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Abstract We propose an extension of the standard model
with Majorana-type fermionic dark matters based on the flat-
land scenario where all scalar coupling constants, including
scalar mass terms, vanish at the Planck scale, i.e. the scalar
potential is flat above the Planck scale. This scenario could
be compatible with the asymptotic safety paradigm for quan-
tum gravity. We search the parameter space so that the model
reproduces the observed values such as the Higgs mass, the
electroweak vacuum and the relic abundance of dark matter.
We also investigate the spin-independent elastic cross sec-
tion for the Majorana fermions and a nucleon. It is shown
that the Majorana fermions as dark matter candidates could
be tested by dark matter direct detection experiments such as
XENON, LUX and PandaX-II. We demonstrate that within
the minimal setup compatible with the flatland scenario at
the Planck scale or asymptotically safe quantum gravity, the
extended model could have a strong predictability.

1 Introduction

With the discovery of the Higgs boson [1,2] the standard
model (SM) was complete. This brings us to the next stage
in elementary particle physics. One of obvious issues is the
lack of a dark matter candidate in the SM. At the present
stage a little fact is known about features of the dark mat-
ter as an elementary particle. In particular, it is not clarified
even that the dark matter is either fermionic or bosonic, so
that a numerous possibility of dark matter candidates can be
considered. Besides, the nature of the Higgs sector is still
unclear although all coupling constants in the SM are deter-
mined. Due to this situation, a scenario, where dynamics of
dark matter is related to that of the Higgs field, has been
suggested.
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Let us here discuss what one expects from the discovered
Higgs boson mass. The observed Higgs boson mass 125 GeV
indicates that the perturbative renormalization group (RG)
flow of the Higgs quartic coupling constant with the top
quark mass Mt � 171 GeV reaches to zero around the Planck
scale Mpl within the standard model (SM) [3,4]. This fact
might indicate a compelling evidence for dynamics of parti-
cles from a high energy theory including quantum gravity if
one assumes that the SM is valid up to Mpl or effects of new
physics do not drastically change dynamics of SM particles.
This fact motivates us to consider the flatland scenario [5–9]
as one of scenarios for an extension of the SM.

The flatland scenario imposes that all couplings for scalar
fields, involving scalar masses and the Higgs portal cou-
pling, vanish at the Planck scale, namely the scalar potential
becomes flat above Mpl. Such a scenario might be highly con-
troversial from the viewpoint of low energy physics, whereas
this could be a natural condition from the asymptotic safety
scenario of quantum gravity [10–12]. The existence of a non-
trivial ultraviolet (UV) fixed point for gravitational couplings
realizes asymptotically safe gravity as a non-perturbatively
renormalizable quantum gravity. Above the Planck scale,
RG scalings of couplings are non-trivially modified from
the canonical ones due to the anomalous dimension induced
by graviton fluctuations. For a certain fixed point value, the
scalar masses and the scalar couplings are suppressed and
then these couplings become irrelevant parameters [13,14].
This fact enforces scalar interactions so as to be switched off
until the Planck scale.

In this work, we propose a U(1)X extension of the SM
compatible with both the flatland scenario and the existence
of dark matter candidates. We add right- and left-handed
Majorana fermions, a SM-singlet scalar field which cou-
ple to a U(1)X gauge field. The Majorana fermions have
Yukawa coupling with the singlet scalar field. These Majo-
rana fermions are stable and thus can become dark matter
candidates. The ratio between the U(1)X gauge coupling and
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the Yukawa couplings is a key quantity for the generation
of an expectation value of the singlet scalar field (or a finite
scale), based on the Coleman–Weinberg mechanism [15].
As a consequence, the U(1)X symmetry is broken and then
the corresponding gauge boson becomes massive, while the
Majorana fermions acquire finite masses via the Yukawa cou-
plings. In general, it is allowed to write the so-called kinetic
mixing term between the U(1)Y gauge field in the SM and
the U(1)X gauge field. Such a kinetic mixing plays a crucial
role of the inducement of a negative Higgs portal coupling
between the Higgs doublet field in the SM and the singlet
scalar field. Thanks to this, the breaking of the U(1)X sym-
metry triggers the electroweak symmetry breaking.

The dark matter relic abundance in this model corresponds
to that of the Majorana fermions. This constraint can fix, for
instance, the value of the ratio between the Yukawa cou-
plings. At this point, there is only one free parameter, e.g.
the U(1)X gauge coupling, in this model. This free parame-
ter could be determined by the direct detection of the weakly
interacting massive particle (WIMP). Hence, this model is
testable in near futures.

This paper is organized as follows: in Sect. 2, we briefly
explain the basic idea of the asymptotic safety scenario for
quantum gravity and its implications for the matter dynam-
ics. We introduce the model compatible with the flatland con-
dition and summarize both theoretical (from asymptotically
safe gravity) and experimental constraints for this model. We
explain the mechanism of the symmetry breaking in the flat-
land scenario in Sect. 3 and show that the electroweak scale
is generated within this model by taking a benchmark point.
In Sect. 4 we investigate the relic density of the Majorana
fermions as dark matter candidates. The spin-independent
cross section between the Majorana fermions and a nucleon
is shown with the current upper bound from the WIMP direct
detection experiment. Section 5 is devoted to summarize this
work. In Appendix 1, we collect the beta functions at the
perturbative one-loop level. The one-loop effective potential
in this model is shown in Appendix 1. We show the explicit
forms of cross sections for annihilations of the Majorana
fermions in Appendix 1.

2 Setup

In this section, we discuss the basic idea of asymptotically
safe quantum gravity and briefly summarize its current sta-
tus. In particular, we will stress that quantum graviton fluc-
tuations drive scalar dynamics such that it behaves as a free
theory above the Planck scale, and then the flatland condi-
tion is given as a consequence from decoupling of quantum
gravity effects around the Planck scale. We propose a flatland
model involving fermionic dark matter candidates.

2.1 Asymptotic safety scenario

As a UV-complete theory beyond the Planck scale, we
assume asymptotically safe quantum field theory involving
quantum gravity. Here, we start with general discussions on
the fixed point structure in a theory space and an energy scal-
ing of a coupling constant in RG flow in order to make our
criterion for an extension of the SM.

For a theory space spanned by a set of effective operators
Oi whose (dimensionless) coupling constants are denoted
by gi , one explores fixed points at which all beta functions
βi ({gi }) vanish. One can easily find the Gaussian (or trivial)
fixed point gi∗ = 0 which can be discussed by perturbative
RG. In addition to such a fixed point, in several quantum
systems, non-trivial fixed point gi∗ �= 0 could exist. One of
well known cases is the Wilson-Fisher fixed point [16] in the
three dimensional scalar theory which describes a ferromag-
netic phase transition. In this case, however, non-perturbative
methods, e.g. ε-expansion [16,17] and functional RG [18–
22] should be employed to analyze the fixed point structure
due to the strongly correlated system.

Once one finds a fixed point, the energy scaling of coupling
constants gi at vicinity of the fixed point can be clarified.
This is characterized by the critical exponent θi such that the
dimensionless coupling constant behaves as gi (k) ∼ k−θi

in the RG flow, where k is the energy scale. More specif-
ically, one can obtain critical exponents by evaluating the
eigenvalues of the stability matrix Ti j = ∂βi/∂g j |g=g∗ . Cou-
pling constants with positive critical exponents are relevant
parameters and grow up toward low energy regimes. The
subspace spanned by relevant operators, which are called the
critical surface, defines a UV complete renormalizable the-
ory. The relevant coupling constants are free parameters, so
that a system with a less number of relevant couplings has a
higher predictability. In contrast, for negative critical expo-
nents, coupling constants are irrelevant parameters which are
driven as functions of relevant couplings. At the Gaussian
fixed point, the energy scaling for an operator can be read
as the canonical dimension of its coupling constant, while at
the non-trivial fixed point, a large anomalous dimension is
induced by quantum dynamics, so that the energy scaling of
coupling constants highly deviates from the canonical one.
In such a case, one has to evaluate the eigenvalues of the
stability matrix in order to obtain the critical exponents.

Let us here turn to the discussion on the basic idea of
asymptotically safe quantum gravity. It is known that quan-
tum gravity based on the Einstein–Hilbert action is pertur-
batively non-renormalizable due to the requirement of an
infinite number of counter terms [23]. Nevertheless, there is
a possibility that quantum gravity could be formulated as a
non-perturbatively renormalizable theory which is known as
asymptotically safe quantum gravity [10–12]. As discussed
above, for the asymptotic safety scenario for quantum grav-
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ity, the existence of a non-trivial fixed point for gravitational
interactions plays a crucial role. A number of studies utiliz-
ing the functional RG method have been performed and have
shown evidences for the existence of such a non-trivial fixed
point; see reviews [24–31]. An important fact is that a finite
number of positive critical exponents (θi > 0) for gravita-
tional couplings is observed [32–44], and then asymptoti-
cally safe quantum gravity could have a predictability to low
energy dynamics.

A great interesting question is impacts of quantum grav-
ity effects on matter dynamics. Within the asymptotically
safe gravity scenario, a large anomalous dimension induced
by graviton fluctuations could change drastically scalings
of matter couplings above the Planck scale. Below a tran-
sition scale kt associated with the Planck scale where quan-
tum gravity effects decouple, dynamics of particles may be
described by the SM with a simple extension of the SM. In
this view point, the extended system describing the particle
dynamics should satisfy the boundary condition given at kt .

