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Abstract Recently, a new type of constant Fayet–Iliopoulos
(FI) terms was introduced in N = 1 supergravity, which do
not require the gauging of the R-symmetry. We revisit and
generalise these constructions, building a new class of Kähler
invariant FI terms parametrised by a function of the gravitino
mass as functional of the chiral superfields, which is then
used to describe new models of inflation. They are based on
a no-scale supergravity model of the inflaton chiral multi-
plet, supplemented by an abelian vector multiplet with the
new FI-term. We show that the inflaton potential is compati-
ble with the CMB observational data, with a vacuum energy
at the minimum that can be tuned to a tiny positive value.
Finally, the axionic shift symmetry can be gauged by the
U (1) which becomes massive. These models offer a mecha-
nism for fixing the gravitino mass in no-scale supergravities,
that corresponds to a flat direction of the scalar potential in
the absence of the new FI-term; its origin in string theory is
an interesting open problem.

1 Introduction

The simplest extension of pure N = 1 supergravity in flat
spacetime is the anti de Sitter (AdS) supergravity, where a
negative cosmological constant � is included [1]. In order
to preserve local supersymmetry, a gravitino effective mass
term has to be added, linked to � through � = −3m2

3/2,
which describes a massless gravitino in AdS spacetime. It
is simply obtained by considering a constant superpoten-
tial W = m3/2. An arbitrary cosmological constant cannot
be introduced without breaking explicitly supersymmetry, or
considering non-linear realisation [2]. In the presence of an
abelian vector multiplet a constant Fayet–Iliopoulos (FI) term
can be introduced only if the U (1) gauges the R-symmetry,
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in which case a constant superpotential is forbidden, leading
to a de Sitter (dS) supergravity describing a massive gravitino
through curvature effects [3,4].

Recently, a new type of constant FI-term was introduced
which does not require the gauging of the R-symmetry [5].
It assumes that the D-auxiliary component of the U (1) vec-
tor multiplet has a non-vanishing vacuum expectation value
(VEV) breaking spontaneously supersymmetry, in which
case it can be expanded as D + fermion terms of higher
dimensions. In the unitary gauge where the gravitino absorbs
the U (1) gaugino and becomes massive, the fermion terms
vanish and the new FI-term amounts adding a positive contri-
bution to the cosmological constant of the AdS supergravity,
since a constant superpotential is now allowed as the U (1)

does not gauge the R-symmetry. In the presence of matter, the
construction of [5] leads to a scalar potential but breaks Käh-
ler invariance. On the other hand, the new and standard FI-
terms can coexist in the case of gauge R-symmetry, provid-
ing interesting models of D-term inflation [6]. An alternative
construction was made in [7] preserving Kähler invariance
and leading to a constant FI-term in the presence of matter,
that generates a constant uplift of the vacuum energy. More
recently, such FI-terms were written in N = 2 supergravity
exhibiting a much richer structure [8].

In this work, we generalise the above constructions in
N = 1 supergravity, preserving the Kähler invariance and
keeping the form of the bosonic action to be linear in D up to
a field dependent coefficient. We show that the most general
FI-term is characterised by an arbitrary function of the grav-
itino mass, taken as a functional of the chiral superfields. We
then study applications to cosmology, building new models
of inflation compatible with CMB observations and possess-
ing a dS vacuum with tuneable (tiny) energy. We specialise
to no-scale models [9,10] of one chiral multiplet containing
the inflaton, supplemented by a U (1) gauge symmetry with
the new FI-term. Moreover, we choose for the latter a simple
characteristic function of the gravitino mass which is a sin-
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gle power and an additive constant, thus depending on three
parameters. We show that there is a region in the parame-
ter space where the resulting scalar potential possesses an
inflationary plateau describing successfully the cosmologi-
cal observations with the inflaton rolling down to a minimum
with tuneable vacuum energy, where the gravitino mass and
the supersymmetry breaking scale are fixed in terms of the
parameters of the model.

This paper is organised as follows. In Sect. 2, we review
the recent construction of the new FI-term in N = 1 super-
gravity without gauging the R-symmetry, and its generali-
sation to a Kähler invariant FI Lagrangian leading to a pos-
itive constant uplift of the scalar potential in the presence
of arbitrary matter chiral multiplets. In Sect. 3, we propose
the most general modification of this construction that pre-
serves Kähler invariance and is characterised by an arbitrary
function of the gravitino mass as functional of chiral mul-
tiplets. We then study the consequences of such terms on
inflation and supersymmetry breaking in a de Sitter vac-
uum with tuneable energy in Sect. 4, for the case of two
no-scale models and for a simple choice of the functional
dependence of the new FI D-term. Finally in Sect. 5, we dis-
cuss the gauging of the shift symmetry that gets rid of the
massless particles in the spectrum without altering the infla-
tionary predictions. Moreover, inspired by the low-energy
limit of the heterotic string, we identify the inflaton with
the string dilaton and gauge the perturbative axionic symme-
try by the Green–Schwarz anomaly cancellation mechanism.
These models provide new examples of inflation by super-
symmetry breaking [11], where the inflaton belongs to the
same multiplet with the Goldstino [12,13], without gauging
the R-symmetry. Our conclusions are presented in Sect. 6.
There are also two appendices containing a summary of
the conformal supergravity multiplets calculus (Appendix A)
and details of the computation of the fermion masses in our
models (Appendix B).

Throughout this work, we will use natural units h̄ =
c ≡ 1. The reduced Planck mass κ−1 = (8πG)−1/2 =
2.4 × 1018GeV is set equal to one, and numerical values
are given in these units. We adopt the metric convention
(−,+,+,+).

2 Fayet–Iliopoulos term without gauged R-symmetry: a
review

In N = 1 supergravity, a new Fayet–Iliopoulos term asso-
ciated to a non-gauged R symmetry has first been intro-
duced in [5]. In the superconformal formalism, denoting
S0 = (s0, PL�0, F0) and S̄0 = (s̄0, PR�0, F̄0) the chiral
and anti-chiral compensator superfields, with (Weyl, Chi-
ral) weights (1, 1) and (1,−1) respectively, this new FI

Lagrangian reads [5]:

LF I = −ξ

[
S0 S̄0

W2W̄2

T (W̄2)T̄ (W2)
(V )D

]
D

, (1)

where ξ is a constant parameter, (V )D is a real linear multiplet
defined by (V )D = (D, /Dλ, 0,Db F̂ab,− /D /Dλ,−�C D),
whose lowest component D is the real auxiliary field of
the vector superfield V , the latter having (anti)-chiral field
strength (W̄) W given by

W2 = λ̄PLλ

S2
0

, W̄2 = λ̄PRλ

S̄2
0

, (2)

so that (V )D is given by the super-covariant derivative of
W . The chiral projection operator T acting on an anti-
chiral multiplet X̄ = (X̄ , PR�, F̄) of weights (1,−1) gives
a chiral multiplet of weights (2, 2) defined as T (X̄) =
(F̄, /DPR�,�C X̄). λ̄PLλ has weights (3, 3) and reads, in
components form:

λ̄PLλ =
(

λ̄PLλ;√
2PL

(
−1

2
γ · F̂ + i D

)
λ;

2λ̄PL /Dλ + F̂− · F̂− − D2
)

, (3)

with the covariant field strength F̂ab and the self-dual and
anti self-dual tensors F̂±

ab given by

F̂ab = eμ
a e

ν
b

(
2∂[μAν] + ψ̄[μγν]λ

)
, (4)

F̂±
ab = 1

2
(F̂ab ± ˜̂Fab). (5)

The dual field strength is ˜̂Fab = − i
2εabcd F̂cd , while the

covariant derivative Dμλ is defined by

Dμλ =
(

∂μ − 3

2
bμ + 1

4
wab

μ γab − 3

2
iγ∗Aμ

)
λ

−
(

1

4
γ ab F̂ab + 1

2
iγ∗D

)
ψμ. (6)

ψμ is the gravitino, the fields bμ, wab
μ and Aμ are the gauge

fields corresponding to dilatations, Lorentz transformations
and TR symmetry of the conformal algebra respectively, and
γ∗ ≡ iγ0γ1γ2γ3.

