J = 2 amplitudes l2λλ′ are approxi-
mated by adding the Breit-Wigner a2(1320) contribution in
the s-channel to the vector-exchange contributions in the t ,
u channels,

l2λλ′(s) = lV2λλ′(s) + l BW2λλ′(s) . (78)

The corresponding J = 2 (K K̄ )I=1 amplitudes are simi-
larly described by a sum of three terms,

4 For two-body decay modes we take Γ12(s) = Γ 0
12 ×

(q12(s)/q12(s0))
2l+1Wl (q12(s)R)/Wl(q12(s0)R) with s0 = m2

a2
and

l = 2 as in [13] while for ρπ we take l = 1 and W1 = 1. Such
Breit–Wigner forms for tensor resonances are widely used but do not
have good analyticity properties. In order to define the BW amplitudes
below the thresholds we set the corresponding momenta to zero i.e.
q12(s) = 0 if s < (m1 + m2)

2.

k1
2λλ′(s) = − 1√

2
kBorn2λλ′ (s) + kK

∗
2λλ′(s) + kBW2λλ′(s) (79)

where the Breit–Wigner amplitudes are given by

kBW2++(s′) = Da2
γ γC

a2
KK

60m2
T

√
W2(qKK (m2

T )R)

W2(qKK (s′)R)

× sλKK (s′)
m2

T − s′ − imTΓT (s)

kBW2+−(s′) =
√

6Ca2
γ γC

a2
KK

60

√
W2(qKK (m2

T )R)

W2(qKK (s′)R)

× λKK (s′)
m2

T − s′ − imTΓT (s)
. (80)

It will be necessary to consider also the (K K̄ )I=0 ampli-
tudes in order to be able to construct the K+K− and K 0 K̄ 0

amplitudes separately and compare with the experimental
results. From the value of the K K̄ branching fraction of the
f2(1270) resonance [5]:

B f2
K K̄

= (4.6 ± 0.5)% , (81)

one derives the following values for the corresponding cou-
pling constants

C f2
K K̄

= −(15.9 ± 0.9) GeV−1

×
√(

C f2
2γ

)2 +1

6

(
D f2

2γ

)2 = (0.19 ± 0.02) GeV−1 .

(82)

Based on nonet symmetry we have taken C f2
K K̄

and Ca2

K K̄
to

have the same sign.

5 Comparison with experiment

5.1 Experimental inputs

We will compare our model for the γ γ amplitudes with pre-
cise experimental data on γ γ → πη from the Belle collabo-
ration [13], as was done recently in Ref. [18]. In addition, we
consider also here γ γ → K K̄ data in order to provide fur-
ther constraints on the coupled-channel dynamics which is
believed to be important for the a0(980) resonance. Recently,
high statistics experimental data have been obtained by the
Belle collaboration for the KSKS channel [16]. Experimental
data for the charged kaons channel K+K− are also available
in this low energy range [44] but they are older and have
much less statistics. We will restrict ourselves to the energy
range E ≤ 1.4 GeV: we can use 448 differential cross-section
points for πη (0.85 ≤ E ≤ 1.39 GeV) and 240 differential
cross-section points for KSKS (1.105 ≤ E ≤ 1.395 GeV).
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Table 2 Parameters of the two-channel T -matrix in the two fits

α1 β1 (GeV−2) α2 β2 (GeV−2) m8(GeV) λ

fit I 4.00 (8) −2.23 (4) −0.545 (5) 0.167 (6) 1.304 (4) 0.47 (4)

fit II 0.98 (3) −4.07 (1) −0.495 (1) −0.18 (1) 0.900 (2) 1.064 (1)

Fig. 5 The phase-shifts and the inelasticity from the two-channel T -
matrix model using the two sets of parameters corresponding to the two
χ2 minimums

5.2 Parameters of the T -matrix

Concerning the S-wave, firstly, we employ the T -matrix
model of Ref. [27] which involves six parameters. It uses
a chiral K -matrix type representation, which ensures one-
channel unitarity below the K K̄ threshold and two-channel
unitarity above, together with the chiral expansion. This kind
of approach was initiated in [45], see Ref. [46] for a review.
The T -matrix is written as

T (s) = (1 − K (s)Φ(s))−1 K (s) (83)

where the matrix Φ reads

Φ(s) =
(

α1 + β1s + 16π J̄ηπ (s) 0
0 α2 + β2s + 16π J̄K K (s)

)

(84)

it involves four phenomenological polynomial parameters αi ,
βi and the one-loop functions J̄P1P2 are given in (D.8). The
K -matrix has the following form

K (s) = K (2)(s) + K (4)(s) + K (6)(s) (85)

in which the subscript refers to the chiral order. The first two
terms are to be computed from the chiral expansion of the
scattering amplitudes involving the ηπ and K K̄ channels
at order p2 and p4 respectively. The last term in Eq. (85)
allows for a pole in s and involves two phenomenological
parameters m8 and λ,

[
K (6)(s)

]
i j = λ

gi g j

16π

(
1

m2
8 − s

− 1

m2
8

)
, (86)

The form of g1, g2 is derived from a resonance chiral
Lagrangian [47]

g1 =
√

6

3F2
π

(
c′
d

(
s − m2

η − m2
π

)
+ 2c′

mm
2
π

)

g2 = 1

F2
π

(
c′
d

(
s − 2m2

K

)
+ 2c′

mm
2
K

)
(87)

such that K (6) has chiral order p6 provided λ is O(1). In
this model, the T -matrix has good analyticity properties and
coincides with the chiral expansion at low energy up to O(p4)

provided that the parameters αi , βi , λ are of chiral order O(1).
In addition to these six phenomenological parameters, the T -
matrix depends on the values of the O(p4) chiral parameters
Li [48] and on the ratio c′

m/c′
d . We will use here the set of

Li values from the p6 fit of Ref. [49] (labelled as BE14 in
that reference). The ratio c′

m/c′
d is expected to be of order

1 − 2, we will use c′
m/c′

d = 2 as central value and include
the variation as a source of error.