2.2 Criteria for constructing model

We discuss constraints from the asymptotically safe quantum
gravity scenario on matter dynamics and consider a possible
extension of the SM.

As a simple extension of the SM, the inclusion of a singlet
scalar field S coupled to the Higgs field can be considered.
We first discuss the conditions for the RG flow of scalar
interactions. The form of the beta function is given by

βλ = βλ,matter + fλλ. (1)

Here, λ denotes a scalar coupling such as the quartic and por-
tal coupling constants, and βλ,matter includes contributions
from matter dynamics, while fλ represents universal gravity
contribution whose form reads [14,45]

fλ � G̃

8π

[
20

(1 − v0)2 + 1

(1 − v0/4)2

]
, (2)

where G̃ = Gk2 is the dimensionless Newton coupling con-
stant and v0 = 16πG�cck2 is the dimensionless cosmolog-
ical constant. Note that the dimensionful Newton coupling
constantG is mass-dimension −2, while the mass-dimension
of the dimensionful cosmological constant �cc is 2. Looking
for a fixed point at which βλ = 0, one finds the Gaussian
fixed point for the scalar coupling, λ∗ = 0. The investiga-
tions for such a system indicate the facts that all scalar cou-
plings involving the Higgs portal coupling are irrelevant [14]
since the critical exponent for the scalar coupling is given
by θλ � − f ∗

λ < 0 where we assume that the gravitational
couplings have a non-trivial fixed point. This means that the

RG flow for the quartic coupling and the Higgs portal cou-
pling keeps zero until the Planck scale when their fixed point
is Gaussian, λH∗ = λS∗ = λHS∗ = 0. Thus, we have the
boundary conditions at kt = Mpl for the scalar interactions
such that

λH
(
Mpl
) = λS

(
Mpl
) = λHS

(
Mpl
) = 0, (3)

where λH and λS are the quartic coupling constants of the
Higgs and the additional singlet scalar fields, and λHS is their
Higgs portal coupling constant. These conditions means that
the scalar fields behave as free fields above the Planck scale.

Second, we consider the quantum gravity effects on a
squared scalar mass parameter. Its beta function reads

βm = −2m̃2 + βm,matter + fmm̃
2, (4)

where m̃2 = m2/k2 is the dimensionless squared scalar mass
parameter. The first term on the right-hand side is the canon-
ical scaling term which causes the so-called gauge hierarchy
problem since it gives a large value of the critical exponent
θm � 2 for the Gaussian fixed point at which βm,matter � 0
and fm � 0. In such a case, the squared scalar mass is rel-
evant, and then its energy scaling is given as a growing up
solution below the Planck scale. For energy regimes above
the Planck scale, the critical exponent of the squared scalar
mass could change towards a smaller value than canonical
one because of the graviton fluctuations ( fm �= 0) in asymp-
totically safe gravity such that θm � 2− f ∗

m . Indeed, the form
of fm is given by the same as Eq. (2) [45]. If a large anoma-
lous dimension f ∗

m > 2 is induced, the critical exponent of
the squared scalar mass turns negative and thus the squared
scalar mass is not a free parameter. For the non-trivial fixed
point of the squared scalar mass m̃2∗ �= 0, the electroweak
scale is explained by the resurgence mechanism in a pertur-
bation [13], while for the Gaussian fixed point m̃2∗ = 0, the
squared scalar mass keeps zero within the RG flow until the
Planck scale. So far, the latter case is typically observed by
the functional RG analysis [14,45,46], so that for the singlet
scalar extension of the SM, the squared scalar mass parame-
ters should satisfy

m2
H

(
Mpl
) = m2

S

(
Mpl
) = 0. (5)

This situation corresponds to the so-called classical scale
invariance at the Planck scale [47–49]. In this case, the elec-
troweak scale has to be generated by the dimensional trans-
mutation by the Coleman–Weinberg mechanism [15,50–53]
or strong dynamics [9,54–62]. See also [63]. We call the gen-
eration of a scale “scalegenesis” in order to emphasize that
a scale invariant theory generates a scale due to its quantum
dynamics.
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The conditions (3) and (5) indicate that the effective scalar
potential is flat above the Planck scale. This is called the
flatland scenario [6,7]. In this scenario, the scalar interac-
tions have to be generated by quantum effects. With this fact,
the following two things should be satisfied: (i) the effective
scalar potential is stable; (ii) the electroweak scalegenesis
takes place due to the Coleman–Weinberg mechanism in the
singlet-scalar sector. However, they cannot be realized by
only the inclusion of a singlet-scalar field to the SM. In order
to obtain the stable scalar potential, the quartic coupling con-
stants have to be positive for large field values. A Yukawa
interaction can play this role since the beta function of the
quartic coupling constant includes the term proportional to
the Yukawa coupling constant to the fourth power,βλ ⊃ −y4.
The Higgs quartic coupling constant can be realized due to
the effect of the top-quark Yukawa coupling constant, while
for the singlet-scalar field, an additional fermionic degrees
of freedom coupled to the singlet-scalar field is required in
order for its positive quartic coupling constant to be gen-
erated. Generally, for the requirement (ii), the quartic cou-
pling in the RG has to be turned to a negative value around
energy scales near a vacuum expectation value 〈S〉. A new
U(1) gauge interaction with the singlet-scalar field could play
such a role since the quantum correction +g3 arises from the
gauge interaction in the beta function of the quartic coupling
constant. Therefore, for the electroweak scalegenesis in the
flatland scenario, the ratio between the Yukawa coupling and
the gauge coupling is crucial. In Sect. 3.1, the explicit condi-
tion for the ratio to realize the the electroweak scalegenesis
is discussed.

Let us here discuss quantum gravity effects on a U(1)
gauge coupling and a Yukawa coupling. For a U(1) gauge
coupling, here denoted by g, the beta function is given by

βg = βg,matter − fgg, (6)

where the correction from quantum gravity is found [64] to
be

fg � G̃

16π

[
8

1 − v0
− 4

(1 − v0/4)2

]
. (7)

We should note here that − fg takes a negative value for a
non-trivial fixed point of the gravitational couplings. In this
case, the matter contribution βg,matter and the gravity effect
could balance. Consequently, one could consider two possi-
bilities as UV complete scenarios [65,66]: one is that in the
continuum limit the gauge coupling reaches to a Gaussian
fixed point (g∗ = 0) at which the gauge coupling is relevant.
In this case, the gauge coupling is a free parameter and behave
as an asymptotically free coupling. Other is the case that a
non-trivial fixed point g∗ �= 0, at which the gauge coupling
is irrelevant and asymptotically safe, i.e. the gauge coupling

is predictable in the low energy regime. From these facts,
in order for the gauge coupling to be a UV complete cou-
pling, it cannot take a larger value than the non-trivial fixed
point value. For a one-loop level of the beta functions for the
gauge coupling, βg,matter � βg,1-loopg3, the gauge coupling
is bounded so that, at the transition scale kt = Mpl,

g
(
Mpl
)

<∼ g∗ =
√

fg
βg,1-loop

. (8)

In the same manner, the Yukawa couplings could have
also an upper bound [41,67,68]. On the other hand, the ratio
between the Yukawa coupling and the gauge coupling is con-
strained from the condition for the realization of scalegenesis
as will be seen in Sect. 3.1. Together with the bound for the
gauge coupling (8), this condition provides both upper and
lower bounds for the Yukawa coupling. Therefore, in this
work we do not consider the bound for a Yukawa coupling
from the asymptotic safety scenario.

2.3 Model in flatland

Following the discussions in the previous subsection, we con-
sider an extension of the SM based on the flatland scenario.
As a possible extension, we propose an extended system with
a SM singlet-scalar field and Majorana fermions coupled to
an extra U(1)X gauge field. This case allows us to write a
kinetic mixing [69] between U(1)Y gauge field in the SM and
the additional U(1)X gauge field such that BμνXμν , where
Bμν = ∂μBν − ∂νBμ and Xμν = ∂μXν − ∂νXμ are the field
strengths for the U(1)Y and U(1)X gauge fields, respectively.
Then, the kinetic terms for these gauge fields are given by

Lgauge = −1

4
BμνB

μν − 1

4
XμνX

μν − ε

2
BμνX

μν, (9)

while the interactions between the gauge fields and a matter
field are given through a covariant derivative,

Dμ = ∂μ − iYgY Bμ − iYX gX Xμ, (10)

where the strong (QCD) and weak interactions are omitted.
Here, we canonically normalize the kinetic terms (9) so that

Lgauge = −1

4
F ′

μνF
′μν − 1

4
G ′

μνG
′μν, (11)

where F ′
μν and G ′

μν are the field strengths for a new gauge-
field basis (B ′

μ, X ′
μ) defined by the transformation,

(
B ′

μ

X ′
μ

)
= 1√

2

(
ε− ε+

−ε+ ε−

)
1√
2

(
ε− −ε−
ε+ ε+

)(
Bμ

Xμ

)
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=
(

1 ε

0
√

1 − ε2

)(
Bμ

Xμ

)
, (12)

with ε± = √
1 ± ε. The second matrix on the right-hand side

in the first line of Eq. (12) is employed in order to canonically
normalize the kinetic terms for the gauge fields, while the first
one corresponds to a rotation with an angle of tan−1(ε+/ε−).
The latter transformation can be performed since the kinetic
terms (11) is invariant under a rotation for a field basis. We see
here that for the new field-basis (B ′

μ, X ′
μ) defined by Eq. (12),

the mixing effect corresponds to a scale transformation for
Xμ, whereas Bμ is transferred to Xμ through the mixing
effect.