Considering first pure supergravity coupled to an abelian
U (1) gauge multiplet plus the FI term (1), the full Lagrangian
reads:

L = −3
[
S0 S̄0

]
D +

[
S3

0W0

]
F

− 1

4g2

[
λ̄PLλ

]
F + LF I . (7)

Supersymmetry is broken via a non-vanishing VEV of the
D-auxiliary component of the vector multiplet driven by the
linear term in D, with the Goldstino being the U (1) gaugino.
In component form, after having gauge fixed the compensator
through S0 = 1, integrated the auxiliary fields, and in the
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unitary gauge where the Goldstino vanishes, one gets [5]:

e−1L = 1

2

(
R − ψ̄μγ μνρDνψρ + m3/2ψ̄μγ μνψν

)
− 1

4g2 F
μνFμν −

(
−3m2

3/2 + 1

2
ξ2

)
(8)

with m3/2 = W0, a constant superpotential. Therefore, in
the absence of chiral matter superfields, any ξ �= 0 uplifts
the vacuum energy by a constant term VF I = ξ2/2 and
breaks supersymmetry. One can then tune ξ to get a de Sitter
vacuum configuration, matching with the observational data.
For instance, ξ = √

6m3/2 gives a massive gravitino in flat
Minkowski spacetime with spontaneously broken supersym-
metry.

Introducing chiral matter multiplets Xi in the previous
model, the Lagrangian is now given by:

L = −3
[
S0 S̄0e

−K (Xi ,X̄ i )/3
]
D

+
[
S3

0W (Xi )
]
F

− 1

4g2

[
λ̄PLλ

]
F + LF I . (9)

In component form, after having gauge fixed the compensator
through S0 = eK/6 and integrated the auxiliary fields, the
bosonic part of the previous Lagrangian reads [5]:

e−1L
∣∣∣
bos

= 1

2
R − 1

4g2 F
μνFμν − Gi j̄∂X

i · ∂ X̄ j̄

−
(
eK (|∇iW |2 − 3|W |2) + ξ2g2

2
e2/3K

)
.

(10)

Therefore, when matter fields are coupled, the scalar poten-
tial contribution from (1) becomes field dependent, VF I =
ξ2g2

2 e2K/3, and no longer Kähler invariant, which basically
comes from the fact that the FI Lagrangian (1) is not itself
Kähler invariant. To remedy this, a generalized Kähler invari-
ant FI term has been built in [7]. From the generic Kähler
transformations for a Kähler potential K (X, X̄), a superpo-
tential W (X) and the compensator S0,

K (X, X̄) → K (X, X̄) + J (X) + J̄ (X̄),

W (X) → W (X)e−J (X),

S0 → S0e
J (X)/3, (11)

this new construction is based on the modification of the FI
term (1) by introducing in it the Kähler potential according
to

LF I = −ξ

[(
S0 S̄0e

−K/3
)−3 (λ̄PLλ)(λ̄PRλ)

T (W̄ ′2)T̄ (W ′2)
(V )D

]
D

.

(12)

The modified and henceforth Kähler invariant gauge field
strengths are given by1

W ′2 = λ̄PLλ

(S0 S̄0e−K/3)2
, W̄ ′2 = λ̄PRλ

(S0 S̄0e−K/3)2
. (13)

The new bosonic contribution to the scalar potential arising

from this new term reads VF I = ξ2g2

2 , which is constant
whether matter fields are included or not. The aim of this letter
is to generalise the work carried out in [5,7] by building the
most general extended FI terms whose bosonic component is
linear in the auxiliary field D, up to a general field dependent
coefficient, while preserving Kähler invariance at the same
time.

3 A set of Kähler invariant Fayet–Iliopoulos terms

The starting point of the approach followed in this work is
to modify the field strengths (2) by introducing the superpo-
tential W in order to make them Kähler invariant. This can
be done in the following way2:

W2 = λ̄PLλ

S2
0W (X)

2
3

, W̄2 = λ̄PRλ

S̄2
0 W̄ (X̄)

2
3

, (14)

where the 2
3 exponent of W (X) is uniquely fixed by the Käh-

ler transformations (11) to get Kähler invariant W2 and W̄2.
The superpotential W has vanishing Weyl and Chiral weights
and is assumed to have a non-vanishing VEV. Therefore, W2

and W̄2 have the same (Weyl, Chiral) weights (1, 1) and
(1,−1) as those of (2), and one can thus still apply the (anti-
) chiral projection operators (T̄ ) T . The resulting multiplets
T (W̄2) and T̄ (W2) then carry weights (2, 2) and (2,−2).
The operation [ ]D has to act on a multiplet of weights (2, 0).
(V )D having already weights (2, 0), we need to multiply it
with a multiplet with vanishing weights, which can be chosen

(S0 S̄0)
−1 (λ̄PLλ)(λ̄PRλ)

T (W̄2)T̄ (W2)
as it can be easily checked knowing the

weights (1, 1) and (3, 3) of S0 and λ̄PLλ, respectively. The
Kähler potential K and the superpotential W having vanish-
ing weights, we can include them for free in the previous
combination in the following form:

R(V )D ≡ (S0 S̄0)
−1enKWαW̄α (λ̄PLλ)(λ̄PRλ)

T (W̄2)T̄ (W2)
(V )D, (15)

where at this point the parameters n and α are arbitrary. As it
can be seen from (11), the quantityR(V )D is Kähler invariant

1 Note that these superfields are no longer chiral, contrary to the previ-
ous ones of Eq. (2).
2 Besides Kähler invariance, the new gauge field strengths (14) are
again chiral like those of Eq. (2).
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provided that n and α are related by

n = 1

3
+ α. (16)

Therefore, the most general Kähler invariant FI term
involving both the Kähler potential and the superpotential
is in fact a set of Lagrangians labelled by one free parameter
α according to:

L(α)
F I = −ξα[

(S0 S̄0)
−1e( 1

3 +α)KWαW̄α (λ̄PLλ)(λ̄PRλ)

T (W̄2)T̄ (W2)
(V )D

]
D

.

(17)

We now add a series of terms (17) in N = 1 supergravity
coupled to the U (1) gauge multiplet (whose gauge kinetic
function is chosen to be one for simplicity), plus a set of mat-
ter chiral multiplets denoted generically {X}. Before gauge
fixing the superconformal generators, the lagrangian for this
model reads:

L = −3

[
S0 S̄0e

−K(X,X̄)
3

]
D

+
[
S3

0W (X)
]
F

− 1

4g2

[
λ̄PLλ

]
F +

∑
i

L(αi )
F I , (18)

where the sum is running for now over an arbitrary set of
parameters αi .

We are interested in the contribution of Eq. (17) to the
scalar potential, and in particular we would like to check that
Kähler invariance is preserved. For simplicity and in order
to highlight the cosmological applications, we focus on the
bosonic sector. The contribution to the fermion masses aris-
ing from these new FI terms is studied in Appendix B. Putting
all fermions to zero for now, the remaining components of
the chiral multiplet λ̄PLλ given in Eq. (3) are:

λ̄PLλ =
(

0, 0, F̂− · F̂− − D2
)

. (19)

With the chiral and anti-chiral compensators S0 = (s0, PL�0,

F0) and S̄0 = (s̄0, PR�0, F̄0), the bosonic components of
the composite chiral and anti-chiral multiplets S−1

0 λ̄PLλ and
S̄−1

0 λ̄PRλ are given by3:

S−1
0 λ̄PLλ = (0, 0, s−1

0 (F̂− · F̂− − D2))

= (0, 0, − 2s−1
0 (F̂− · F̂− − D2), 0, 0, 0, 0),

(20)

S̄−1
0 λ̄PRλ = (0, 0, s̄−1

0 (F̂+ · F̂+ − D2))

= (0, 0, 0, − 2s̄−1
0 (F̂+ · F̂+ − D2) 0, 0, 0).