Obviously, such a model which implements two-channel
unitarity is mostly justified in the a0(980) region and below.
We will assume that it remains qualitatively acceptable up to
E � 1.4 GeV. The T -matrix is computed from Eq. (83) for
E ≤ E1, E1 = 1.5 GeV. In the higher energy region E > E1,
the T -matrix is described through a simple interpolation of
the phase-shifts and the inelasticity such that δ11(∞) = 2π ,
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Fig. 6 Experimental γ γ → πη differential cross-sections compared with the two fits results

δ22(∞) = 0 and η(∞) = 1. These conditions introduce a
smooth cutoff in the integral equations satisfied by the matrix
elements of the MO matrix and ensure the existence of a
unique solution.

5.3 Fits results

In addition to the six S-wave T -matrix parameters listed
above, further parameters must be introduced which describe
couplings to the γ γ channel. In the S-wave, two parameters
bl , bk were introduced as subtraction constants. Implement-
ing the Adler zero condition we keep only bk as an indepen-
dent parameter. In the D-wave sector, we include the values
of the tensor resonance couplings Ca2

2γ , Da2
2γ , C f2

2γ , D f2
2γ in the

fitting as well as the mass and width of the a2(1320) reso-
nance: ma2 , Γa2 . In total, we thus have 6+7 parameters to be
fitted.

At first, we have kept the T -matrix parameters fixed to
one of the sets of values determined previously in Ref. [27]
(which, in particular, use assumed values for the pole posi-
tions of the two a0 resonances). It was not possible to obtain
a good fit of the γ γ data in this manner: using these sets
of parameter values one finds that the πη cross-section at
the a0(980) peak tends to be too large and the energy of the
peak tends to be somewhat displaced as compared to exper-
iment. Relaxing the T -matrix parameters, reasonably good

fits become possible and we actually found two distinct min-
imums of the total χ2 combining the πη and the KSKS data,

χ2|tot = (119 + 76)|πη + 233|KSKS (fit I)

= (93 + 117)|πη + 229|KSKS (fit II) . (88)

In the case of πη the first number corresponds to the region
E < 1.1 GeV. In this region fit II is better than fit I while the
overall χ2 is slightly smaller in fit I (χ2 = 428) than in fit II
(χ2 = 439). The χ2 is defined in a simple and naive way: the
correlation matrix is assumed to be diagonal and the statisti-
cal and systematic errors provided by the Belle collaboration
are added in quadrature. The searches for minimums were
performed with the help of the computer code MINUIT [50].

The numerical values of the set of T -matrix parameters
resulting from these two fits are shown in Table 2. One
notices, in particular, that the value of the pole parameter
m8 differs significantly in the two fits. Figure 5 shows the
behaviour of the two phase-shifts δ11, δ22 and of the inelas-
ticity parameters η as a function of energy, corresponding
to the two fits. At low energies, the πη phase-shift changes
sign and becomes negative. This low-energy behaviour is not
anticipated in simple hadronic models of the πη amplitude
(e.g. [51]) but it was also observed to emerge from fitting the
γ γ data in Ref. [25].
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In fit II the πη scattering length (defined as in [52]) is
found to have the following value

mπa
πη
0 = −

(
9.5+0.3

−6.3

)
× 10−3 . (89)

For comparison, the first two terms in the chiral expansion
of the scattering length give

mπa
πη
0 = 6.17 × 10−3

∣∣∣
p2

,

= 2.43 × 10−3
∣∣∣
p2+p4

. (90)

using the same set of chiral parameters as in the unitary T -
matrix.

At higher energies a clear difference between the two fits
is the sharp increase of the πη phase-shift in fit I around
E � 1.32 GeV, typical of a narrow resonance, which we will
call a′

0. Indeed, one finds a resonance pole in the T -matrix
located on the third Riemann sheet with the value,5

√
sa′

0
= 1315(4) − i 24(3) MeV (fit I). (91)

This resonance is lighter and narrower than the standard
a0(1450). Since the phase-shift increases from π/2 to π

(approximately) it gives rise to a sharp dip (instead of a
peak) in the S-wave cross-section. Clearly then, our fit I is
quite analogous to the best fit by the Belle collaboration [13]
which displays a resonance (called a0(Y ) in that reference)
which has very similar features while using a parametrisa-
tion rather different from ours.6 The S-wave amplitude in fit
II also has an a′

0 resonance pole but it is heavier and much
broader than that of fit I,
√
sa′

0
= 1421(5) − i 175(4) MeV (fit II) . (92)

In this case, the width of the resonance is larger than the
experimental one. One eventually does not expect a very
accurate determination since the resonance lies close to the
cutoff of the model. Finally, the effects of the two a0 reso-
nances on the πη and K K̄ scalar form factors are shown in
Fig. 11 in “Appendix A”.