In the new field-basis (12), the covariant derivative (10)
becomes

Dμ = ∂μ − iY (gY B
′
μ + gmixX

′
μ) − iYX g

′
X X

′
μ. (13)

where we define new gauge coupling constants,

gmix = − ε√
1 − ε2

gY , g′
X = 1√

1 − ε2
gX . (14)

A field for which U(1)Y hypercharge is assigned interacts
with Xμ even if it has no U(1)X hypercharge. Hereafter we
work in the field-basis (B ′

μ, X ′
μ) and neglect primes on these

fields and the coupling constant g′
X .

We here give the Lagrangian for our model,

L = LSM|mH→0 + Lkin + Lχ − V, (15)

where LSM denotes the Lagrangian for the SM without the
Higgs mass term due to the condition (5). Here,Lkin involves
the kinetic part of new fields,

Lkin = |DμS|2 + χ̄Ri /DχR + χ̄Li /DχL − 1

4
XμνXμν, (16)

where S is a singlet-scalar field. Majorana fermions χR and
χL are introduced in order to avoid the gauge anomaly. These
fields interact with the U(1)X gauge fields via the covariant
derivative given in Eq. (10). The singlet-scalar field S is cou-
pled to only Xμ with a hypercharge YX = 2. For the Majo-
rana fermions χR and χL , their hypercharges are assigned as
YX = −1 for the U(1)X gauge field, but is not for the U(1)Y
gauge field, i.e. Y = 0. The assignment of hypercharges Y
and YX for each field is summarized in Table 1. In this setup,
the Majorana fermions are stable particles after the breaking
of the U(1)X symmetry into the Z2 symmetry, so that they
could be dark matter candidates [70–83].

The Majorana-type Yukawa interactions between S and
χR or χL are given by

Lχ = −yRSχc
RχR − yL Sχc

LχL + h.c.. (17)

The U(1)X symmetry prohibits the Majorana mass terms and
the Dirac-type Yukawa interactions, while the Dirac type
mass is forbidden by scale symmetry. After the singlet-scalar
field has a finite expectation value 〈S〉, these terms turn to the
Majorana mass terms. Thus, Eq. (17) becomes origins of dark
matter masses.

The scalar potential, denoted by V in the Lagrangian (15),
is given by

V = λH |H |4 + λS|S|4 + λHS|H |2|S|2, (18)

where H is the Higgs doublet field. With the condition (5),
the scalar mass parameters keep zero within their RG flows
since the beta functions for the scalar mass parameters are
proportional to themselves. Therefore, the scalar mass terms
are not taken into account. In contrast, the quartic and the
Higgs portal interactions are needed in order for the theory
to be renormalizable within our Lagrangian (15). Neverthe-
less, the RG equations for their renormalized coupling con-
stants have to satisfy the condition (3), so that these scalar
coupling constants are not treated as free parameters. Note
that a massless scalar theory is renormalizable [84].

Here, we briefly describe the scalegenesis in our model.
A scale associated with both the electroweak scale and dark
matter mass scale should be generated by radiative correc-
tions, i.e., the Coleman–Weinberg mechanism. Within our
present model (15), the Coleman–Weinberg mechanism in
the singlet-scalar sector first could take place. We denote
the generated vacuum by vS = √

2〈S〉. This generation of a
scale triggers the electroweak symmetry breaking through a
negative Higgs portal coupling, namely

v2
H = −λHS

2λH
v2
S, (19)

where 〈H〉 = (0, vH/
√

2)T . In order to obtain a finite vH , a
negative value of λHS has to be induced by quantum effects.
In the next Sect. 3, we will see the occurrence of such a
situation. For λHS ≈ 0, one obtains the Higgs mass M2

H �
2λHv2

H . Since U(1)X symmetry is spontaneously broken, the
X boson obtains a finite mass,

MX � 2gXvS . (20)

The masses for the Majorana fermions are given by

MR � √
2yRvS, ML � √

2yLvS . (21)

The difference between χR and χL in this model is charac-
terized by only the Yukawa coupling constants. Therefore,
one can concentrate on the case yR ≤ yL with no loss of
generality.
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Table 1 Charge assignment for
elementary particles

Field SU(3)c SU(2)L U(1)Y U(1)X

qL =
(
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)
3 2 1/6 0

uR = uR, cR, tR 3 1 2/3 0

dR = dR, sR, bR 3 1 −1/3 0

�L =
(

νeL
eL

)
,

(
νμL
μL

)
,

(
ντ L
τL

)
1 2 −1/2 0

eR = eR, μR, τR 1 2 −1 0

H =
(

ϕ+
H0

)
1 2 1 0

Ai
μ (SU(2)L gauge field) 1 3 0 0

Bμ (U(1)Y gauge field) 1 1 0 0

gaμ (gluon) 8 1 0 0

S 1 1 0 2

χL , χR 1 1 0 −1

Finally, we mention the constrains on parameters involved
in the present model. In addition to the three conditions (3) for
the quartic coupling constants and the Higgs portal coupling
constant, we have constraints from the observations [85]

vH = 246 GeV,

Mobs
H = 125.10 ± 0.14 GeV,

Mobs
t = 160+5

−4 GeV. (22)

For the top-quark mass, the MS mass is used. Note that the
pole mass is Mpole

t = 173.1±0.9 GeV. As mentioned above
and discussed in Sect. 4, the Majorana fermions could be
stable and then become dark matter candidates. The latest
observation [86] reports that the dark matter relic density in
the cosmological evolution is

�obs
DMĥ2 = 0.1193 ± 0.0014, (23)

where “DM” is the abbreviation of dark matter. The relic
density of the Majorana fermions has to satisfy this value.
These constraints reduce from the five free parameters, gX ,
gmix, yt , yL and yR , to one parameter.

As discussed in Sect. 2.2, there is an upper bound (8) for
a U(1) gauge coupling. For the prediction of the observed
value of gauge couplings within the SM, the gravitational
contribution fg being of order 10−2 is required [87]. It is
shown in Refs. [65,66,88] that gravitational effects actually
yield fg of this order. We use fg = 0.02 [89]. Within our
model setup (15), the upper bound becomes

gX
(
Mpl
)

<∼ 1.09, (24)

where we used the beta function for gX given in Eq. (A2) and
set gmix = 0. Using the beta function for gmix with gX = 0
the kinetic mixing is also constrained as

gmix
(
Mpl
)

<∼ 0.68. (25)

Finally, we comment on phenomenological constraints for
the kinetic mixing effect. The kinetic mixing coupling con-
stant ε in the Lagrangian (9) is constrained for a wide range
of the extra gauge boson mass MX [90]. The Z ′-boson mass
in our system would become typically of order a few TeV.
For such a mass range, the upper bound on ε is given from
Z ′ searches in the LHC experiments by looking at e+e− and
μ+μ− channels. For MX = 1 TeV, we have ε <∼ 0.1 [91].
The bound for heavier mass regions is relaxed such that, for
instance, ε <∼ 0.2 for MX = 2 TeV.

3 Realization of scalegenesis

In this section, we study the mechanism of the scalegenesis in
our model using the RG. First, we discuss a general condition
to realize the scalegenesis in the flatland, which can be read
from coefficients of beta functions at the one-loop level. We
see that our model actually satisfies the condition, and then
we discuss how the physical vacuum and masses are defined.

3.1 Condition for scalegenesis in flatland scenario

We start by looking at a general condition to realize the flat-
land scenario by following the literature [7]. For a system
where a fermion and a scalar boson couple to each other and
to a gauge boson, the RG equations for the gauge coupling
g, the Yukawa coupling constant y and the quartic coupling
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constant λ at the one-loop level are given by

μ
dg

dμ
= βg = a

16π2 g
3 + · · · , (26)

μ
dy

dμ
= βy = y

16π2

[
by2 − cg2

]
+ · · · , (27)

μ
dλ

dμ
= βλ = 1

16π2

[
−dy4 + f g4

]
+ · · · , (28)

where μ is a RG scale, a, . . . , f are coefficients depending
on the degrees of freedom of fields and dots stand for irrel-
evant terms for the discussion below. As we have discussed
in the Sect. 2.2, the ratio between the Yukawa coupling and
the gauge coupling, r = y/g, is crucial for realization of
scalegenesis in the flatland scenario. Therefore, we rewrite
the beta functions in terms of r = y/g such that

μ
dr

dμ
= b rg2

16π2 (r2 − r2
c ), μ

dλ

dμ
= dg4

16π2 (r4
0 − r4),

(29)

where

rc =
√
a + c

b
, r0 =

(
f

d

)1/4

. (30)