(21)

3 The three and seven-components notation for chiral multiplets, as well
as the main calculus rules used in this paper, are described in Appendix
A.

Similarly, the bosonic components of the chiral superfield
W2 given in Eq. (14) are:

W2 =
(

0, 0, s−2
0 W− 2

3 (F̂− · F̂− − D2)
)

, (22)

from which we deduce the components of the anti-chiral
superfield T̄ (W2):

T̄ (W2) =
(
s−2

0 W− 2
3 (F̂− · F̂− − D2), 0, 0

)
. (23)

The product of the multiplets (20) and (21) already being
a θ2θ̄2 term, only the lowest components of the remaining
quantities entering in the Lagrangian (17) will contribute to
the bosonic sector. We can therefore rewrite it as:

L(αi )
F I

= −ξi
e( 1

3 +αi )KWαi W̄αi D

(s0 s̄0)−2(WW̄ )− 2
3 (F̂− · F̂− − D2)(F̂+ · F̂+ − D2)

[R]
D ,

(24)

with the real multiplet R defined as:

R ≡ (S−1
0 λ̄PLλ)(S̄−1

0 λ̄PRλ). (25)

Looking at the seven-components notation (20) and (21)
for the multiplets S−1

0 λ̄PLλ and S̄−1
0 λ̄PRλ and the multipli-

cation law (A8), we see that the only non-vanishing bosonic
term of R arises from 1

2 fi jKiH j in its D-component. More
precisely, it reads (R)D = 1

2 fi jKiH j = 1
2 f21K2H1 =

2(s0s̄0)
−1(F̂− · F̂− − D2)(F̂+ · F̂+ − D2). The operation

[ ]D defined in (A7) immediately leads to [R]D = e
2 (R)D =

e(s0s̄0)
−1(F̂−· F̂−−D2)(F̂+· F̂+−D2). The FI Lagrangian

(24) is therefore given by:

e−1L(αi )
F I = −ξi s0s̄0e

(αi+ 1
3 )K (WW̄ )αi+

2
3 D. (26)

Since we are interested in matter coupled N = 1 supergrav-
ity, we use the Einstein frame where the conformal symme-

try is gauge fixed through s0 = s̄0 = e
K
6 . This leads to a set

of Kähler invariant terms parametrised by some constants
{αi , ξi } according to:

e−1L(αi )
F I = −ξi e

(
αi+ 2

3

)
K
(WW̄ )αi+

2
3 D = −ξi e

(
αi+ 2

3

)
G
D ,

(27)

where G ≡ K + ln |W |2. Therefore, after gauge fixing the
conformal symmetry and integrating out the auxiliary fields,
the pure bosonic sector arising from the Lagrangian (18) is
given by

e−1L(B) = 1

2
R − 1

4g2 FμνF
μν − GI J̄ ∂X

I · ∂ X̄ J̄ − V
(28)

with the scalar potential

V = eG
(
∂IG GI J̄ ∂ J̄G − 3

)
+ VF I . (29)

123



Eur. Phys. J. C (2020) 80 :346 Page 5 of 14 346

The new FI contribution to the scalar potential, VF I , arising
from Eq. (27) reads

VF I = g2

2

(∑
i

ξi e

(
αi+ 2

3

)
G
)2

, (30)

which is obviously Kähler invariant while field dependent at
the same time.

The above construction therefore provides a way to obtain
an arbitrary set of (Kähler invariant) FI terms from a single
U (1) gauge field, in the presence of a superpotential W with
non-vanishing expectation value. Each term of the sum is
parametrised by two real constants ξi and αi . A constant FI
term is obviously recovered by choosing one αi0 = −2/3.
For this value, the bosonic part of the Lagrangian (17) is
equal to the one of the Lagrangian (12). Being independent of
W , it is in particular valid even for vanishing superpotential,
like the new FI term (12). However, it is not clear that the
fermionic parts of the Lagrangians (17) and (12) are equal,
as well, for αi0 = −2/3.

A general sum appearing in the Lagrangian (18), involving
terms of the form (27), using that eG/2 = m3/2[X ], amounts
to adding a general function of the gravitino mass m3/2[X ]
considered as a functional of the scalar fields {X}:
e−1L(B)

F I = − f (m3/2[X ])D −→ VF I

= g2

2
| f (m3/2[X ]) |2 (31)

This construction allows us to refine the scalar potential by
adding new field dependent and Kähler invariant terms. In
the following, we will restrict ourselves as an illustration to
the study of the simple case of one term of the type (27) up
to an additive constant, corresponding to the choice i = 1, 2
with α1 an arbitrary parameter and α2 = −2/3. Considering
the Kähler potential of no-scale type and a constant superpo-
tential, we will show that this choice is sufficient to produce
inflationary models compatible with the slow-roll conditions
and consistent with the CMB observations, with the inflaton
rolling towards a de Sitter vacuum with tuneable energy and
spontaneously broken supersymmetry.

4 No-scale models and cosmological applications

In this section, we study the cosmological consequences of
the previous modified FI-term construction in the case of
simple no-scale models. Considering one chiral superfield X
associated to the inflaton, we successively choose the Kähler
potentials

K (X, X̄) = − ln(X + X̄) and K (X, X̄) = −3 ln(X + X̄),

(32)

together with a constant superpotential W = W0 and an
exponential one W (X) = eβX , respectively. In the context
of string theory, these forms of Kähler potentials arise in all
toroidal/orbifold compactifications as well as in the large vol-
ume limit of Calabi–Yau compactifications, both in heterotic
string and in type II orientifolds. In this context, the first
Kähler potential could describe for instance the kinetic term
of the dilaton, associated to the string coupling, while the
second may describe the internal volume of the 3-complex
dimensional compact space. We will therefore refer to the
“dilaton case” and “compact volume case” to describe these
two models. From now on, we also restrict the sum (30) to
only two terms parametrised by three constants ξ1, α1 ≡ α

and ξ2, while α2 = − 2
3 .

4.1 Dilaton case

We first consider the Kähler potential K = − ln(X + X̄). In
terms of the gravitino mass m2

3/2 = eG , this yields the scalar
potential:

V = −2m2
3/2 + 1

2

(
ξ1(m

2
3/2)

α+2/3 + ξ2

)2
, (33)

where we have redefined the parameters ξi to absorb the
gauge coupling constant g. As we will show below, there
is a region of the parameter space ξ1, ξ2 and α, such that
the above potential has an inflational plateau allowing slow-
roll inflation compatible with the cosmological observations,
and a minimum, where supersymmetry is spontaneously bro-
ken, with a tuneable vacuum energy by a fine tuning of the
parameters (for instance to obtain a vanishing cosmological
constant in the vacuum).

In order to compute the slow-roll parameters, one needs
to work with the canonically normalised field χ , defined by
its kinetic term through

∂μX∂μ X̄

(X + X̄)2
= 1

2
∂μχ∂μχ + · · · (34)

where the dots denote terms containing the imaginary part of
X , which has no influence on the discussion of this section.
We will come back to it in Sect. 5, where the shift symmetry
associated to this imaginary part will be gauged by theU (1).
Focusing on the real part for now, we deduce from (34)

ReX = e
√

2χ , (35)

and thus

m2
3/2 = eG = |W0|2

2
e−√

2χ . (36)

In the following, the ‘dilaton’ χ will be identified with
the inflaton, dynamically driving inflation starting from a
large value, slightly rolling down along the potential, attain-
ing the horizon exit denoted by χ∗ and ending at a value

123
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χend when slow-roll stops. The field then continues to fall
down towards the minimum, when reheating takes place.
From now on, quantities observed at the horizon exit are
specified with a star *, and the approximation of large infla-
ton field χ >> 1 is assumed in this region.4 The gravitino
mass (36) vanishes exponentially and the potential (33) for
α ≥ −2/3 is therefore dominated by a constant, as required
by slow-roll inflation. In the following, we will thus restrict

to the region α > −2/3, with V∗ 
 ξ2
2
2 . In terms of the

canonical field χ , the slow-roll parameters are given as usual
by

ε ≡ 1

2

(
∂V/∂χ

V

)2

; η ≡ ∂2V/∂χ2

V
. (37)

At large field χ , by further assuming α > 1/3, they can be
expanded into

ε ≈
χ>>1

(
4m2

3/2

ξ2
2

)2

≈
χ>>1

1

4
η2; η ≈

χ>>1
−8m2

3/2

ξ2
2

. (38)

Actually, the large field condition is not really necessary. The
required approximation is that the gravitino mass (36) should
be small during inflation, so that the potential (33) is approx-
imately constant. This is an important point, implying that
the models we study are consistent with small field inflation,
avoiding trans-planckian initial conditions for the normalised
inflaton field.