Figures 6 and 8 show a sample of γ γ → πη, KSKS dif-
ferential cross sections comparing the experimental results
with those from the two fits. The difference between the two
fits is remarkably small, which is somewhat puzzling: why is
the narrow a′

0 resonance present in fit I not seen much more
clearly? The reason for this arises from a specific interference
effect between the Jλλ′ = 0++ and the 2++ amplitudes. We
have seen already that the fast energy variation induced by the
narrow a′

0 coincides with that induced by the a2(1320). More

5 The errors quoted here are the statistical ones as evaluated by
MINUIT. Further errors introduced by varying intrinsic parameters of
the model will be considered below.
6 The Belle collaboration parametrise the S-wave amplitude l0++ as a
sum of two Breit–Wigner functions plus a polynomial quadratic in the
energy E . This representation involves 11 free parameters.

Fig. 7 Cross-sections for γ γ → πη, KSKS, K+K− integrated in the
range | cos θ | < 0.8. The data are from Refs. [13,16,44], they are com-
pared with the two fits results

specifically, when
√
s � 1.32 GeV, the following relations

hold approximately between the l0++ and the l2++ ampli-
tudes in the case of fit I

Re [l0++(s)] � −5Re [l2++(s)]
Im [l0++(s)] � −5Im [l2++(s)] + 0.7 . (93)

The sum of the 0++ and the 2++ partial-wave amplitudes can
effectively be absorbed into the 2+− resonance amplitude
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(since the angular functions satisfy the relation d2
00(θ)−1 =

−√
6 d2

20(θ)) and no specific 0++ resonance effect remains.
We also note that the a′

0 in fit I essentially decouples from
the K K̄ channel such that no 0++ resonance effect is seen
in this channel either. Because of these fine-tuned relations
between the scalar and the tensor resonances the fit I solution
is most likely to be unphysical.

One can see from Fig. 6 that the πη differential cross-
sections are well described except, however, in one energy
bin: E = 1.01 MeV. At this energy, the cross-sections are
underestimated by our model, see also Fig. 7 which shows
the cross-sections integrated over θ . This discrepancy could
be caused by an isospin breaking effect close to the reso-
nance peak. Our model assumes isospin symmetry and uses
mK ≡ mK+ (in order to correctly implement the kaon Born
amplitudes) and the peak of the cross-section occurs exactly
at E = 2mK+ . Physically, however, the K+ and the K 0

have slightly different masses which should lead to two cusps
in the shape of the integrated cross-section. On the experi-
mental side, the energy resolution should be smaller than
2mK+ − 2mK 0 � 8 MeV in order to clearly observe this
effect.

The values of the remaining seven parameters included in
the fit (subtraction parameter bk , tensor mesons to 2γ cou-
pling constants, a2 mass and width) are collected in Table 3
below. The couplings DT

2γ are found, as expected, to be

smaller in magnitude than the CT
2γ although this suppres-

sion is only by a factor of two in the case of fit I. The
values are in qualitative agreement with the PDG expecta-
tions except, however, for the a2 mass which is shifted7 by
approximately 10 MeV. This shift is easily seen to be caused
by the presence of non-resonant contributions to the J = 2
amplitudes modelled here by the vector-meson exchanges,
lV2,λλ′ . The presence of this term is essential for obtaining a
correct description of the amplitude in the η decay region
s < (mη − mπ )2. In the 1 GeV energy region, one expects
some modifications induced by higher mass exchanges, but
we see no reason that it should be completely cancelled. We
will consider a variation of this term as a source of error
below.

5.4 Properties of the a0 resonances

In this section we consider in more detail the properties of
the two a0 resonances which can be deduced from our anal-
ysis of the photon–photon data. We will focus on the results
from fit II since fit I was argued not to be physically rele-
vant. The formulas needed to define the T -matrix elements
on the unphysical Riemann sheets are given in “Appendix D”.

7 A recent determination (from the complex pole) of the a2 mass using
data from the COMPASS experiment also finds a shift compared to the
PDG value, however in the opposite direction [53].

One may define coupling constants from the residues of the
resonance poles (e.g. [54] in the context of photon–photon
amplitudes), the couplings to the πη and K K̄ channels are
thus defined as

16πT (I I )
11 (z)

∣∣∣
pole

= g2
a0πη

za0 − z

16πT (I I )
12 (z)

∣∣∣
pole

= ga0πηga0K K̄

za0 − z
(94)

and similarly for the third Riemann sheet. The coupling to
the γ γ channel and the associated width are defined as

e2l(I I )0++(z)
∣∣∣
pole

= ga0γ γ ga0πη

za0 − z
, Γa0→γ γ = |ga0γ γ |2

16πma0

.(95)

The following numerical results are found on sheet II for the
position of the a0(980) pole and the corresponding coupling
constants

√
sa0 = 1000.7(7) − i 36.6(1.3) (MeV)

|ga0πη| = 2.17(2) (GeV)

|ga0K K̄ | = 4.03(2) (GeV)

Γa0γ γ = 0.52(1) (keV) . (96)

From the sheet III resonance, the position of the pole was
given in Eq. (92) and the corresponding coupling constants
have the following values

|ga′
0πη| = 3.15(4) (GeV)

|ga′
0K K̄ | = 1.89(4) (GeV)

Γa′
0γ γ = 1.05(5) (keV) . (97)

The errors quoted in the above formulas are those arising
from the fitted parameters (for which MINUIT provides a
correlation matrix). In addition to those, one must consider
errors associated with further parameters on which the T -
matrix depends, which we have assumed to be fixed up to
now:

1. Adler zero: the value of Adler zero was fixed to sA = m2
η

but its exact value is not known, we will vary it in the
range sA = m2

η ± 3m2
π .