Let us here discuss a realization of a stable and finite vac-
uum generated from the Coleman–Weinberg mechanism in
the flatland scenario. The effective scalar potential should be
bounded for a large field value, ϕ ∼ Mpl, to realize a stable
vacuum. This requires that βλ < 0 for μ = Mpl. The genera-
tion of a scale, here denoted by v, in the Coleman–Weinberg
mechanism is realized by a negative quartic coupling constant
at μ = v. For this, we need βλ > 0 at μ = v. From the beta
function for λ in Eq. (29), these behavior can be achieved by
r(v) < r0 < r

(
Mpl
)
. This condition also requires that r as a

function of μ has to increase with increasing the scale. Thus,
the generation of a scale in the flatland scenario could be
realized when the condition rc < r(μ = v) < r0 < r

(
Mpl
)

is satisfied. This condition can be expressed in terms of the
coefficients in the beta functions as

K =
(
rc
r0

)2

= a + c

b

√
d

f
< 1. (31)

In our model (15), the Coleman–Weinberg mechanism
works in the singlet-scalar sector, so that we can identify the
coupling constants g, y, and λ with gX , yR (or yL ), and λS ,
respectively. In this case, we have, for each beta function, the
coefficients as

a = 8

3
, b = 8, c = 6, d = 32, f = 96, (32)

where we assume that yL = yR . See Appendix 1 for
explicit forms of the beta functions. Inserting these values
into Eq. (31), we obtain K � 0.625 and then can see that the
condition (31) is satisfied. Note that the value of r(vS) has to
be between rc � 1.04 and r0 � 1.32. We also note that for
yR = 0 one has b = 6 and d = 16, and then K � 0.590.

3.2 Scalegenesis in flatland

We investigate the scalegenesis in the singlet-scalar sector
owing to the Coleman–Weinberg mechanism. To this end, let
us start with a discussion of the mechanism for scalegenesis
in our model. As we have seen in Sect. 3.1, the ratios rL ,R =
yL ,R/gX determine the scale of scalar field S. This scale is
mediated through the Higgs portal coupling λHS which is
set to zero at the Planck scale. In order for the Higgs portal
coupling to have a finite and negative value in low energy
regimes, one needs a term not proportional to λHS in its
beta function. Indeed, as one can see from Eq. (A5) a term
+(gmixgX )2 in the beta function plays such a role, so that
a finite value of gmix is crucial for the inducement of the
electroweak scale via the Higgs portal coupling. (See Eq. (45)
below.)

We solve the RG equations for the system with the bound-
ary conditions (3) and (5). In Fig. 1, we show an example of
the RG flows for the quartic and the Higgs portal coupling
constants, where the following initial benchmark value is
used:

yL
(
Mpl
) = 1.842, yR

(
Mpl
) = 1.354,

gX
(
Mpl
) = 0.794, gmix

(
Mpl
) = 0.134. (33)

The boundary condition for the gauge coupling constants for
the the SM gauge fields is given in Appendix 1. The Yukawa
coupling constants yL ,R , the U(1)X gauge coupling constant
gX , and the kinetic mixing effect gmix are approximately con-
stant within the RG flow since their beta functions are propor-
tional to themselves. One can see that the quartic coupling of
S is generated as a positive value in high energy region and
then turns to a negative values at a certain renormalization
scale. Such a behavior implies an occurrence of radiative
symmetry breaking. The Higgs portal coupling constant is
generated as a negative value.

In order to extract information about the vacuum vS , we
consider the effective potential for S. To this end, we here
parametrize the complex scalar field S such that

S = φ + iη√
2

, (34)

and then vS = √
2〈S〉 = 〈φ〉. Since the Higgs portal coupling

constant is much smaller than the Yukawa coupling constant
and the U(1)X gauge coupling constant, it could be negligible
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Fig. 1 RG flow of scalar coupling constants from the Planck scale to
the electroweak scale with the boundary condition (3) and the bench-
mark value (33)

for the analysis of the vacuum. This treatment allows us to
consider the effective potential only forφ. Thus, the improved
effective potential [92] for φ is given by

Veff(φ) = λS(t)

4
G4(t) φ4, (35)

where λS is the running coupling constant obeying its RG
equation, the dimensionless RG scale is parametrized as t =
ln(φ/M) with a renormalization scale M . Here, we choose
M = vS for which t = 0 corresponds to φ = vS . The effect
of the field renormalization is

G(t) = exp

[
−
∫ t

0
dt ′ γS

(
t ′
)]

, (36)

with the anomalous dimension of S,

γS(t) = −d ln G

dt
= 1

32π2

[
y2
R + y2

L − 24g2
X

]
. (37)

The vacuum vS is obtained from the stationary condition,

φ
dVeff

dφ

∣∣∣∣
φ=vS

= dVeff

dt

∣∣∣∣
t=0

= 0, (38)

which gives a condition among coupling constants:

[
4(1 − γS)λS + βλS

]
t=0

= 0, (39)

where

βλS = dλS

dt
. (40)

One can read the U(1)X breaking scale vS as a scale at which
the condition (39) is satisfied.

After the U(1)X symmetry breaking, the singlet-scalar
obtains a finite positive mass squared,

M2
S(vS) = d2Veff

dφ2

∣∣∣∣
φ=vS

� −4λS(vS) v2
S, (41)

where we neglect the running effect of the field renormaliza-
tion (36) in the second equality. Furthermore, the effective
quartic coupling constant is obtained by

λeff S4 = d4Veff

dφ4

∣∣∣∣
φ=vS

� −22

3
λS(vS) , (42)

for which the singlet-scalar mass squared (41) is

M2
S(vS) = 6

11
λeff S4v2

S . (43)

Note that the effective cubic coupling constant is given by

λeff, S3 = d3Veff

dφ3

∣∣∣∣
φ=vS

� −40

3
λS(vS) vS . (44)

A negative Higgs mass parameter are generated through
a negative Higgs portal coupling such that at the renormal-
ization scale μ = vS ,

m2
H (vS) = 1

2
λHS(vS) v2

S . (45)

This mass parameter evolves until the electroweak scale vH
by following its RG equation:

μ
dm2

H

dμ
= γm2

H
, (46)

where the anomalous dimension for the Higgs mass param-
eter γm2

H
is given in Eq. (A6).

Let us turn to the Higgs sector with the generated Higgs
mass parameter (45). For a negligibly small Higgs portal
coupling constant, the effective potential for the Higgs field
is given by

Veff(h) = 1

2
m2

H (vH ) h2 + 1

4
λH (vH ) h4, (47)

The electroweak vacuum is defined as the stationary point
for the effective potential, dVeff/dh|h=vH = 0, for which
one infers

vH =
√

−m2
H (vH )

λH (vH )
. (48)
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At this vacuum, the Higgs boson mass is given by

M2
H (vH ) = d2Veff

dh2

∣∣∣∣
h=vH

= 2λH (vH ) v2
H + �M2

H , (49)

where the last term on the right-hand side denotes the Higgs
self-energy correction whose approximate form at the one-
loop level is given by [4,93]

�M2
H � 16C0v

2
H , (50)

with

C0 � 1

64π2v4
h

(
3M4

W + (3/2)M4
Z + (3/4)M4

h − 6M4
t

)
.

(51)

This correction can be obtained by using the one-loop effec-
tive potential given in Appendix 1 and would be about 10%
within the physical Higgs mass.

So far, we have neglected the Higgs portal coupling. This
may be a good approximation for obtaining the physical mass
spectra as long as a Higgs portal coupling is small. Never-
theless, the mixing effect between the Higgs field and the
singlet-scalar field plays a crucial role for the dark matter
annihilation via these scalar fields. The quadratic terms for
the (h, φ)-basis in the effective potential is diagonalized such
that

L2 = − (h φ
) ( M2

H M2
HS

M2
HS M2

S

)(
h
φ

)

= − (h′ φ′)
(
M2

h′ 0

0 M2
φ′

)(
h′
φ′
)

, (52)

where we define M2
HS = λHSvHvS . The mass eigenstates

are given by

(
h′
φ′
)

=
(

cos θ − sin θ

sin θ cos θ

)(
h
φ

)
, (53)

with the mass eigenvalues,

M2
h′,φ′ =

M2
H + M2

S ±
√

(M2
H − M2

S)
2 + 4M4

HS

2

= M2
H + M2

S ± (M2
H − M2

S)
√

1 + tan2 2θ

2
, (54)

and the mixing angle,

tan 2θ = − 2M2
HS

M2
H − M2

S

. (55)

For M2
H > M2

S (M2
H < M2

S), the mixing angle is positive
(negative). The mixing angle between the Higgs and a new
scalar boson is constraint such that | sin θ | < 0.3 [94,95].
The Higgs mass in Eq. (54) has to satisfy the observed mass
(22), i.e. Mh′ = Mobs

H .
In the mass eigenstates (h′, φ′), their propagators take

forms

�h′h′
(
p2
)

= 1

p2 − M2
h′ + i�h′Mh′

,

�φ′φ′
(
p2
)

= 1

p2 − M2
φ′ + i�φ′Mφ′

, (56)

where �H and �S are decay widths for the Higgs boson and
the scalar field S. Using the mixing matrix (53), one obtains
the propagators in the flavor basis (h, φ) so that

(
�HH �HS

�SH �SS

)