A central quantity to be taken into account in inflation
is the number N of e-folds between the horizon exit and
the end of inflation, a period observable through the CMB.
This quantity, which must be set within the range [40, 60] to
satisfy CMB observations, is given by:

N =
∫ χend

χ∗

dχ√
2ε(χ)

∈ [40, 60]. (39)

Two other observable quantities at the horizon exit are the
amplitude of primordial density fluctuations AS and the spec-
tral index, or tilt ns , respectively given by

AS = V∗
24π2ε∗

= 2.2 × 10−9, (40)

nS = 1 + 2η∗ − 6ε∗ = 0.96, (41)

where the numerical equalities also follow from the CMB
data.

To be consistent with observations, the inflaton potential
during inflation should respect the three conditions (39), (40)
and (41), which we now use in order to constrain the three
parameters ξ1, ξ2 and α. In the large field limit at the horizon
exit, the tilt (41) gives nS = 1+2η∗−6ε∗ 
 1+2η∗− 3

2η2∗ ≈

4 χ >> 1 corresponds to weak coupling, which is necessary for the
validity of an effective supergravity theory. However, the large field
approximation is not really needed; instead, the required condition is
that m3/2 → 0.

1 + 2η∗ = 1 − 16m∗2
3/2/ξ

2
2 
 0.96, from which we deduce

that ξ2
2 
 400m∗2

3/2. Moreover, the amplitude (40) leads to

1
768π2

ξ6
2

m∗4
3/2

= 2.2 × 10−9. Therefore, in the large field limit,

the ξ1 and α dependence drops, and one can immediately
find from these two relations the numerical values for the
parameter ξ2 and the gravitino mass at the horizon exit m∗2

3/2,
namely:

ξ2
2 = 1.04 × 10−10, (42)

m∗2
3/2 = 2.6 × 10−13. (43)

From the value of ε at the horizon, given by the first equation
of (38), and the two relations (42) and (43), we find the
predicted value for the tensor-to-scalar ratio of primordial
perturbations to be:

r = 16ε∗ 

(

16m∗2
3/2

ξ2
2

)2

= 1.6 × 10−3, (44)

which is fixed and independent of any parameters of the
model, as long as α > 1/3 is considered.

On the other hand, the condition to have a (almost) van-
ishing potential at its minimum,5 for a value of the grav-
itino mass denoted m̃2

3/2 in what follows, can then be used
in order to determine the parameter ξ1 in terms of α. This
is obtained by numerically solving V(m̃2

3/2) = 0, with the
result denoted ξ1(α) in the following. In order to constrain
the last remaining parameter α via the number of e-folds
equation (39), we first need to determine the value of the
inflaton field at the end of inflation, depending on α. Infla-
tion stops when χ reaches a value χend such that ε(χend) = 1
or |η(χend)| = 1. In this model, the condition first fulfilled
turns out to be η(χend) = −1, which leads to the equation:

6m2 end
3/2 − ξ2

1 (α)(m2 end
3/2 )2α+4/3

(
1

2
+ 4

(
α + 2

3

)2
)

−ξ1(α)ξ2(m
2 end
3/2 )α+2/3

(
1 + 2

(
α + 2

3

)2
)

− ξ2
2

2
= 0.

(45)

This equation is solved numerically to get m2 end
3/2 in terms of

α. The number of e-folds is then used in order to determine
the parameter α. Indeed, Eq. (39) becomes:

N (α) = − 1

4

∫ m2 end
3/2 (α)

m∗2
3/2

−4m2
3/2 +

[
ξ1(α)(m2

3/2)α+2/3 + ξ2

]2

2m2
3/2 − (α + 2

3 )ξ2
1 (α)(m2

3/2)2α+4/3 − (α + 2
3 )ξ1(α)ξ2(m2

3/2)α+2/3

5 This is obviously an approximation since the cosmological constant
is extremely small but nonzero. But the point to keep in mind is that in
this model, the cosmological constant can be tuned to any small positive
value.
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dm2
3/2

m2
3/2

. (46)

Using m2 end
3/2 given by the largest solution of Eq. (45), the

value for ξ2
2 (42), and the expression for ξ1(α) given from

the solution ofV(m̃2
3/2) = 0, the above integral can be numer-

ically evaluated in terms of α. It turns out that any α larger or
approximately equal to 1 leads to an acceptable e-fold num-
ber N ∈ [40, 60]. Thus, the only fine tuning of the model,
besides fixing the overall scale of the potential by its asymp-
totic value determined by ξ2, is related to the vacuum energy.
The gravitino mass at the minimum of the potential m̃3/2

can be between 1010TeV and the Planck scale by choosing
α between 1 and 10.5 respectively.

As an illustration, we now choose α 
 1, which gives
ξ1(α = 1) 
 1011.6 With these values, the scalar poten-
tial and the slow-roll parameters are plotted in terms of
χ in Figs. 1 and 2 respectively, where we have also set
W0 = √

2. The vertical grey lines indicate the horizon exit
and the end of inflation (from the right to the left). The corre-
sponding numerical values for the gravitino mass arem∗2

3/2 =
2.64×10−13 and m2end

3/2 = 1.56×10−11 in Planck units. The

minimum is reached at m̃2
3/2 = 5.29 × 10−11. The associ-

ated values for the inflaton field are χ∗ = 20.48+ 1√
2

ln |W0|2
2 ,

χend = 17.59 + 1√
2

ln |W0|2
2 and χ̃ = 16.73 + 1√

2
ln |W0|2

2 .
Notice that the values of the inflaton can be made less than
one for an appropriate choice of W0, as we already mentioned
in the beginning of the section. Finally, note that because of
the space-time curvature during inflation, the value of m3/2

entering in the Lagrangian is not the physical gravitino mass,
which should be computed taking into account the curvature
contribution in an approximate de Sitter spacetime [14,15].

The spectrum at the minimum contains the imaginary part
of X and the U (1) gauge boson, which remain massless in
this model, as it can be seen from the expression of the scalar
potential, as well as the massive gravitino and inflaton whose
masses are given by:

m̃2
3/2 = 5.29 × 10−11, m̃2

χ = ∂2V

∂χ2

∣∣∣∣
χ=χmin

= 2.46 × 10−10.

(47)

There is also a massive spin-1/2 fermion corresponding to a
linear combination of the U (1) gaugino and the fermionic
component of the inflaton superfield, orthogonal to the

6 Despite the large value of ξ1, one can check that the approximation
V∗ = ξ2

2 /2 at the horizon, assumed in the computation of the tilt and
of the amplitude, is valid. Indeed, with the numerical values α ∼ 1,

ξ1 ∼ 1011, ξ2 ∼ 10−5 and m∗2
3/2 = 2.64×10−13, we get

ξ1(m∗2
3/2)α+2/3

ξ2
∼

6 × 10−5.