2. Set of the O(p4) parameters Li : in the BE14 determi-
nation [49], their values are given with errors but there
are strong correlations. In order to estimate an error from
this source we used two different sets of L ′

i s which cor-
respond to two best fits made with different assumptions
(second and third column in Table 3 of Ref. [49]).

3. The ratio of the scalar couplings c′
m/c′

d (see Eqs. (86), (87))
was varied between 1 and 3 to estimate an uncertainty
from this source.
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Fig. 8 Experimental γ γ → KSKS differential cross-sections compared with the two fits results

Table 3 Values of the coupling constants, of the subtraction constant bk and of the mass and width of the a2(1320) resonance resulting from the
two fits

Ca2
γ γ Da2

γ γ C f2
γ γ D f2

γ γ ma2 Γa2 bk

fit I 0.105 (2) 0.051 (9) 0.161 (2) 0.081 (12) 1.328 (1) 0.097 (2) −0.254 (1)

fit II 0.106 (2) −0.033 (6) 0.171 (2) 0.007 (9) 1.332 (1) 0.112 (3) −0.167 (5)

Table 4 Errors generated by varying the fixed parameters of the S-wave amplitudes, columns 5 and 6 refer to the left-cut (see text)

sA Li c′
m/c′

d LC(a) LC(b) Total

ma0 (MeV) [−0.2, 1.9] 5.7 [4.2, 10.8] 1.7 [1.9, 3.0] [−0.2, 12.9]
Γa0 /2 (MeV) [−2.3, 3.7] 3.8 [7.1, 11.0] 0.5 [0.3, 3.0] [−2.3, 12.6]
|ga0πη| (GeV) [−0.15, 0.21] 0.20 [0.21, 0.47] 0.13 [−0.03, 0.19] [−0.2, 0.6]
|ga0K K̄ | (GeV) [−0.03, 0.05] −0.13 [0.01, 0.28] 0.05 [−0.03, 0.04] [−0.2, 0.3]
Γa0γ γ (keV) [−0.05, 0.07] 0.07 [0.06, 0.16] 0.14 [−0.01, 0.06] [−0.1, 0.2]
ma′

0
(MeV) [2.4, 30.2] 104.2 [22.2, 62.3] −11.4 [−12.9, 53.3] [−17, 136]

Γa′
0
/2 (MeV) [18.3, 44.0] 68.2 [6.6, 14.8] 4.2 [18.2, 66.5] [0, 106]

|ga′
0πη| (GeV) [−0.68, 0.01] −0.28 [−0.05, 0.10] 0.13 [−0.89, 0.10] [−1.2, 0.2]

|ga′
0K K̄ | (GeV) [−0.26, 0.06] −0.20 [−1.56,−1.42] −0.05 [−0.17,−0.07] [−1.6, 0.06]

Γa′
0γ γ (keV) [0.14, 0.22] 0.40 [−0.28,−0.25] −0.13 [0.21, 0.17] [−0.3, 0.5]
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Fig. 9 Contributions to the η → π0γ γ energy distribution from the
amplitudes fitted in the scattering region. Dotted line (red): S-wave
(isospin conserving) and 2++ D-wave, dash-dotted line (magenta): 2+−
D-wave, dashed line: sum of the S and D waves, solid line: sum includ-
ing the isospin violating amplitude l̃0++

4. Left-hand cut: (a) we added a contribution from a set of
axial-vector mesons8 and (b) we varied the products of
the couplings of the vector mesons by ±20%.

Table 4 gives the detailed list of the errors generated from
these variations on the properties of the two a0 resonances.

5.5 The η → π0γ γ decay amplitude

We consider now the modelled amplitudes in the kinematical
region relevant for the decay η → π0γ γ . Including the J =
0 and J = 2 partial-waves,9 the distribution as a function of
the γ γ invariant mass squared, s, reads (Fig. 8)

dΓ η→γ γπ

ds
= α2

16πm3
η

√
λ12(s)

{
|l0,++(s) + l̃0,++(s)|2

+5
∣∣∣lV2,++(s) + l BW2,++(s)

∣∣∣2

+5
∣∣∣lV2,+−(s) + l BW2,+−(s)

∣∣∣2
}

(98)

also accounting for the J = 0 isospin violating amplitude
l̃0,++.

Figure 9 illustrates the contributions of the various ampli-
tudes corresponding to central values of the parameters fit-
ted in the scattering region. The 2+− partial-wave domi-
nates over the other ones near s = 0 because the J++
amplitudes are suppressed by the soft-photon zero. The
relative role of the S-wave increases with the energy and

8 The coupling constants of the C-odd axial-vectors are not very pre-
cisely known (see [55]). We made a simple estimate taking a mass MA =
1.2 GeV and an effective coupling GA = 0.30(CρπCρη + CωπCωη).
9 Contributions from J ≥ 4 partial-waves can be checked to be com-
pletely negligible.