=
(

cos2 θ �h′h′ + sin2 θ �φ′φ′ cos θ sin θ(�φ′φ − �h′h′ )
cos θ sin θ(�φ′φ′ − �h′h′ ) cos2 θ �φ′φ′ − sin2 θ �h′h′

)
. (57)

For the benchmark value of the coupling constants (33),
we obtain the expectation value of S,

vS = 1756.2 [GeV], (58)

for which we observe

ML = 1114.3 [GeV], MR = 1042.5 [GeV],

MX = 1380.8 [GeV], Mφ′ = 227.9 [GeV]. (59)

3.3 Decay of new particles

We note decay processes of the Higgs field and the singlet-
scalar field. Due to the mixing between the Higgs field and
the singlet-scalar field, the partial decay width of the singlet-
scalar and the Higgs fields into the SM particles are given
by

�φ′
(
φ′ → SMs

) = sin2 θ × �(hSM → SMs) |Mh′→Mφ′ ,

(60)

�h′
(
h′ → SMs

) = cos2 θ × �(hSM → SMs) , (61)

respectively, where the right-hand side is the partial decay
width of the Higgs evaluated in the SM. For a small Higgs
portal coupling constant, there is no significant deviation of
�H from the SM case and the partial decay width of the
singlet-scalar field is small. Since our model predicts vS >

vH , the Majorana fermions are heavier than the Higgs boson,
and then the Higgs field does not decay into them. On the
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Fig. 2 Region plot for the mixing angle, sin θ , as a function of
gX
(
Mpl
)
. The grey shadow region (| sin θ | > 0.3) is excluded by the

collider experiments [95]

other hand, if 2Mφ′ < Mh′ the decay channel h′ → φ′φ′
opens:

�h′
(
h′ → φ′φ′) = (λHSvH )2

8πM2
h

√
M2

h′
4

− M2
φ′ . (62)

The extra U(1)X boson decays into SM particles via the
kinetic mixing effect with gmix >∼ 10−9. This bound is ade-
quately small for the extra U(1)X boson to decay in the current
our system. Thus, the Majorana fermions annihilate into Xμ

if MR,L > MX .

3.4 Allowed parameter space

We scan the parameter space where the phenomenologi-
cal constrains (22) and (23) are satisfied. We here summa-
rize constraints for free parameters in our model. As can
be seen in Eq. (22), the top-quark mass has a large uncer-
tainty. We perform the parameter search with a fixed value
Mt � 160.4 GeV for which the Higgs mass could be gen-
erated so as to Mh′ � 125 GeV within the SM. Although
the extension of the SM could give a small deviation of the
Higgs mass, it is still consistent within the uncertainty of
the top-quark mass. From the asymptotic safety condition
above the Planck scale, the gauge coupling constant should
satisfy the bound gX

(
Mpl
)

<∼ 1.09 and gmix
(
Mpl
)

<∼ 0.68.
To realize the scalegenesis in the flatland scenario, the ratio
r = yL ,R/gX should be in the range 1.04 <∼ r(vS) <∼ 1.32
which gives a constraint for the Yukawa coupling constants
by combing with the bound for the gauge coupling constant
gX .

We first show the mixing angle (sin θ ) as a function
of gX (Mpl). Figure 2 represents the region for sin θ where
the constraints above are satisfied. The grey shadow region
| sin θ | < 0.3 is excluded by collider experiments [95]. One

can see from Fig. 2 that for gX (Mpl) >∼ 0.84 the value of sin θ

is positive, i.e., the singlet-scalar boson is lighter than the
Higgs boson, and this region is already excluded. Therefore,
hereafter we restrict the value of the U(1)X gauge coupling
to gX (Mpl) <∼ 0.84.

In Fig. 3 we show yL(MpL) and gmix(MpL) as functions
of gX (Mpl). These couplings have a linear dependence on
the U(1)X gauge coupling. In Fig. 3 we plot linear red lines
which are given by, at the Planck scale,

yL � 2.4gX , gmix � 2.5gX − 1.8. (63)

We parametrize the the right-handed Yukawa coupling as

yR(Mpl) = ξ yL(Mpl), (64)

where ξ is a constant less than 1. With Eqs. (63) and (64),
gX (Mpl) and ξ can be cast as free parameters in this system.
One of them will be constrained such that the relic abun-
dance of the Majorana fermions satisfy the dark matter relic
abundance.

Figure 4 exhibits allowed region for dimensionful physical
quantities (ML , MR , MX , Mφ′ and vS). One can see from
Fig. 4 that these quantities tend to be in inverse proportion to
gX (Mpl).

4 Majorana fermions as dark matter candidates

In this section we investigate the properties of the Majorana
fermions as dark matters. We start by setting up the Boltz-
mann equation to evaluate the relic density of the Majorana
fermions within the cosmological evolution, and then the
allowed parameter region, where the the observed relic den-
sity is satisfied, is searched.

4.1 Boltzmann equation and dark matter relic density

There are two dark matter candidates, namely χR and χL . In
order to follow evolutions of their number densities nR,L as
functions of temperature, we here introduce the Boltzmann
equations. Since the structure of the Boltzmann equations
is symmetric under the exchange L ↔ R, we here show the
case only for the left-handed side. Instead of the number den-
sities, it is useful to introduce the quantities YR,L = nR,L/s,
where s is the entropy density. The Boltzmann equation for
YL is given by [96–100]

dYL
dx

= −0.264g1/2∗
[
μRLMpl

x2

]

×
[
〈σ (χLχL ; SMs, φ, Xμ

)
v〉
(
Y 2
L − Y

2
L

)
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Fig. 3 Allowed region plots for coupling constants, yL (Mpl) (left) and gmix(Mpl) (right), as functions of gX
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Fig. 4 Allowed region plots for physical quantities, i.e. ML ,R , MX , Mφ′ and vS as functions of gX
(
Mpl
)

+ 〈σ(χLχL ;χRχR) v〉
(
Y 2
L − Y 2

R

Y
2
R

Y
2
L

)]
, (65)

where Mpl = 1.22 × 1019 GeV is the Planck mass; g∗ =
106.75 is the total number of effective degrees of freedom
in the SM; 1/μRL = 1/MR + 1/ML is the reduced mass;
x = μRL/T is the dimensionless inverse temperature; and

Y L is YL in the thermal equilibrium,

Y L(x) = 45x2

4π4g∗
M2

L

μ2
RL

K2((ML/μRL)x) , (66)

with K2(x) the modified Bessel function of the second
kind. Here, 〈σ (χLχL ; SMs, φ, Xμ

)
v〉 is the thermal aver-

aged cross section for the dark matter annihilation processes.
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Fig. 5 Left: The relic abundances of the Majorana fermions (67)
normalized by the observed value (23) as a function of gX (Mpl)

for a fixed value of ξ = yR(Mpl)/yL (Mpl). The star points are
located at the typical values of gX (Mpl) satisfying �DMĥ2 =

�obs
DMĥ2 for each value of ξ . Right: ξ and gX (Mpl) at the star

points. The blue dashed linear line is obtained by fitting to
these points. In the gray region, �DMĥ2/�obs

DMĥ2 = 1 is not
satisfied

Such annihilations take place with mediators, the singlet-
scalar field φ [101–103], the Higgs field h, the U(1)X gauge
field Xμ [104] and the Majorana fermion as exhibited in
Fig. 8 in Appendix 1. As discussed in Sect. 3.3, the singlet-
scalar fields in the final state decay into lighter SM particles
through the interaction with the Higgs field. These mediators
cause also the χLχL → χRχR scattering of the Majorana
fermions, whose thermal averaged cross section is denoted
by 〈σ(χLχL ;χRχR) v〉. These processes are show in Fig. 9
in Appendix 1 where we show their explicit forms.

Solving the coupled Boltzmann equation for YR and YL ,
one can evaluate the relic density of the dark matter,

�DMĥ2 = �Rĥ
2 + �L ĥ

2

= s0

ρc/ĥ2

(
YR,∞MR + YL ,∞ML

)
, (67)

where we have s0 = 2890 cm−3 and ρc/ĥ2 = 1.05 ×
10−5 GeV cm−3 [85,86], and YR,L ,∞ are the values of YR,L

at x = ∞ corresponding to the zero temperature. In our
working assumption MR < ML (or equivalently yR <

yL ), the annihilation of χRs to χLs does not take place,
namely 〈σ(χRχR;χLχL) v〉 = 0. The left-handed Majorana
fermions annihilate to the right-handed ones in addition to the
SM particles and the singlet-scalar bosons within the temper-
ature evolution so that the main ingredient of the dark matter
relic density is the right-handed Majorana fermions.

The left-hand side panel of Fig. 5 exhibits the relic abun-
dance of the Majorana fermions (67) normalized by the
observed one (23) as a function of gX (Mpl). There exists
a region satisfying �DMĥ2 = �obs

DMĥ2 in between 0.78 <∼
gX (Mpl) <∼ 0.81. The star points denote typical points for
each value of ξ = yR(Mpl)/yL(Mpl). We show the val-
ues (star points) of ξ as a function of gX (Mpl) in the right-

hand side panel of Fig. 5. One can see the linear dependence
of ξ on gX (Mpl). The linear fitting yields the relation for
0.78 <∼ gX (Mpl) <∼ 0.81,

ξ � 12.7gX (Mpl) − 9.4. (68)

Then, all parameters excepts for gX (Mpl) are fixed by the
observed data.