Fig. 1 Scalar potential as a function of the canonically normalised field
χ , for α = 1

Fig. 2 Slow-roll parameters ε and η as a function of χ , for α = 1

Goldstino direction. Indeed at the minimum, supersymme-
try is spontaneously broken by a non-vanishing expecta-
tion value of both a D and F-term. The Goldstino PLν

is thus a linear combination of the gaugino λ and of the
chiral fermion �: PLν = 1√

2
�X gX X̄ F̄

X̄ − i
2 DPLλ, with

F̄ X̄ ≡ −eK/2gX X̄∇XW , evaluated at the minimum. In order
to compute the direction of supersymmetry breaking, we con-
sider:

‖F‖ ≡
√
FXgX X̄ F̄

X̄ =
√
eG∂XGGX X̄∂X̄G = m3/2, (48)

‖D‖ ≡ ξ1e
5/3G + ξ2 = ξ1(m

2
3/2)

5/3 + ξ2. (49)

At the minimum, we have:∥∥∥∥D

F

∥∥∥∥
m̃3/2

=
[
ξ1(m̃

2
3/2)

7/6 + ξ2(m̃
2
3/2)

−1/2
]


 1.5, (50)

where we have used the values ξ1 = 1011, ξ2 = 10−5 and
m̃2

3/2 = 5.29 × 10−11 obtained previously. At the minimum,
the Goldstino is thus an approximately equal mixing of the
chiral fermion � and the gaugino λ.

The computation of the fermion masses is detailed in
Appendix B. The mass squared m2

f of the physical fermion
which remains after elimination of the Goldstino is given in
Eq. (B36). For p = 1, its numerical value at the minimum
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where m̃2
3/2 = 5.29 × 10−11 is (in Planck units):

m2
f = 5.9 × 10−12. (51)

4.2 Compact volume case

In this subsection, we consider the no-scale model with Käh-
ler potential K (X, X̄) = −3 ln(X + X̄). If one takes a
constant superpotential as in the previous subsection, the F-
term of the scalar potential will vanish, and the new Fayet-
Iliopoulos term will be ill-defined at the minimum, where D
now vanishes.7 Instead, we consider a superpotential of the
form W (X) = eβX , with β a real constant. Note that the the
imaginary shift of X becomes now a (global) R-symmetry
[11]. The full scalar potential is then given by:

V = m2
3/2

[
−3 + 1

3

(
β(X + X̄) − 3

)2
]

+1

2

(
ξ1(m

2
3/2)

α+2/3 + ξ2

)2
. (52)

Choosing β << (X + X̄)−1
∣∣∗, the first term of (52) can be

neglected at the horizon exit as well as during the inflation-
ary period. However, outside of the inflationary plateau, the
D-term starts decreasing significantly and the F-term cannot
be neglected anymore. Supersymmetry at the minimum of
the potential is then spontaneously broken by non-vanishing
expectation values of both D and F-terms, and a tuning of
the parameters would be required in order to get a vanish-
ing potential at its minimum, as in the previous case studied
above. We will not study this region in the following, focus-
ing on the inflationary period where the F contribution to V
can be neglected and the scalar potential is only given by its
D-term:

V|infla. = 1

2

(
ξ1(m

2
3/2)

α+2/3 + ξ2

)2
. (53)

Now the normalised field χ and the gravitino mass are
given by:

ReX = e

√
2
3 χ ; m2

3/2 = |W |2
(X + X̄)3

= |W |2
8

e−√
6χ . (54)

Like in the previous subsection, the potential at the horizon
exit, where χ >> 1 is assumed,8 is given by V∗ = ξ2

2 /2.
The slow-roll parameters expanded in this limit read:

ε ≈
χ>>1

12ξ2
1 (α + 2

3 )2(m2
3/2)

2α+4/3

ξ2
2

;

7 Of course, the vanishing of the F-part of the scalar potential is a
tree-level result and can be circumvented by considering quantum cor-
rections in the Kähler potential.
8 χ >> 1 now corresponds to a large volume of the compact space,
which is compatible with the effective theory where higher derivatives
are neglected.

η ≈
χ>>1

12ξ1(α + 2
3 )2(m2

3/2)
α+2/3

ξ2
, (55)

and thus η2 ≈
χ>>1

12(α + 2
3 )2ε. With these two quantities,

the tilt and amplitude analysis yields:

ξ2(α) = 6 × 10−6

α + 2/3
,

(m∗2
3/2)

α+2/3(ξ1, α) = − 1

ξ1

1.02 × 10−8

(α + 2/3)3 . (56)

The gravitino mass at the end of inflation, m2 end
3/2 , is still

given by the condition η(m2 end
3/2 ) = ±1, which is now solu-

tion of the equation:

ξ2
1 (m2 end

3/2 )2α+4/3

(
1

2
∓ 12

(
α + 2

3

)2
)

+ξ1 ξ2(α) (m2 end
3/2 )α+2/3

(
1 ∓ 6

(
α + 2

3

)2
)

+ ξ2(α)2

2
= 0.

(57)

This can be solved analytically at fixed α, yielding:

(m2 end
3/2 )

α+2/3
± (ξ1, α) = −ξ2(α)

ξ1

×1 ∓ 6(α + 2/3)2 − 2
√

3(α + 2/3)
√

3(α + 2/3)2 ± 1

1 ∓ 24(α + 2/3)2 .

(58)

On the other hand, the number of e-folds is given by:

N±(α) = −1

12(α + 2
3 )

∫ m2 end
3/2 ±(ξ1,α)

m∗2
3/2(ξ1,α)

×
[
ξ1(m2

3/2)
α+2/3 + ξ2(α)

]2

ξ2
1 (m2

3/2)
2α+4/3 + ξ1ξ2(α)(m2

3/2)
α+2/3

dm2
3/2

m2
3/2

,

(59)

which is independent of ξ1, as can be seen from the change

of variable m2
3/2 → m2

3/2ξ
1

α+2/3
1 and by using the second

equation of (56) and Eq. (58).
Two regions for α have to be considered: (i) − 2

3 < α <√
3−2
3 , where η(m2 end

3/2 ) = 1 is first fulfilled, and where the
gravitino mass at the end of inflation and the number of e-
folds are respectively given by (m2 end

3/2 )+ and N+; (ii) α ≥√
3−2
3 , where η(m2 end

3/2 ) = −1 is first fulfilled, and where
the gravitino mass at the end of inflation and the number of
e-folds are respectively given by (m2 end

3/2 )− and N−. Both
e-fold numbers are plotted in terms of α in Figs. 3 and 4.
Any α � −0.46 leads to an acceptable N ∈ [40, 60], while
the parameter ξ1 remains undetermined. From the value of
ε at the horizon given by the first equation of (55) and the
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Fig. 3 Number of e-folds N+ as a function of α, for − 2
3 < α <

√
3−2
3

Fig. 4 Number of e-folds N− as a function of α, for α ≥
√

3−2
3

two relations (56), one sees that the predicted value for the
tensor-to-scalar ratio r of primordial perturbations remains
independent of ξ1, and depends only on α:

r(α) = 16 ε∗(α) = 16
12(α + 2/3)2ξ2

1 (m∗2
3/2)

2α+4/3(ξ1, α)

ξ2
2 (α)


 5.4 × 10−4

(α + 2/3)2 . (60)

Thus, α can be chosen such that the tensor-to-scalar ratio
is large and close to the experimental bound, for instance
r(α = −0.45) 
 10−2 with N+(α = −0.45) 
 41.