Fig. 10 Experimental data on the η → π0γ γ energy distribution
[14,15] compared with predictions from our amplitudes showing the
influence of the position of the Adler zero

starts to be dominating above the π+π− threshold. The fig-
ure also shows that the isospin-violating S-wave generates
a visible cusp at this threshold. The central value of the
decay width generated by our amplitudes is Γ = 0.237
eV which is on the low side of the most recent experi-
mental determinations Γexp = 0.285 ± 0.031 ± 0.061 eV
(Crystal Ball at the AGS [14]), Γexp = 0.33 ± 0.03 eV
(MAMI [15]). A smaller value was reported by the KLOE-
2 collaboration [56] but it has not been confirmed and the
data is currently being reanalysed. The amplitudes in the
η decay region are very sensitive to the precise position
of the Adler zero. This is illustrated in Fig. 10 showing
the effect of varying sA in the range [m2

η − 3m2
π ,m2

η +
3m2

π ] and comparing with the experimental results. Given
somewhat more precise data the value of sA could be
included in the fitting. The amplitudes in the decay region
are also sensitive to the vector meson coupling constants,
the value of which dominate the energy distribution near
s = 0. Accounting for these main errors we would pre-
dict

Γ η→π0γ γ = 0.237+0.060
−0.043 eV . (99)

6 Conclusions

In this work we have reconsidered the properties of the
light isovector scalar resonances as can be determined from
photon–photon scattering experimental results. For this pur-
pose, we have implemented a standard Muskhelishvili–
Omnès integral representation for the J = 0 amplitude
in which the left-cut is modelled from light vector meson
exchanges. The underlying T -matrix satisfies unitarity with
two channels (πη, K K̄ ) and involves six phenomenologi-
cal parameters. In the case of the J = 2 amplitudes the
constraints from unitarity are more difficult to implement, a
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cruder description is used which consists in simply adding
the cross-channel vector-exchange and the direct channel
tensor resonance amplitudes. In order to constrain the free
parameters as unambiguously as possible we performed fits
to both πη and KSKS data, for which high-statistics data
below 1.4 GeV are available at present, and we found two
different acceptable solutions to the minimisation. Both solu-
tions are also compatible with the available K+K− data from
the ARGUS collaboration [44].

In one of our fits the S-wave amplitude displays a light
and narrow a′

0 resonance exactly similar to the one found in
the Belle analysis. While this is mathematically allowed we
have argued that the fit which displays a broad a′

0 is likely
to be more physical. Concerning the a0(980) resonance, we
find that a rather conventional picture i.e. a pole on the sec-
ond sheet with a mass and width compatible with the PDG
and coupling to both the πη and the K K̄ channels is per-
fectly compatible with both the πη and the KSKS data. This
is in contrast with the Belle analysis which uses an elastic
Breit-Wigner description and also with the recent analysis of
Ref. [18] in which the mass and width are found to be both
significantly larger than the PDG values. Data with a better
energy resolution would be useful to resolve these remain-
ing ambiguities. The γ γ → K+K−, KSKS cross-sections
close to the K K̄ thresholds are also very sensitive to the
position of the a0(980). Our results in this energy region are
in qualitative agreement with the chiral-unitary calculations
from Ref. [29] and with the estimates made in Ref. [57]
but not with those from Ref. [26]. Experimental data in this
near-threshold region would obviously be very constraining.
Finally, it will be quite interesting to see how the pole position
determined in a lattice QCD simulation [22] evolves when
the value of mπ is decreased.
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Appendix A: Scalar form factors

In this section we consider how the two isovector scalar form
factors get modified as compared to the results of Ref. [27]
when using the set of T -matrix parameters as determined
here from the γ γ data. The form factors were defined as

B0F
ηπ
S (s) = 〈ηπ+| ūd(0) |0〉

B0F
K K̄
S (s) = 〈K̄ 0K+| ūd(0) |0〉 (A.1)

Fig. 11 Absolute values of the scalar form factors: the results using
the sets of T -matrix parameters from the two different fits to the γ γ

data are compared with a typical result from Ref. [27]. The bands are
obtained by varying the intrinsic parameters as in Table 4
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where B0 is the chiral coupling proportional to the quark
condensate [48]

B0 = − 〈0|ūu|0〉/F2
π

∣∣∣
mu=md=ms=0

. (A.2)

Under the assumption of two-channel unitarity these form
factors, we recall, are simply related to the MO matrix,

(
Fηπ
S (s)

FK K̄
S (s)

)
= Ω0(s) ×

(
Fηπ
S (0)

FK K̄
S (0)

)
. (A.3)

The values at s = 0 are estimated from the chiral expansion
at order p4. In Ref. [27] the set of Li values from Ref. [49]
based on a p4 fit was used while here we preferred to use a
set from a p6 fit (BE14 set), which gives

Fηπ
S (0) = 0.972

FK K̄
S (0) = 0.845 . (A.4)

Interesting quantities which are related to the scalar form
factors are the scalar radii which are proportional to their
derivatives at s = 0

〈r2〉P1P2
S ≡ 6Ḟ P1P2

S (0)/FP1P2
S (0) . (A.5)

At chiral order p4 the scalar radii depend on a single low-
energy coupling, L5. Using its value from the BE14 set, Lr

5 =
(1.01 ± 0.06) × 10−3, gives

〈r2〉ηπ+
S

∣∣∣
p4

= 0.067(7) fm3

〈r2〉K K̄
S

∣∣∣∣
p4

= 0.111(7) fm3 . (A.6)