4.2 Prediction on Spin-independent elastic cross section

In the WIMP dark matter search, interactions between a
nucleon and a dark matter play a crucial role for the detec-
tion of a dark matter signal. They could be observed as the
spin-independent (SI) elastic cross section of a dark mat-
ter and a nucleon [99,105]. In our model, the scattering of
the Majorana fermions and quarks could take place as the
t-channel diagram in the processes displayed in Fig. 6 from
which one can obtain the effective scalar-type four-Fermi
interaction Leff = GR

q (χc
RχR)(q̄q)+GL

q (χc
LχL)(q̄q). More

specifically, the coefficient of the four-Fermi interactions are
calculated as

GR,L
q = yq yR,L

2
cos θ sin θ

(
1

M2
φ

− 1

M2
h

)
, (69)

with yq a quark Yukawa coupling constant. Note that since
the quark-DM interaction induced by the X gauge boson
exchange gives the spin-dependent cross section, we do not
evaluate it in this work. The four-Fermi interaction (69)
between a Majorana fermion and a quark is translated into
the effective interactions between a Majorana fermion and a
nucleon by
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Fig. 6 The χL ,R-quark scattering process yielding the spin-
independent elastic cross section of a dark matter. The kinetic mixing is
denoted by the cross. The cross in a circle stands for the mixing between
φ and h

GR,L
N =

∑
q=all quarks

f Nq GR,L
q

MN

Mq
, (70)

where Mq = yqvH/
√

2 is a quark mass, MN � 939 MeV
is the nucleon mass, and f Nq = Mq〈N |q̄q|N 〉/MN is each
quark matrix element of a nucleon.

For the left-handed Majorana fermion χL , the SI elastic
cross section of a dark matter and a nucleon is computed as

σ L
SI = 4μ2

NL

π

[(
MN fN yL√

2vH

)
cos θ sin θ

(
1

M2
φ

− 1

M2
h

)]2

,

(71)

where μNL = MNML/(MN + ML) is the reduced mass for
the N -χL system, and fN is calculated as

fN =
∑

q=all quarks

f Nq � 0.305, (72)

with f Nq evaluated in [106–108]. One can obtain the case for
the left-handed Majorana fermion by exchanging L ↔ R.

In Fig. 7, we plot the spin-independent elastic cross sec-
tions with the upper bound provided by XENON1T [109].
The constraints from LUX [110] and PandaX-II [111] are
somewhat milder than those of XENON1T; see [109]. One
can see from Fig. 7 that there is a small allowed region slightly
below the upper bound (solid black line).

The model has the strong predictability thanks to the
conditions from the asymptotically safe quantum gravity
scenario. If the spin-independent elastic cross section is
observed, all parameters in the model are determined. The
Majorana fermions as dark matter candidates in the model
could be tested in the near future.

5 Summary

We have proposed an extension of the SM based on the
flatland scenario with dark matter candidates. The flatland
condition corresponds to the fact that all scalar interactions

Fig. 7 The SI elastic cross section of Majorana fermions as a function
of their masses. The black solid line is the current upper bound of
XENON1T [109]. The green and yellow bands stand for the 1σ and 2σ

bands, respectively

including mass terms vanish at the Planck scale, namely the
scalar potential is flat above the Planck scale, especially the
model is scale invariant. Such a condition could be compat-
ible with the asymptotic safety program of quantum gravity.
We introduce Majorana fermions coupled to a U(1)X gauge
field and a singlet-scalar field. The U(1)X gauge field inter-
acts with the U(1)Y gauge field in the SM even at the clas-
sical level via the kinetic mixing effect. At this point, there
are four free parameters (gX , gmix, yL and yR). This is a
minimal setup of an extended model compatible with the
flatland conditions which could be naturally concluded from
the asymptotically safe quantum gravity scenario. We have
demonstrated that the minimal extension of the SM contains
eventually only one free parameters and then has a strong
predictability.

Let us here summarize the processes that the four param-
eters are fixed. The condition for the electroweak scale-
genesis due to the Coleman–Weinberg mechanism gives a
constraint for the ratio between the Yukawa coupling and
the UX (1) gauge coupling. Hence, the electroweak scale
vH = 246 GeV fix one of the Yukawa couplings. The kinetic
mixing effect gmix generates a finite negative value of the
Higgs portal coupling between the Higgs doublet-field in the
SM and the singlet-scalar field, so that the observed Higgs
mass mH = 125 GeV determines the value of gmix. We
found yL(Mpl) and gmix as functions of gX by the numer-
ical analysis, i.e. Eq. (63). The relic abundance of the Majo-
rana fermions has to be satisfied the current observed value
(23). From this constraint, we determined the ratio between
the Yukawa couplings, denoted by ξ , as given in Eq. (68).
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Then, there is only one free parameter, e.g. gX (Mpl) in the
model.

We have evaluated the SI elastic cross section of Majorana
fermions and a nucleon. The model predicts the SI elastic
cross sections as functions of the Majorana masses around the
current upper bound of XENON1T. There is a small allowed
region slightly below the upper bound. Therefore, the Majo-
rana fermions in the model as dark matter candidates could
be tested by the direct detection experiments of the WIMP
dark matter such as XENON, LUX and PandaX-II. If the SI
elastic cross section is observed, all parameters in the model
are determined. Hence, it is important to investigate the pos-
sibilities of the observations of the other particles, i.e. the
singlet-scalar boson mass and the U(1)X gauge boson mass.
The future collider experiments such as the High-Luminosity
Large Hadron Collider (HL-LHC) [112] and the International
Linear Collider (ILC) [113] could find these particles.

The investigation of stochastic gravitational waves pro-
duced by phase transitions at finite temperature may be one
of other possible tests for the model. It is actually reported in
[114] that a similar model (classically scale invariant B − L
model) can produce gravitational waves whose spectra could
be tested by future interferometer experiments. In such a case,
one expects that a supercooling universe is realized. In par-
ticular, when the electroweak phase transition temperature
is lowered until the QCD phase transitions, the thermal his-
tory of the universe could be changed drastically [115]. It is
interesting subject to investigate the nature of our model in a
supercooling universe.
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Appendix A: Renormalization group equations

A.1 Beta functions

Here, we list the beta functions for coupling constants at the
one-loop level in the extended model (15). The beta functions
have similar structures to a B− L extension of the SM [116].

For the gauge coupling constants in the SM sector, one
has

U(1)Y : (4π)2βgY = 41

6
g3
Y ,

SU(2)L : (4π)2βg2 = −19

6
g3

2,

SU(3)c : (4π)2βgS = −7g3
S, (A1)

while the beta functions for the gauge coupling constant for
the new gauge field Xμ and the kinetic mixing effect are
given by

(4π)2βgX = 8

3
g3
X + 41

6
gXg

2
mix,

(4π)2βgmix = 41

6
gmix

(
g2

mix + 2g2
Y

)
+ 8

3
g2
X gmix. (A2)

The Yukawa coupling constants for the top-quark and the
Majorana fermions run by obeying the beta functions

(4π)2βyt = yt

(
9

2
y2
t − 8g2

S − 9

4
g2

2 − 17

12
g2
Y − 17

12
g2

mix

)
,

(A3)

(4π)2βyR = yR
(

6y2
R + 2y2

L − 6g2
X

)
. (A4)

The beta function for the left-handed Majorana Yukawa cou-
pling constant are obtained by replacing R ↔ L .

For the scalar interactions, one has

(4π)2βλH = 24λ2
H − 6y4

t + 9

8
g4

2 + 3

8
g4
Y + 3

4
g2

2g
2
Y + λ2

HS

+ 3

4
g2

mix

(
g2

2 + g2
Y

)
+ 3

8
g4

mix

+ λH

(
12y2

t − 9g2
2 − 3g2

Y − 3g2
mix

)
,

(4π)2βλS =20λ2
S − 16

(
y4
R + y4

L

)

+ 96g4
X + 8λS

(
y2
R + y2

L

)

− 48λSg
2
X + 2λ2

HS,

(4π)2βλHS = λHS

(
12λH + 8λS + 4λHS + 6y2

t

− 9

2
g2

2 − 3

2
g2
Y − 3

2
g2

mix
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+ 4
(
y2
R + y2

L

)
− 24g2

X

)
+ 12g2

mixg
2
X .

