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In a recent paper in this Journal, Sedaghatnia et al. [1] have
studied the Dirac equation in the presence of scalar and vec-
tor potentials in a class of flat Gödel-type space-times called
Som–Raychaudhuri space-times by using the methods quasi-
exactly solvable (QES) differential equations and the Niki-
forov Uvarov (NU) form. To achieve their goal, the authors
have mapped the system into second-order differential equa-
tion (Schrödinger-like problem). It is worthwhile to mention
that the expressions obtained [Eqs. (2.8)–(2.17)] in Ref. [1]
are correct. On the other hand, the second-order differential
equation in Ref. [1] is wrong, probably due to erroneous cal-
culations in the manipulation of the two coupled first-order
differential equations. This fact jeopardizes the results of [1].
The purpose of this comment is to calculate the correct dif-
ferential equation and following the appropriate procedure
to obtain the solution for this problem.

The Gödel-type solution with torsion and a topological
defect can be written in cylindrical coordinates by the line
element

ds2 = −(dt + αΩr2dϕ)2 + dr2 + α2r2dϕ2 + dz2 . (1)

The Dirac equation for a free Fermi field Ψ of mass M in a
Som–Raychaudhuri space-time with scalar and vector poten-
tials is given by [1]
[
iγ μ

(∇μ + ieAμ

) − (M + S(r))
]
Ψ (r, t) = 0 (2)

where Aμ = (V (r), 0, 0, 0), ∇μ = (∂μ + Γμ) and Γμ is the
affine connection. Now, using the correct results of Ref. [1]
and considering the solution in the form

Ψ (t, r, ϕ, z) = e−i Et ei(mϕ+kz)
(

ψ̄(r)
χ̄(r)

)
, (3)
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the Dirac equation (2) (with k = 0) becomes

Ôχ̄ (r) =
[
(E − V (r)) − Ω

2
σ 3 − (M + S(r))

]
ψ̄(r), (4)

Ôψ̄(r) =
[
(E − V (r)) − Ω

2
σ 3 + (M + S(r))

]
χ̄ (r). (5)

Here Ô = Ωr(E−V (r))σ 2 −iσ 1∂r + mα

r σ 2 − 1
2r σ

2σ 3 with
mα = m/α. Using the expression for χ̄ (r) obtained from (5)
with V (r) = S(r), redefining the spinor as ψ̄(r) = ψ(r)√

r
and

inserting it in (4) we obtain

ψ ′′(r) +
⎡

⎢
⎣(E2 − M2) − 2V (r)(E + M)

− 2Ω(E − V (r))σ 3 + Ω2

4
− Ω2r2(E − V (r))2

− 2mαΩ(E − V (r)) + Ωr

(
dV (r)

dr

)
σ 3

−
(
mα − σ 3

2

)2 − 1
4

r2

⎤

⎥
⎦ψ(r) = 0. (6)

Equation (6) is effectively a Schrödinger-type equation. The
second-order differential equation obtained in [1] [Eq. (2.18)]
is not similar to our result (6) probably due to erroneous
calculations in the manipulation of the two coupled first-
order differential Eqs. (4) and (5).

As in Ref. [1], firstly we concentrate our efforts on V (r) =
0. Using ψ(r) =

(
ψ+
ψ−

)
, σ 3ψs(r) = sψs(r) with s = ±1

and V (r) = 0, (6) reduces to

ψ ′′
s (r) +

(
λ3 − λ1r

2 − λ2

r2

)
ψs(r) = 0, (7)
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where

λ1 = E2Ω2 , (8)

λ2 =
(
mα − s

2

)2 − 1

4
, (9)

λ3 = E2 − M2 − 2EΩs + Ω2

4
− 2mαΩE . (10)

The equation of motion (7) describes the quantum dynamics
of a Dirac particle in a Som–Raychaudhuri space-time. The
expression for λ2 obtained in Ref. [1] [Eq. (2.21)] is wrong.
The solution for (7) with λ1 and λ3 real is precisely the well-
known solution of the Schrödinger equation for the harmonic
oscillator. The solution for all r can be expressed as

ψs(r) = Nnr |mα− s
2 |+ 1

2 e−√
λ1r2/2L

|mα− s
2 |

n (
√

λ1r
2) , (11)

where Nn is a normalization constant. Moreover, the spec-
trum is expressed as (for EΩ > 0)

E = νn,m +
√

ν2
n,m + M2 − Ω2

4
(12)

with νn,m = (
2n + 1 + ∣∣mα − s

2

∣∣ + mα + s
)
Ω . The eigen-

value of energy (2.25) obtained in Ref. [1] is not similar to
our result (12) due to it having been obtained from a wrong
differential equation.