Figure 11 shows the absolute values of the form factors
using the BE14 chiral couplings and the set of T -matrix
parameters fitted to the γ γ data. The a0(980) resonance dis-
plays a smaller peak than in Ref. [27] and its position is
slightly shifted, reflecting the modified position of the pole.
The a′

0 resonance also differs: in the case of the “narrow a′
0”

fit solution it shows up as a dip in the ηπ form factor while in
the case of the “broad a′

0” solution its effect is hardly visible.
Concerning the scalar radii, the dispersive amplitudes give

〈r2〉ηπ

S =
(

2.73+4.10
−2.60

)
· 10−2 fm2

〈r2〉K K̄
S = 0.156+0.002

−0.029 fm2 . (A.7)

These results correspond to fit solutions with a “broad” a′
0.

As compared with the the chiral O(p4) result, the central
value is somewhat too small in the case of ηπ and too large
in the case of K K̄ .

Appendix B: Chiral expansion results for γ γ → P1P2
amplitudes

Appendix B.1: Order p4

We collect below the expressions of the photon–photon
amplitudes in the chiral expansion at order p4. The chiral
order p2 coincides with scalar QED and gives rise to the
Born amplitudes for π+π− and K+K− which were given in
Eq. (35). The leading contributions to the amplitudes which
involve two neutral mesons: π0π0, K 0 K̄ 0 and π0η appear
at order p4. They were computed in Refs. [33,58–60]. The
basic one-loop function which occurs in these p4 amplitudes
can be written as,

GP (z) = −1 − m2
P

z

⎛
⎝log

√
1 − 4m2

P/z + 1√
1 − 4m2

P/z − 1

⎞
⎠

2

, (B.1)

for small z values, |z| � m2
P , it behaves as

GP (z) = z

12m2
P

+ O(z2) . (B.2)

The expression for the γ γ → π0π0 scalar amplitudes at
O(p4) read,

Aπ0π0

NLO(s, t, u) = 1

4π2 s

[
s − m2

π

F2
π

Gπ (s) + s

4F2
π

GK (s)

]

Bπ0π0

NLO (s, t, u) = 0 . (B.3)

These formulas illustrate general features: the O(p4) part of
the A amplitudes have a simple structure involving a sum
of products of meson-meson amplitudes at order p2 with
one-loop functions GP while the B amplitudes vanish at this
order. Next, the expression for γ γ → K 0 K̄ 0 at O(p4) reads

AK 0 K̄ 0

NLO (s, t, u) = 1

4π2 s

[
s

4F2
π

Gπ (s) + s

4F2
π

GK (s)

]
.

(B.4)

The NLO expression for the γ γ → π0η amplitude, which
is of particular interest here, was worked out in Ref. [33].
They considered a chiral framework which also includes the
η′ meson as a light meson in addition to the pseudo-Goldstone
octet. The relation between the η and η′ mesons and the octet
and singlet chiral fields involves a mixing angle θ ,

η = cθ φ8 − sθ φ0

η′ = sθ φ8 + cθ φ0 (B.5)

denoting cθ = cos θ , sθ = sin θ . The expression for the
γ γ → π0η amplitude as a function of θ reads,

Aπ0η
NLO (s, t, u) = 1

4π2 s

[√
3 cθ

36F2
π

(
9s − m2

π − 8m2
K − 3m2

η
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−√
8tθ (m

2
π + 2m2

K )
)
GK (s)

+ B0(md − mu)

3
√

3(m2
η − m2

π )F2
π

(
(cθ − √

2sθ )(4m
2
π − 3s)

− tθ (4
√

2cθ + sθ )m
2
π

)
Gπ (s)

]
(B.6)

with tθ = tan θ . The isospin conserving part in Eq. (B.6)
agrees with Ref. [61]. It reproduces the result from Ref. [33]
upon setting sθ = −1/3, cθ = √

8/3 and neglecting the
terms proportional to tθ (which are not really negligible). In
the standard ChPT one must set cθ = 1, sθ = 0 at leading
order. Doing so, the amplitude simplifies significantly and
reads

Aπ0η
NLO(s, t, u) = 1

4π2 s

[
3s − 4m2

K

4
√

3F2
π

GK (s)

+ B0(md − mu)

m2
η − m2

π

× 4m2
π − 3s

3
√

3F2
π

(
Gπ (s) − 1

2
GK (s)

)]
(B.7)

where the Gell–Mann–Okubo mass relation was used and
the kaon loop contribution to the isospin violating part was
included for completeness. The quantity B0(md − mu) is
given at leading chiral order by

B0(md − mu) =
(
m2

K 0 − m2
K+
)
QCD

. (B.8)

Let us quote also the formula for γ γ → ηη

Aηη
NLO(s, t, u) = 1

4π2s

×
[
m2

π

3F2
π

Gπ (s) + 9s − 8m2
K

12F2
π

GK (s)

]
.

(B.9)

Finally, the order p4 contributions to the γ γ → π+π− and
K+K− amplitudes read

Aπ+π−
NLO (s, t, u) = 8

F2
π

(Lr
9 + Lr

10)

+ 1

4π2 s

[
s

2F2
π

Gπ (s) + s

4F2
π

GK (s)

]

(B.10)

and

AK+K−
NLO (s, t, u) = 8

F2
π

(
Lr

9 + Lr
10

)

+ 1

4π2 s

[
s

4F2
π

Gπ (s) + s

2F2
π

GK (s)

]
.