(A5)

The anomalous dimensions for the scalar masses m2
H and

m2
S are given by

(4π)2γm2
H

= m2
H

(
12λH + 6y2

t − 3

2
g2
Y − 3

2
g2

mix

)

+ 2λHSm
2
S,

(4π)2γm2
S

= m2
S

(
8λS + 4(y2

R + y2
L) − 24g2

X

)

+ 4λHSm
2
H . (A6)

A. 2 Boundary condition for gauge coupling constants

We give the boundary condition for the SM gauge coupling
constants. The value of the strong coupling constant gS is
extracted from αS(MZ ) = g2

S(MZ ) /4π = 0.1184 [85],
where the Z -boson mass is MZ = 91.1876 GeV. One can
obtain the values of SU(2)L and U(1)Y gauge coupling con-
stants at MZ from the fine structure constant and the Wein-
berg angle [85] which are observed as

α(MZ ) = 1

4π

g2
Y (MZ ) g2

2(MZ )

g2
Y (MZ ) + g2

2(MZ )
= 127.916,

sin2 θW (MZ ) = g2
Y (MZ )

g2
Y (MZ ) + g2

2(MZ )
= 0.23116. (A7)

From these values, more explicitly, one can extract

gS(MZ ) = 1.22029,

g2(MZ ) = 0.65191, gY (MZ ) = 0.35746. (A8)

Appendix B: One-loop effective potential

In this section, we give the effective potential at the one-loop
level. The Higgs and the singlet-scalar fields are parametrized
by H = (ϕ+, h + iϕ0)/

√
2 and S = (φ + iη)/

√
2, respec-

tively. The effective potential at the one-loop level is

Veff(h, φ) = Vtree(h, φ) + �V1-loop(h, φ), (B1)

where the tree level potential is

Vtree(h, φ) = λH

4
h4 + λHS

4
h2φ2 + λS

4
φ4, (B2)

and one has the one-loop effective potential,

�V1-loop(h, φ) = 1

64π2

{
3G2

h

[
ln

Gh

M2 − 3

2

]

+ G2
φ

[
ln

Gφ

M2 − 3

2

]

+ Tr

(
H2
[

ln
H

M2 − 3

2

])

− 12T 2
[

ln
T

M2 − 3

2

]

+ 3 Tr

(
M2

G

[
ln

MG

M2 − 5

6

])

− 2
∑

i=L ,R

N 2
i

[
ln

Ni

M2 − 3

2

]}
(B3)

where M is a renormalization scale, and the mass functions
are defined by

Gh(h, φ) = λHh
2 + λHS

2
φ2,

Gφ(h, φ) = λSφ
2 + λHS

2
h2,

T (h, φ) = 1

2
(yth)2 , NL ,R(h, φ) = 1

2
(yL ,Rφ)2,

H(h, φ) =
⎛
⎜⎝3λHh2 + λHS

2
φ2 λHSh φ

λHSh φ 3λSφ
2 + λHS

2
h2

⎞
⎟⎠ ,

MG(h, φ) = 1

4

⎛
⎝ g2

Y h
2 −g2gY h2 gY gmixh2

−g2gY h2 g2
2h

2 −g2gmixh2

gY gmixh2 −g2gmixh2 g2
mixh

2 + 16g2
Xφ2

⎞
⎠ .

(B4)

For the Higgs portal coupling and the kinetic mixing coupling
to be small, one can obtain the one-loop correction from SM
particles to the Higgs mass by computing

�M2
H � −d2�V1-loop

dh2

∣∣∣∣
h=vh

. (B5)

Appendix C: Cross sections for dark matter annihilation

We give explicit forms of thermal averaged cross sections for
dark matter annihilation processes as shown in Fig. 8. To this
end, we briefly summarize formulas to calculate them. In this
section, we omit primes which denote the mass eigenstates
of the scalar fields h and φ.

C. 1 Basic formula

For two-body scattering process (A+B → a+b) in a center-
of-mass system the differential scattering cross section is
given by

dσ

d�
(A + B → a + b) = 1

64π2s

|k|
| p| |M|2. (C1)
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Here external momenta for the initial and the final states are
expressed as, respectively,

| p| =
√
s − (mA + mB)2

√
s − (mA − mB)2

2
√
s

,

|k| =
√
s − (ma + mb)2

√
s − (ma − mb)2

2
√
s

, (C2)

with s = (pA + pB)2 = (pa + pb)2. Here, we assume the
center-of-mass system (pA = (E, p) and pB = (E,− p))
and mA = mB ≡ mi . With the relative velocity v =
4
√| p|2/s, the cross section for the two-body scattering pro-

cess (C1) is

σ(A + B → a + b) v =
∫

d�
1

16π2s

|k|√
s
|M|2. (C3)

The thermal averaged cross section is defined by

〈σv〉 = e2mi /T

(2πmiT )3

∫
d3 pAd3 pB (σv) e−(EA+EB )/T , (C4)

with EA = EB =
√
p2 + m2

i the energy dispersion. The
momentum integrals (C4), however, cannot by evaluated ana-
lytically, so that, by assuming a small relative velocity, one
expand the cross section into a polynomial of v2, i.e.,

σv = σ (s) + σ (p)v2 + O(v4), (C5)

where odd power terms of v are dropped since they vanish
in the integrals (C4). We obtain the formula for the thermal
averaged cross section,

〈σv〉 = σ (s) + 6σ (p) T

mi
+ O
(
(T/mi )

−2
)

. (C6)

C. 2 Cross section for dark matter annihilation

Let us evaluate cross sections for each process exhibited in
Fig. 8. Assuming that dark matters are non-relativistic, we
expand the cross sections into a polynomial of the relative
velocity v and take into account up to of order v2.

When two χi s (i = L , R) annihilate into scalar fields, one
finds

σ(χiχi ;φφ) v = σ
(p)
χiχi ;φφ

v2 + O(v4),

σ (χiχi ; hh) v = σ
(p)
χiχi ;hhv

2 + O(v4),

σ (χiχi ; hφ) v = σ
(p)
χiχi ;hφ

v2 + O(v4), (C7)

with

σ
(p)
χiχi ;φφ

= y2
i

16π
riφ

∣∣∣∣λeff, S3 �SS(Mi ) + λHSvH

2
�HS(Mi )

∣∣∣∣
2

+ y4
i

6π

∣∣�̂φ(Mi )
∣∣4 riφM2

i

(
9M4

i − 8M2
i M

2
φ + 2M4

φ

)

+ y3
i

6
√

2π

∣∣∣∣
(

3λSvS�SS(Mi ) + λHSvH

2
�HS(Mi )

) (
�̂φ(Mi )

)2∣∣∣∣
riφMi

(
5M2

i − 2M2
φ

)
, (C8)

σ
(p)
χiχi ;hh = y2

i
16π

rih

∣∣∣∣3λH vH�HS(Mi ) + λHSvS

2
�SS(Mi )

∣∣∣∣
2
, (C9)

σ
(p)
χiχi ;hφ

= 2y2
i

16π
rihφ

∣∣∣∣λHSvS

2
�HS(Mi ) + λHSvH

2
�SS(Mi )

∣∣∣∣
2
,

(C10)

where λeffS3 is the effective cubic coupling constant given in
Eq. (44). Here, we define dimensionless functions,

ri j =
√√√√1 − M2

j

M2
i

,

ri jk =
√

1 − (Mj + Mk)2

4M2
i

√
1 − (Mj − Mk)2

4M2
i

. (C11)

As given in Eq. (57), the propagators in the s channel for the
h-φ mixing and the singlet-scalar field φ are defined by

�HS(M) = cos θ sin θ

4M2 − M2
φ

− cos θ sin θ

4M2 − M2
h + i�HMh

, (C12)

�SS(M) = cos2 θ

4M2 − M2
φ

− sin2 θ

4M2 − M2
h + i�HMh

, (C13)

with θ the mixing angle given in Eq. (55), and �H the decay
width of H presented in Eq. (62), while the s-channel prop-
agator of the Xμ gauge field is given by

�X (M) = 1

4M2 − M2
X

. (C14)

For annihilation processes mediated by a Majorana fermion,
we define its propagators in the t and u channels,

�̂ j (M) = 1

M2
j − 2M2

, �̃i j (M) = 1

M2
i + M2

j − 4M2
.

(C15)

Note that since the top-quark is much heavier (or equiva-
lently larger Yukawa coupling constant) than other fermions
in the SM, we neglect those of the annihilation process with
Yukawa couplings of the SM.

The cross sections for the χL pair annihilation into SM
gauge bosons, W+W− and Z Z , are given by

σ(χiχi ; Z Z) v = σ
(p)
χiχi ;Z Zv2 + O(v4),

σ (χiχi ;WW ) v = σ
(p)
χiχi ;WW v2 + O(v4), (C16)
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Fig. 8 Possible annihilation processes of dark matters, which is
denoted by 〈σ (χLχL ; SMs, φ, Xμ

)
v〉. These processes are represented

in the flavor basis. The cross on the right-hand side diagram stands for
the kinetic mixing between U (1)Y and U (1)X gauge fields. The cross
in a circle stands for the mixing between φ and h. “SM” indicates con-
tributions from the SM particles except for the Higgs boson, i.e., W

and Z bosons and top-quarks, and f are SM fermions. Contributions
from other quarks are neglected since their Yukawa coupling constant is
relatively smaller than that of top quark, whereas for the decay process
into fermions mediated by X boson, one has to take into account all
quark contributions

Fig. 9 Annihilation processes
of the light-handed Majorana
fermions into the right-handed
ones. This is denoted by
〈σ(χLχL ; χRχR) v〉

where

σ
(p)
χiχi ;Z Z = y2

i

4π

∣∣∣∣∣
M2

Z

vH
�HS(Mi )

∣∣∣∣∣
2

ri Z

(
3

4
− M2

i

M2
Z

+ M4
i

M4
Z

)
,

(C17)

σ
(p)
χiχi ;WW = y2

i

2π

∣∣∣∣∣
M2

W

vH
�HS(Mi )