As a second example, let us consider an attractive
Coulomb potentialV (r) = − a

r . By introducing the Coulomb

potential into Eq. (6), and using ψ(r) =
(

ψ+
ψ−

)
and

σ 3ψs(r) = sψs(r) with s = ±1, we get

d2ψs

dr2 +
⎡

⎢
⎣E2 + A

r
− Br − Cr2 −

(
mα − s

2

)2 − 1

4
r2

⎤

⎥
⎦

ψs = 0 , (13)

where

E2 = E2 − M2 − 2EΩs + Ω2

4
− 2mαEΩ − Ω2a2 , (14)

A = 2 (E + M) a − Ωas − 2mαΩa , (15)

B = 2EΩ2a , (16)

C = E2Ω2 . (17)

The solution for (13), with C necessarily real and positive,
is the solution of the Schrödinger equation for the three-
dimensional harmonic oscillator plus a Cornell potential [3–
6]. By setting

ψs = r
1
2 +|mα− s

2 | exp

(

−
√
C

2
r2 − B

2
√
C

r

)

φs(r) (18)

and by introducing the new variable and parameters

x = 4
√
C r , (19)

ω = 2
∣
∣∣mα − s

2

∣
∣∣ , (20)

ρ = B
4
√
C3

, (21)

τ = B2 + 4C ε2

4
√
C3

, (22)

one finds that the solution for all r can be expressed as a
solution of the biconfluent Heun differential equation [5–11]

x
d2φs

dx2 + (ω + 1 − ρx − 2x2)
dφs

dx
+ [(τ − ω − 2) x − Θ] φs = 0 , (23)

with Θ = 1
2 [δ + ρ (ω + 1)] and

δ = − 2A
4
√
C

. (24)

It is well known that the biconfluent Heun equation has a
regular singularity at x = 0 and an irregular singularity at
x = ∞ [4]. The regular solution at the origin is

Hb (ω, ρ, τ, δ; x) =
∞∑

j=0

Γ (1 + ω)

Γ (1 + ω + j)

A j

j ! x
j , (25)

where Γ (z) is the gamma function, A0 = 1, A1 = Θ and
the remaining coefficients for ρ �= 0 satisfy the recurrence
relation

A j+2 = [( j + 1)ρ + Θ] A j+1

− ( j + 1)( j + ω + 1)(Δ − 2 j)A j ,
(26)

where Δ = τ − ω − 2. The series is convergent and tends

to exp
(
x2 + ρx

) = exp
(√

Cr2 + B√
C
r
)

as x → ∞. This

asymptotic behavior perverts the normalizability of the solu-

tion (18), because ψ(r) ∝ exp
(√

C
2 r2 + B

2
√
C
r
)

as r → ∞.

This impasse can be surpassed by considering a polynomial
solution for Hb. From the recurrence (26), Hb becomes a
polynomial of degree n if and only if two conditions are sat-
isfied:

Δ = 2n (n = 0, 1, 2, . . .) (27)

and

An+1 = 0 . (28)

The condition (28) furnishes a polynomial of degree n+1 in
δ; there are at most n+1 suitable values of δ. At this stage, it
is worth to mention that the energy of the system is obtained
using both conditions (27) and (28).
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From the condition (27), we obtain (for EΩ > 0)

E2
n,m − M2 + Ω2

n,m

4
− 2Ωn,mξn,mE = 0 , (29)

where

ξn,m = s + mα +
∣∣∣mα − s

2

∣∣∣ + n + 1 . (30)

The problem does not end here; it is necessary to analyze
the condition (28). For n = 0, the condition (28) becomes
A1 = Θ = 0 and results in an algebraic equation of degree
one in δ,

δ + ρ(ω + 1) = 0 . (31)

Substituting (20), (21) and (24) into (31), we obtain

Ω0,m = 2 (E + M)

εm
, (32)

where εm = 2
(
mα + s

2

)+2
∣
∣mα − s

2

∣
∣+1. Substituting (32)

into (29) for n = 0, we have

E0,m = M
ε2
m − 1

1 − ε2
m − 2(s + 1)εm

. (33)

Equation (33) represents the energy eigenvalue for n = 0.
For n = 1, the condition (28) becomes A2 = 0 and results
in an algebraic equation of degree two in δ. For n ≥ 2 the
algebraic equations are cumbersome. In this comment, we
will only consider the solution for n = 0 for simplicity.

In summary, we studied the Dirac equation in the presence
of scalar and vector potentials in a class of flat Gödel-type
space-times called Som–Raychaudhuri space-times. We cal-
culated the correct second-order differential equation for this
system. As in Ref. [1], we have considered two cases: (1)
V (r) = 0 and (2) the Coulomb potential. For the first case,
V (r) = 0, the problem was mapped into a Schrödinger-like
equation with the harmonic oscillator potential. The correct
energy spectrum for this case was obtained. For the second
case, we considered an attractive Coulomb potential. In this
case, the problem was mapped into a biconfluent Heun dif-
ferential equation and appropriately using the quantization
conditions (27) and (28), we found the correct energy spec-
trum for n = 0. Finally, we showed that the results obtained
in Ref. [1] are incorrect, due to them having been obtained
from a wrong differential equation.
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