(B.11)

Combining Eqs. (B.4) and (B.11) we get the NLO part of the
γ γ → (K K̄ )I=1, (K K̄ )I=0 amplitudes

A(K K̄ )1

NLO = −4
√

2

F2
π

(L9 + L10) −
√

2

4π2 s

[
s

8F2
π

GK (s)

]

A(K K̄ )0

NLO = −4
√

2

F2
π

(L9 + L10) −
√

2

4π2 s

[
s

4F2
π

Gπ (s)

+ 3s

8F2
π

GK (s)

]
. (B.12)

Appendix B.2: Soft pion limit (isospin conserving part)

Let us consider a limit when the pion in the γ γ → π0η

amplitude becomes “soft” i.e. p1 = 0. This limit is unphysi-
cal but it allows to obtain exact results which should hold for
the physical amplitude modulo O(m2

π ) corrections. In this
limit, firstly, one has

s = m2
η, t = u = 0 (soft pion limit) , (B.13)

and using standard soft pion methods one shows that the
amplitude γ γ → π0η vanishes exactly at this point. When
p1 = 0 the two tensors Tμν

1 , Tμν
2 become degenerate

Tμν
2 = 2m2

η T
μν
1 (B.14)

such that the soft limit amplitude, in tensorial form, reads

lim
p1→0

Wμν(q1, q2; p1, p2)

=
(
A
(
m2

η, 0
)

+ 2m2
ηB
(
m2

η, 0
))

Tμν
1 = 0 . (B.15)

The combination which appears in Eq. (B.15) is the helicity
amplitude L++ in the soft pion limit. This implies that the
physical helicity amplitude L++ with t = u should also have
an Adler zero as a function of s,

L++(sA, t = u) = 0 (B.16)

with sA = m2
η + O(m2

π ). Let us consider the implication
of this result for the j = 0 partial wave. The expansion of
the helicity amplitude with cos θ = 0 (which corresponds to
t − u = 0) reads

L++(s, cos θ = 0)

=
∑
j even

(2 j + 1) (−1) j/2 ( j − 1)!!
j !! l j,++(s) . (B.17)

When s = m2
η, the amplitudes with j ≥ 2 are suppressed by

the angular momentum barrier factor: l2,++(m2
η) = O(m2

π ),
l4,++(m2

η) = O(m4
π ), . . .. The soft pion condition there-

fore implies that the j = 0 partial-wave should satisfy
l0,++(m2

η) = O(m2
π ) such that an Adler zero should be

present in this partial-wave amplitude,

l0,++(sA) = 0 . (B.18)
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Fig. 12 Representative chiral one-loop diagrams contributing to the
matrix element of the operator p0 = i(ūγ 5u + d̄γ 5d) needed in the
soft-pion relation (B.22). Insertions of p0 are represented by a red square

Appendix B.3: Soft pion limit (isospin violating part)

In the case of the isospin violating piece of the γ γ → π0η

amplitude, the soft pion limit does not lead to an Adler zero.
Let us define this amplitude in terms of the following matrix
element,

L̃++ ≡ 1

2
(md − mu)

×〈π0(p1)η(p2)|(ūu − d̄d)|γ (q1,+)γ (q2,+)〉 ,

(B.19)

which involves the isospin violating part of the QCD
Lagrangian. Using the usual soft pion techniques, the soft
pion limit of this amplitude is expressed in terms of the com-
mutator

lim
p1→0

L̃++ = − i

2Fπ

(md − mu)

×〈η(p2)|
[
Q3

5, (ūu − d̄d)
] |γ (q1, +)γ (q2, +)〉 .

(B.20)

where Q3
5 is the axial charge

Q3
5 = 1

2

∫
d3x(ūγ 0γ 5u − d̄γ 0γ 5d)(0, x) . (B.21)

The commutator is easily worked out and gives

lim
p1→0

L̃++ = (md − mu)

2Fπ

×〈η(p2)|i(ūγ 5u+d̄γ 5d)|γ (q1,+)γ (q2,+)〉 .

(B.22)

The matrix element which appears on the right-hand side
is a non-perturbative quantity. We can estimate it using the
chiral expansion at NLO. The pseudoscalar operator p0 =
i(ūγ 5u + d̄γ 5d) can couple either to a single η meson or
to ηπ+π−. Representative one-loop diagrams are shown in
Fig. 12. Computing them gives

〈η(p2)|p0(0)|γ (q1,+)γ (q2,+)〉NLO

= −B0

4π2
√

3Fπ

(
1 − m2

π

3F2
π

)

Fig. 13 Dispersive γ γ → (K K̄ )I S-waves with I = 0, 1 without the
Born amplitude which is shown separately

×
(
Gπ

(
m2

η

)
− 1

2
GK

(
m2

η

))
. (B.23)

As one might expect, using this result in the soft pion rela-
tion (B.22) reproduces the isospin violating amplitude at chi-
ral order p4 when s = m2

η (see Eq. (B.7)), up to O(m4
π/m4

η)

terms. In practice, one can relate (md − mu)B0 to the QCD
kaon mass difference (m2

K 0 −m2
K 0)QCD and then use Eq. (28)

in order to express l̃0++(m2
η) in terms of εL . The chiral calcu-

lation (B.23) of the matrix element should be reliable at the
20−30% level since there are no potentially large p6 contri-
butions from light vector meson exchanges in this case.