5 Gauging the axion shift symmetry

In the two previous models, the spectrum contained two
massless particles: the imaginary part of the complex inflaton
field X , and theU (1) gauge boson Aμ, which is an unwanted
phenomenological property. This can be avoided by gauging
the imaginary shift symmetry by the U (1). Under a gauge
transformation Aμ → Aμ −2∂μλ, one then has for the com-
plex scalar X → X + icλ, with λ the gauge parameter and c
a constant related to the charge ec of the field eX . In terms of

superfields, this transformation reads X → X+c�, with � a
chiral superfield gauge parameter. The gauge transformation
of the vector superfield V is V → V − � − �̄. In order to
keep a gauge invariant Kähler potential with shift symmetry,
K (X + X̄) must be modified as:

K (X + X̄) → K (X + X̄ + cV ) . (61)

Note that this modification does not change the pure bosonic
part of the FI Lagrangian (17). Indeed, when fermions are
put to zero, the only non-vanishing components of the chiral
multiplets λ̄PLλ and λ̄PRλ are their θθ and θ̄ θ̄ components.
Therefore, only the lowest components of the other super-
fields involved in (17) contribute to the bosonic sector, and
the lowest component of e(α+ 1

3 )K does not receive additional
contributions from cV in the Wess-Zumino gauge.

In order to see how a massive gauge boson arises from
this gauging, we work in global supersymmetry and compute
the (bosonic) new terms appearing from this modification.
Putting fermions to zero and expanding in components, we
have

X + X̄ + cV
∣∣
bos = 2ReX − θσμθ̄(cAμ + 2∂μImX)

+1

2
θ2θ̄2(cD − ∂2ReX) + θ2F + θ̄2 F̄,

(62)

from which we deduce:

K (X + X̄ + cV )
∣∣
θ2 θ̄2 = K ′

2
(cD − ∂2ReX)

−K ′′

4
(cAμ + 2∂μImX)2 + K ′′F F̄ .

(63)

It follows that∫
d4θK (X + X̄ + cV ) =

∫
d4θK (X + X̄)

−c2

4
K ′′AμA

μ − cK ′′Aμ∂μImX

+ c

2
K ′D + fermions. (64)

As a result, there is a mass term for the gauge boson Aμ,
as well as a new field dependent FI term −ξ(X)D, with
ξ(χ) = −cK ′/2. It modifies the D-term of the scalar poten-

tial (30) according to D = g2
[
−cK ′/2 + ∑

i
ξi e(αi+2/3)G

]
,

which leads to the following D-term contribution to the scalar
potential:

VF I = g2

2

(∑
i

ξi e

(
αi+ 2

3

)
G − c

2
K ′

)2

. (65)

It is easy to show that the extra contribution proportional
to c, due to the gauging of the shift symmetry, does not
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alter the inflationary predictions discussed in the previous
section, when restricting the D-auxiliary field to only two
non-vanishing terms, as in the previous section. Consider for
example the compact volume case with a Kähler potential
K = −3 ln(X + X̄). The second term in (65) then becomes
proportional to m2/3

3/2 which may be identified as a particular
case of the potential (53) studied before for α = −1/3 and
ξ1 = (3cg)/(2|W0|2/3). ξ2 can then be obtained from the first
sum in (65) by choosing one non-vanishing term, say ξ2 with
α2 = −2/3. The analysis is then reduced to the one of the
last section, in the compact volume case with a fixed value of
the parameter α = −1/3, which is within the allowed region
of the parameter space compatible with observational data,
as seen in Fig. 3.

Let us finally consider another example inspired by the
heterotic string with X identified with the string dilaton, as
in the first model considered in the previous section, where
its axionic imaginary part is dual to the Neveu–Schwarz anti-
symmetric tensor in four dimensions. In this case, the con-
stant c is related to a U (1) anomaly which is cancelled by
a Green–Schwarz term. The gauging of the shift symmetry
is a consequence of the anomaly cancellation and the axion
is absorbed by the U (1) becoming massive and no massless
particle remains in the spectrum [16]. The gauge coupling
is not anymore constant but is fixed by X : g2 = 1/ReX ,
corresponding to a gauge kinetic function linear in X . The
scalar potential can be easily obtained from Eq. (65) using
K = − ln(X + X̄) and the expressions (35) and (36):

V = −2m2
3/2 + e−√

2χ

2

(∑
i

ξi e

(
αi+ 2

3

)
G + c

4
e−√

2χ

)2

.

(66)

Again we restrict the D-term to only two non-vanishing con-
tributions. In order to get an asymptotically constant potential
at infinity, we choose α2 = − 7

6 , while α1 = 1
3 is chosen to

be able to absorb the constant c in ξ1. We obtain in this way
a potential with the same form as in Eq. (33):

V = −2m2
3/2 + 1

2

(
ξ ′

1(m
2
3/2)

3/2 + ξ ′
2

)2
, (67)

where we have defined ξ ′
1 ≡ ξ1

√
2

W0
+ c√

2W 3
0

and ξ ′
2 ≡ ξ2

√
2

W0
.

The potential is thus the same as the one of Eq. (33),
with α = 5

6 . This is an acceptable value since it leads to
a number of e-folds N (5/6) 
 51. The numerical predic-
tions obtained in Sect. 4.1 are not modified by the gauging of
the shift symmetry. The main improvement is that now the
imaginary part of the inflaton has been absorbed by the U (1)

gauge boson which acquires a mass. In order to compute this
mass, one needs to rescale Aμ → gAμ so that the gauge
field kinetic term becomes canonical. After this rescaling,

the gauge boson mass square reads:

m2
A(χ) = e−3

√
2χ

8
c2 = g6

8
c2. (68)

With the values of χ at the horizon crossing and at the min-
imum found above, we get m2

A in terms of the parameters c
and W0:

m∗2
A = 1.84 × 10−38 c2

W 6
0

, (69)

m2end
A = 3.05 × 10−34 c2

W 6
0

, (70)

m̃2
A = 1.93 × 10−31 c2

W 6
0

, (71)

which can therefore vary in a large range of values consistent
with all experimental bounds. The rest of the masses do not
present any significant change from the previous analysis in
the dilaton case without the gauging.

6 Conclusion

In this work, we generalised the construction of new FI D-
terms in N = 1 supergravity that do not require the gauging
of R-symmetry and preserve invariance under ordinary Käh-
ler transformations. Their bosonic part is just linear in the
D-auxiliary field with a multiplicative factor which is an arbi-
trary function of the gravitino mass, expressed as a functional
of the chiral multiplets. We then used these terms to construct
new models of D-term inflation. Considering just aU (1) and
the inflaton multiplet with a no-scale Kähler potential and
constant superpotential, we restricted to a simple form of
the function associated to the new FI D-term which is a sin-
gle positive power of the gravitino mass up to an additive
constant. The later dominates the inflationary period by an
asymptotically de Sitter regime, because the gravitino mass
vanishes asymptotically in this region. The resulting mod-
els are consistent with observational CMB data and share
common properties with the Starobinsky R2 model [17] on
one hand and with the models of inflation by supersymmetry
breaking on the other hand, where the inflaton is identified
with the superpartner of the goldstino [6,11]. Moreover, they
predict a variable range of primordial gravitational waves that
can be within experimental reach. After the end of inflation,
the inflaton rolls down to the minimum of the potential which
has a tuneable (tiny) vacuum energy and supersymmetry is
broken by a combination of F and D-term VEVs. An inter-
esting open problem is whether there exists a microscopic
origin of these new FI D-terms, for instance within string
theory.
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Appendix A: Multiplet calculus

This appendix is based on [18]. A general complex scalar
multiplet is given by

C = (C,Z,H,K,Bμ,�,D), (A1)

where C,H,K andD are complex scalars,Z and � are Dirac
fermions, and Bμ is a Lorentz vector. A chiral multiplet is
obtained from a complex multiplet by imposing PRZ = 0,
K = 0, Bμ = iDμC, � = 0 and D = 0. Renaming C = Z ,
it is written, in a seven-components notation, as

(Z ,−i
√

2PLχ,−2F, 0, iDμZ , 0, 0), (A2)

and similarly for its anti-chiral counterpart:

(Z̄ , i
√

2PRχ, 0,−2F̄,−iDμ Z̄ , 0, 0). (A3)

The chiral and anti-chiral multiplets are also usually written
in a three-components notation according to:

(Z , PLχ, F), (Z̄ , PRχ, F̄). (A4)

A real multiplet is obtained from a complex multiplet by
imposing its lowest componentC = C to be real. This implies
Z = ζ and � = λ to be Majorana spinors, Bμ = Bμ and
D = D to be real, while K = H̄ is still complex. A real mul-
tiplet is thus written in a six-components notation according
to

(C, ζ,H, Bμ, λ, D). (A5)

Throughout this paper, the operation [ ]F is defined as
acting on a chiral multiplet (Z , PLχ, F) of weights (3, 3)

by:

[ ]F : (Z , PLχ, F) → [Z ]F
≡ e

[
F + 1√

2
ψ̄μγ μPLχ + 1

2
Zψ̄μγ μν PRψν

]
+ h.c.