∣∣∣∣∣
2

riW

(
3

4
− M2

i

M2
W

+ M4
i

M4
W

)
,

(C18)

while for the annihilations into SM fermions, and Z -Higgs
pairs, one has

σ(χiχi ; f f ) v = σ
(p)
χiχi ; f f v

2 + O(v4),

σ (χiχi ; hZ) v = σ
(s)
χiχi ;hZ + σ

(p)
χiχi ;hZv2 + O(v4), (C19)

with the s-wave cross section for χiχi → hZ ,

σ
(s)
χiχi ;hZ = g2

X g
2
mix

16πM4
X

r3
ihZ M

2
i , (C20)

and the p-wave ones,

σ
(p)
χiχi ; f f = y2

i

4π
nc, f

∣∣∣∣M f

vH
�HS(Mi )

∣∣∣∣
2

ri f
(
M2

i − M2
f

)

+ nc, f (Y 2
fL

+ Y 2
fR

)g2
mixg

2
X

24π

× |�X (Mi )|2 ri f (M2
f + 2M2

i ), (C21)

σ
(p)
χiχi ;hZ = g2

X g
2
mix

3072πM2
i M

4
X

|�X (Mi )|2 rihZ
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×
[

− 16M4
i

{
18M2

h

(
M2

X − M2
Z

)

+ 9M4
h + 18M2

XM
2
Z − 2M4

X + 9M4
Z

}

+ 4M2
i M

2
X

{
M2

h

(
5M2

X − 36M2
Z

)
+ 18M4

h

+ 29M2
XM

2
Z + 18M4

Z

}
+ 576M6

i

(
M2

h + M2
Z

)

− 7M4
X

(
M2

h − M2
Z

)2 ]
. (C22)

Here, f denotes all fermions in the SM, nc, f is the degree
of freedom of color, i.e. nc,q = 3 for quarks and nc,� = 1
for leptons, and Y f is U(1)Y hypercharge for a fermion f ,
especially, Y fL and Y fR stand for hypercharges of the left-
and right-handed fermion sectors, respectively.

A two χL pair decays into the U(1)X gauge bosons whose
cross section is computed as

σ(χiχi ; XX) v = σ
(s)
χiχi ;XX + σ

(p)
χiχi ;XXv2 + O(v4), (C23)

with the s- and p-wave cross sections,

σ
(s)
χiχi ;XX = g4

X

4π

∣∣�̂X (Mi )
∣∣2 ri X (M2

i − M2
X

)
, (C24)

σ
(p)
χiχi ;XX = y2

i

4π

∣∣∣∣∣
M2

X

vS
�SS(Mi ) + gmixvH�HS(Mi )

∣∣∣∣∣
2

× ri X

(
3

4
− M2

i

M2
X

+ M4
i

M4
X

)

+ yi

6
√

2πM2
X

∣∣∣∣∣
(
�̂X (Mi )

)2 (M2
X

vS
�SS(Mi )

+gmixvH�HS(Mi ))|

× ri X

[
Mi

M2
X

(
2M6

X − 9M4
X M

2
i + 12M2

X M
4
i − 8M6

i

) ]

+ g4
X

96πM4
X

∣∣�̂X (Mi )
∣∣4 ri X

×
[
128M10

i + 17M10
X − 88M8

X M
2
i

+ 124M6
X M

4
i + 56M4

X M
6
i − 192M2

X M
8
i

]
, (C25)

while for the annihilation into a Xμ-φ pair, one obtains

σ(χiχi ; Xφ) v = σ
(s)
χiχi ;Xφ

+ σ
(p)
χiχi ;Xφ

v2 + O(v4), (C26)

where

σ
(s)
χiχi ;Xφ

= g4
X

πM4
X

r3
i XφM

2
i , (C27)

σ
(p)
χiχi ;Xφ

= g4
X

192πM2
i M

4
X

|�X (Mi )|2 ri Xφ

×
[
576M6

i

(
M2

X + M2
φ

)
− 16M4

i

(
25M4

X + 9M4
φ

)

+ 4M2
i

(
−31M4

XM
2
φ + 18M2

XM
4
φ + 47M6

X

)

− 7M4
X

(
M2

X − M2
φ

)2 ]

+ y2
i g

2
X

192πM2
i M

2
X

∣∣�̃Xφ(Mi )
∣∣4 ri Xφ

×
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1024M10

i + 256M8
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(
5M2

X − 4M2
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)
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(
4M2
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2
φ + 5M4
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φ

)
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(
8M4
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2
φ + M2
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4
φ + M6

X − 2M6
φ

)

+ 4M2
i

(
M4
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φ

)
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X

(
M2
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φ

)4 ]

+ yi g3
X

6
√

2πMiM3
X

∣∣∣�X (Mi )
(
�̃Xφ(Mi )

)2∣∣∣ ri Xφ

×
[
128M8

i − 96M6
i

(
M2
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φ

)

+ 8M4
i

(
2M2
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2
φ + 13M4

X + 3M4
φ
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4
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(
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X − M2
φ
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. (C28)

Finally, we show the cross section for the annihilation
of χLs into χRs, whose process is exhibited in Fig. 9. This
results in

σ(χLχL ;χRχR) v

= σ
(s)
χLχL ;χRχR

+ σ
(p)
χLχL ;χRχR

v2 + O(v4), (C29)

with

σ
(s)
χLχL ;χRχR

= g4
X

4π
rLR

M2
R

M4
X

, (C30)

σ
(p)
χLχL ;χRχR

= y2
L y

2
R

4π
|�SS(ML )|2 rLR

(
M2

L − M2
R

)

+ g4
X

96πM4
X

(
M2

L − M2
R

) |�X (ML )|2 rLR

×
{

− 48M4
LM

2
RM

2
X

+ 22M2
LM

2
RM

4
X + 72M2

LM
4
RM

2
X

+ 96M6
LM

2
R − 144M4

LM
4
R − 8M4

LM
4
X − 17M4

RM
4
X

}
.

(C31)

C.3 Thermal average cross section

Utilizing the formula (C6) the thermal averaged cross sec-
tions for dark matter annihilation to SM particles, φ and Xμ

are given by

〈σ(χiχi ; SMs, h, φ) v〉
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= 1

16π

[
ri XaX (gX , Mi ) + rihZ ahZ (gX , Mi )

+ ri Xφ aXφ(gX , Mi )

]

+ 1

16π

3μRL

xMi[ ∑
I=W,Z ,t,h,φ

ri I bI (yi , Mi )

+
∑
f

ri f b f (yi , gX , Mi ) + ri X bX (yi , gX , Mi )

+ rihφ bhφ(yi , Mi )

+ rihZ bhZ (gX , M) + ri XφbXφ(yi , gX , M)

]
, (C32)

with 1/μRL = 1/MR + 1/ML . Here, the five diagrams of
the right-hand side in Fig. 8 give contributions bI so that

aX (κ, M) = 4g2
X (κ)2

∣∣�̂X (M)
∣∣2 (M2 − M2

X

)

ahZ (κ, M) = g2
mix

M4
X

(κ)2
(

1 − (Mh + MZ )2

4M2

)

(
1 − (Mh − MZ )2

4M2

)
M2,

aXφ(κ, M) = 16g2
X

M4
X

(κ)2

(
1 − (MX + Mφ)2

4M2

)
(

1 − (MX − Mφ)2

4M2

)
M2. (C33)

The coefficients aI correspond to the diagrams the three left
lines of Fig. 8. They result in

bW (κ, M) = 16 (κ)2

∣∣∣∣∣
M2

W

vH
�HS(M)

∣∣∣∣∣
2

×
(

3

4
− M2
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+ M4

M4
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)
,

bZ (κ, M) = 8 (κ)2

∣∣∣∣∣
M2

Z

vH
�HS(M)

∣∣∣∣∣
2

×
(

3

4
− M2

M2
Z

+ M4

M4
Z

)
,

b f (κ, ρ, M) = 8nc, f (κ)2

×
∣∣∣∣M f

vH
�HS(M)
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2 (

M2 − M2
f

)

+ 16nc, f (Y 2
fL

+ Y 2
fR

)g2
mix

3
(ρ)2 |�X (M)|2

(
M2

f + 2M2
)

,

bh(κ, M) = 2 (κ)2
∣∣∣∣3λHvH�HS(M) + λHSvS

2
�SS(M)

∣∣∣∣
2

,

bφ(κ, M) = 2 (κ)2 |3λSvS�SS(M)

+λHSvH

2
�HS(M)
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2

+ 16

3
(κ)4
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∣∣4
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√
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,

bhφ(κ, M) = 4 (κ)2
∣∣∣∣λHSvS

2
�HS(ML )

+λHSvH

2
�SS(ML )

∣∣∣∣
2

,

bX (κ, ρ, M) = 8 (κ)2
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+ 16
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2MM3
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. (C34)

The χLχL → χRχR process is evaluated as

〈σ(χLχL ;χRχR) v〉

= g4
X

4π
rLR

M2
R

M4
X

+ rLR
16π

3μRL

xML

[
8(yR yL)2|�SS(ML) |2
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)
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X

3M4
X (M2
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LM

2
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2
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LM

2
RM
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LM
4
RM

2
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LM

2
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4
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4
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4
X

}]
. (C35)
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