Appendix C: Dispersive Dispersive γ γ → ππ, (K K̄ )I=0

S-waves

Input for the γ γ → (K K̄ )I=0 S-wave is needed in order
to reconstruct the amplitudes for the physical K+K− and
KSKS states. We briefly recall the dispersive coupled-
channel representation for the I = 0 S-wave taken from
Ref. [28]. It has the following form

(
h0++(s)
k0

0++(s)

)
=
(
hBorn

0++ (s)
k0,Born

0++ (s)

)

+Ω(0)(s)

(
b0 s + b

′0 s2 + L(0)
1 (s) + R(0)

1 (s)

b0
K s + b

′0
K s2 + L(0)

2 (s) + R(0)
2 (s)

)

(C.1)

which is analogous to eqs. (59) for the I = 1 amplitudes
but more subtraction parameters had to be introduced. In
Eq. (C.1) Ω(0) is the I = 0 Omnès matrix and the functions
L(0)
i (s) (R(0)

i (s)) are dispersive integrals on the left (right)-
hand cuts which are analogous to the corresponding inte-
grals in Eq****. (59). The parameter b0

K was simply fixed by
matching to the O(p4) amplitude at s = 0 (see Eq. (B.12)).
The three parameters b0, b

′0, b
′0
K where then determined from

fits to γ γ → π+π−, π0π0 data. Having done so the K K̄
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amplitude k0
0++ was generated, which we have used in the

present work together with the I = 1 amplitude. Figure 13
shows the dispersive results for these two K K̄ amplitudes.
At low energies the amplitude k0

0++ is significantly larger
in magnitude than k1

0++ because it gets isoscalar ππ rescat-
tering contributions (which contain the broad σ resonance).
In the low-energy region, furthermore, the Born amplitude
is much larger than the rescattering contributions, in accor-
dance with the chiral counting. In the 1 GeV region the
I = 0, 1 rescattering amplitudes are rather similar which
leads to a strong suppression of the K 0 K̄ 0 cross-section as
compared to the K+K− one close to the K K̄ threshold.

Appendix D: The T -matrix on the four Riemann sheets

The second sheet extension of a matrix elements Ti j is defined
such as to continue Ti j (z) analytically across the cut, below
the first inelastic threshold,

T (I I )
i j (s − iε) = Ti j (s + iε),

×(mη + mπ )2 ≤ s ≤ 4m2
K . (D.1)

Using the elastic unitarity relation it easy to find an explicit
expression for T (I I )

i j ,

T (I I )(z) =
(

1 − 2T (z)

(
σ̃πη(z) 0

0 0

))−1

T (z) (D.2)

with

σ̃πη(z) =
√

(z − m2−)(m2+ − z)

z
. (D.3)

The second sheet extensions of the γ γ amplitudes l0++ and
k1

0++ are expressed in a similar way,

(
l(I I )0++(z)

k1(I I )
0++ (z)

)
=
(

1 − 2T (z)

(
σ̃πη(z) 0

0 0

))−1 (
l0++(z)
k1

0++(z)

)
.

(D.4)

The third sheet extension of the T -matrix elements are
defined such as to obey continuity equations across the uni-
tarity cut above 4m2

K

T (I I I )
i j (s − iε) = Ti j (s + iε), 4m2

K ≤ s < ∞ . (D.5)

They are easily expressed in matrix form

T (I I I )(z) =
(

1 − 2T (z)

(
σ̃πη(z) 0

0 σ̃KK (z)

))−1

T (z)

(D.6)

where σ̃KK (z) =
√

4m2
K /z − 1. Finally, the fourth sheet

extensions of the T -matrix elements are given by

T (I V )(z) =
(

1 − 2T (z)

(
0 0
0 σ̃KK (z)

))−1

T (z) (D.7)

they satisfy continuity equations with T (I I )
i j (z) when s >

4m2
K and with T (I I I )

i j (z) when (mη + mπ )2 < s < 4m2
K .

In our model, the right-cut structure of T -matrix is gener-
ated by the pair of loop functions J̄πη(s), J̄K K (s) which can
be written as

J̄12(z) ≡ J̄ I
12(z) = z

16π2

∫ ∞

(m1+m2)2
ds′

√
λ12(s′)

(s′)2(s′ − z)
.

(D.8)

This expression defines J̄12 on the first Riemann sheet and
shows that it is analytic except for a cut on [(m1 +m2)

2,∞].
The second sheet extension of J̄12 is given by

J̄ I I
12 (z) = J̄12(z) + 2

σ̃12(z)

16π
. (D.9)

which satisfies the continuity equation J̄ I I
12 (s−iε) = J̄12(s+

iε) when s ≥ (m1+m2)
2. The T matrix on the four Riemann

sheets can then also be defined as follows in terms of the pair
of loop functions

T I (z) :
(
J̄ I
πη(z), J̄

I
K K (z)

)

T I I (z) :
(
J̄ I I
πη(z), J̄

I
K K (z)

)

T I I I (z) :
(
J̄ I I
πη(z), J̄

I I
K K (z)

)

T IV (z) :
(
J̄ I
πη(z), J̄

I I
K K (z)

)
. (D.10)

Using the K -matrix type representation (83) of the T -matrix
one easily verifies that these definitions satisfy the relevant
equations (D.2), (D.6), (D.7) written above.
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