(A6)

The operation [ ]D is defined as acting on a real multiplet
(C, ζ,H, Bμ, λ, D) of weights (2, 0) by:

[ ]D : (C, ζ,H, Bμ, λ, D) → [C]D ≡ e

2

[
D − 1

2
ψ̄μγ μiγ∗λ

−1

3
CR(ω) + 1

6

(
Cψ̄μγ μρσ − i ζ̄ γ ρσ γ∗

)
R′

ρσ (Q)

+1

4
εabcdψ̄aγbψc

(
Bd − 1

2
ψ̄dζ

)]
, (A7)

where R(ω) and R′
ρσ (Q) are the graviton and gravitino cur-

vatures. Both operations are used to build superconformal
invariant actions from chiral and real multiplets, respectively,
according to SF = ∫

d4xe [Z ]F and SD = ∫
d4xe [C]D .

Given a set of complex multiplets Ci = (Ci ,Z i ,Hi ,Ki ,

Bi
μ,�i ,Di ), i = 1, . . . , n, one can build another complex

multiplet C = (C,Z,H,K,Bμ,�,D) whose lowest com-
ponent is given by an arbitrary function f of the first com-
ponents of Ci ’s: C = f (Ci ). The other components of C are
then given by:

Z = fiZ i ,

H = fiHi − 1

2
fi j Z̄ i PLZ j ,

K = fiKi − 1

2
fi j Z̄ i PRZ j ,

Bμ = fiBi
μ + 1

2
i fi j Z̄ i PLγμZ j ,

� = fi�
i + 1

2
fi j

(
iγ∗ /Bi + PLKi + PRHi − /DCi

)
Z j

−1

4
fi jkZ i Z̄ jZk,

D = fiDi + 1

2
fi j

(
KiH j − Bi · B j − DCi · DC j − 2�̄iZ j

−Z̄ i /DZ j
)

,−1

4
fi jkZ̄ i

(
iγ∗ /B j + PLK j + PRH j

)
Zk

+1

8
fi jkl Z̄ i PLZ j Z̄k PRZl , (A8)

with fi ≡ ∂ f
∂Ci and so on for higher order derivatives. The

bar on spinors are the Majorana conjugate defined by ψ̄ =
ψTC , with C the charge conjugation matrix satisfying γ T

μ =
−CγμC−1.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


346 Page 12 of 14 Eur. Phys. J. C (2020) 80 :346

Appendix B: Fermion masses

In this appendix, we compute the fermion masses in the
no-scale models presented in Sect. 4. We recall the full
Lagrangian considered in this paper:

L = −3

[
S0 S̄0e

−K(X,X̄)
3

]
D

+
[
S3

0W (X)
]
F

− 1

4

[
λ̄PLλ

]
F

+L(α)
F I + L(−2/3)

F I , (B1)

with the new FI-terms given by:

L(α)
F I = −ξ

[
(S0 S̄0)

−1e( 1
3 +α)KWαW̄α (λ̄PLλ)(λ̄PRλ)

T (W̄2)T̄ (W2)
(V )D

]
D

.

(B2)

We write the fermion mass terms as Lm = L(0)
m +LF I

m , with

L(0)
m arising from the usual matter-coupled N = 1 super-

gravity Lagrangian, namely the three first terms of (B1), and
LF I
m arising from the FI Lagrangians L(α)

F I + L(−2/3)
F I . L(0)

m

reads:

e−1L(0)
m = 1

2
m3/2ψ̄μPRγ μνψν

+ψ̄μγ μ

(
1√
2
�αeK/2∇αW + i

2
PAPLλA

)

−1

2
m(0)

αβ �̄α�β − m(0)
αA�̄αλA

−1

2
m(0)

AB λ̄APLλB + h.c., (B3)

where ψμ denotes the gravitino, �α the chiral fermions, and
λA the gauginos. The various masses are given by [1]:

m3/2 = eK/2W, (B4)

m(0)
αβ = eK/2∇α∇βW ≡ eK/2 (∂α + ∂αK ) ∇βW − eK/2�

γ
αβ∇γ W,

(B5)

m(0)
αA = i

√
2

(
∂αPA − 1

4
f AB,α(Re f )−1 BCPC

)
= m(0)

Aα, (B6)

m(0)
AB = −1

2
eK/2 f AB,αg

αβ̄ ∇̄β̄ W̄ . (B7)

In the no-scale models with Kähler potential K =
−p ln(X + X̄) studied in this paper, we consider only one
chiral matter multiplet and one gauge multiplet, therefore the
index α and A take only one value. The Christoffel symbols
are given by �

γ
αβ = gγ δ̄∂αgβδ̄ , which reduce to only one non-

vanishing component �X
XX = − 2

X+X̄
. The moment map P

is defined by P = i(kα∂αK − r), where kα is the Killing
vector associated to the gauged symmetry and r is the corre-
sponding FI constant. In Sect. 4 we considered r = 0. When
the chiral multiplet becomes charged under the gauged shift
symmetry, the associated constant Killing vector is kX = ic.
Focussing on the ungauged case considered in Sect. 4, we

thus have P = 0. Finally, the gauge kinetic function f AB
being constant, we end up with:

m3/2 = eK/2W, m(0)
�� = m3/2

p(p − 1)

(X + X̄)2
,

m(0)
�λ = 0, m(0)

λλ = 0. (B8)

We now turn to the fermion mass contributions arising
from the FI Lagrangians. Keeping only quadratic terms in
fermions containing no derivatives, the FI Lagrangian (B2)
can be written as

L(α)
F I = −ξ

D(WW̄ )α

T (W̄2)T̄ (W2)

[
R̂(α)

]
D

, (B9)

with R̂(α) the real multiplet defined by

R̂(α) ≡ e( 1
3 +α)K (X,X̄)(S−1

0 λ̄PLλ)(S̄−1
0 λ̄PRλ), (B10)

which is a function of the chiral multiplets S−1
0 λ̄PLλ, X ,

and their anti-chiral counterparts. In the seven-components
notation, they are given by:

S−1
0 λ̄PLλ = (s−1

0 λ̄PLλ, 2s−1
0 DPLλ, 2s−2

0 F0λ̄PLλ

+2s−1
0 D2, 0, 0, 0, 0), (B11)

X = (X, − i
√

2PL�, − 2F, 0, 0, 0, 0), (B12)

S̄−1
0 λ̄PRλ = (s̄−1

0 λ̄PRλ, 2s̄−1
0 DPRλ, 0,

2s̄−2
0 F̄0λ̄PRλ + 2s̄−1

0 D2, 0, 0, 0), (B13)

X̄ = (X̄ , i
√

2PR�, 0, − 2F̄, 0, 0, 0), (B14)

Writing R̂(α) ≡ (0, 0, 0, (R̂(α))Bμ
, (R̂(α))λ, (R̂(α))D), its

contribution to the fermion masses arises from:[
R̂(α)

]
D

= e

2

(
(R̂(α))D − i

2
ψ̄ · γ γ∗(R̂(α))λ

)
. (B15)

The tensor calculus (A8) gives:

(R̂(α))D =
[
i2

√
2∂Xe

(α+1/3)K s−1
0 s̄−1

0 D3λ̄PL�

−2∂Xe
(α+1/3)K s−1

0 s̄−1
0 D2F λ̄PLλ

+ 2e(α+1/3)K s̄−1
0 s−2

0 D2F0λ̄PLλ
]

+h.c. + 2e(α+1/3)K s̄−1
0 s−1

0 D4, (B16)

(R̂(α))λ = 2e(α+ 1
3 )K D3s−1

0 s̄−1
0 λ. (B17)

Combining this with

D(WW̄ )α

T (W̄2)T̄ (W2)
= (WW̄ )α+2/3D−3s2

0 s̄
2
0

−2(WW̄ )α+2/3
(
s0s̄

2
0
F0

D5
λ̄PLλ + h.c.

)
,

(B18)

one obtains:

123



Eur. Phys. J. C (2020) 80 :346 Page 13 of 14 346

(i) The gravitino-gaugino mixing:

e−1L(α)
F I ⊃ i

2
ψ̄μγ μξe(α+2/3)Gγ∗λ. (B19)

Considering L(0) + L(α)
F I + L(−2/3)

F I , we get the following
gravitino/spin-1/2 mixing Lagrangian:

e−1Lmix = ψ̄μγ μ

(
1√
2
�eK/2∇XW

+ i

2
(ξ1e

(α+2/3)G + ξ2)PLλ

)
+ h.c., (B20)

from which we identify the Goldstino as the linear combina-
tion:

PLν = − 1√
2
�eK/2∇XW − i

2
(ξ1e

(α+2/3)G + ξ2)PLλ.

(B21)

(ii) The fermion mass terms:

e−1L(α)
F I ⊃ −i

√
2ξ(α + 1

3
)∂X Ke(α+1/3)G(WW̄ )1/3s0 s̄0λ̄PL�

+ξ(α + 1

3
)∂X Ke(α+1/3)G(WW̄ )1/3s0 s̄0

F

D
λ̄PLλ

+ξe(α+ 1
3 )G(WW̄ )1/3s0 s̄0

s−1
0 F0

D
λ̄PLλ + h.c. (B22)

Considering from now on L(α)
F I +L(−2/3)

F I , we define for sim-
plicity of the expressions the following quantities:

Dbos ≡
(
ξ1e

(α1+ 1
3 )G + ξ2e

− 1
3G

)
(WW̄ )1/3s0 s̄0

= ξ1e
(α1+ 2

3 )G + ξ2, (B23)

γ ≡ ∂X K

(
ξ1(α1 + 1

3
)e(α1+ 1

3 )G − ξ2

3
e− 1

3G
)

(WW̄ )1/3s0 s̄0

= ∂X K

(
ξ1(α1 + 1

3
)e(α1+ 2

3 )G − ξ2

3

)
. (B24)

One can already read from (B22) the gaugino/chiral fermion
mixing mass term:

mFI
�λ = i

√
2γ. (B25)

In order to find the gaugino mass term mFI
λλ , we have to elim-

inate the auxiliary fields D, F and F0 using their equations
of motion. The part of the total Lagrangian containing the
auxiliary field D, up to quadratic order in fermions, is:

e−1L ⊃ 1

2
D2 − DbosD +

(
Dbos

s−1
0 F0

D
λ̄PLλ

+γ
F

D
λ̄PLλ+h.c.

)
, (B26)

so that the equation of motion for D reads D3 − DbosD2 −[
(Dboss

−1
0 F0 + γ F)λ̄PLλ + h.c.

]
= 0. Solving it analyt-

ically and expanding the solution up to quadratic order in
fermions, we find

D = Dbos +
(
Dboss

−1
0 F0 + γ F

D2
bos

λ̄PLλ + h.c.

)

+higher order in fermions. (B27)

Replacing (B27) in (B26), we find the following quadratic
contribution in fermions:

e−1L ⊃ Dboss
−1
0 F0 + γ F

Dbos
λ̄PLλ + h.c. (B28)

We now eliminate the auxiliary fields F0 and F , associated
to the compensator and X chiral multiplet, respectively. The
part of the total Lagrangian containing the auxiliary fields
F0, F , up to the quadratic order in fermions, reads:

e−1L ⊃ −3e−K/3F0 F̄0 + 3eK/3WF0 + 3eK/3W̄ F̄0

+1

9
gX X̄ F F̄ + 1

3
eK/2∇XW F + 1

3
eK/2∇̄X̄ W̄ F̄

+ 1

Dbos
(Dbose

−K/6F0 + γ F)λ̄PLλ

+ 1

Dbos
(Dbose

−K/6 F̄0 + γ F̄)λ̄PRλ, (B29)

which yields, after elimination of F0 and F :

e−1L ⊃ eK
(

3WW̄ − ∇XWgX X̄ ∇̄X̄ W̄
)

+eK/2

Dbos

(
DbosW̄ λ̄PLλ − 3gX X̄ ∇̄X̄ W̄γ λ̄PLλ + h.c.

)
.

(B30)

The first two terms correspond to the usual F-contribution
to the scalar potential, while the last two terms give the con-
tribution to the gaugino mass mFI

λλ from the FI-terms. For a
constant superpotential, it reads:

mFI
λλ = −2

m3/2

Dbos

[
Dbos + 3(X + X̄)γ

]
. (B31)

At the minimum of the potential where ∂XV = 0 and V = 0,
mFI

�� and mFI
�� given in Eqs. (B25) and (B31) simplify, and

the entries of the fermion mass matrix can be written as:

m�� = m(0)
�� = m3/2

p(p − 1)

(X + X̄)2
,

m�λ = mFI
�λ = − i

√
2

6

pDbos

X + X̄
,

mλλ = mFI
λλ = −2m3/2

(
1 − p

2

)
. (B32)

In order to study the spin-1/2 fermions mass matrix, we
have to get rid of the gravitino-Goldstino mixing (B20). This
can be done by carrying out a supersymmetry transformation,
bringing the gravitino ψμ into the physical, massive, one �μ

through [1]:

PLψμ → PL�μ = PLψμ− 2

3m2
3/2

∂μPLν− 1

3m3/2
γμPRν.

(B33)
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The mixing term between the gravitino and the Goldstino
then vanishes, and �μ is the massive gravitino in Minkowski
space with physical mass m3/2. In addition, the transforma-
tion (B33) brings new contributions to the spin-1/2 fermion
mass terms. Writing the Goldstino PLν as a linear combi-
nation of the gaugino λ and the chiral fermion �, namely
PLν = A� + BPLλ where A and B are given in this model
by Eq. (B21), these new contributions read:

m(ν)
�� = − 4

3m2
3/2

A2,

m(ν)
�λ = − 4

3m2
3/2

AB,

m(ν)
λλ = − 4

3m2
3/2

B2. (B34)

The most general structure of a spin-1/2 mass term m(g) is
then given bym(g) ≡ m(0)+mFI+m(ν), withm(0) the contri-

bution from the original Lagrangian −3

[
S0 S̄0e−K(X,X̄)

3

]
D

+[
S3

0W (X)
]
F − 1

4

[
λ̄PLλ

]
F , mFI the contribution from the

new FI terms L(α)
F I + L(−2/3)

F I , and m(ν) the shifts (B34)
upon elimination of the gravitino-Goldstino mixing. From
Eqs. (B8), (B32) and (B34), we deduce the fermion mass
matrix at the minimum of the potential:

M =
(
m(g)

�� m(g)
�λ

m(g)
�λ m(g)

λλ

)
=

(
p−3

3 m3/2
i
√

2
6

√
pDbos

i
√

2
6

√
pDbos

p
3 m3/2

)
(B35)

A normalisation factor for m(g)
�� and m(g)

�λ has been intro-
duced due to the non-canonical kinetic term of the chiral
fermion, while the gaugino already has canonical kinetic term
since the gauge kinetic function f has been set to one. Using
D2

bos = −2(p−3)m2
3/2 at the minimum of the potential, one

immediately sees that the determinant of M vanishes, while
its non-zero eigenvalue m f , corresponding to the mass of the
physical fermion, is given by:

m2
f = m2

3/2

(
4

9
p2 − 4

3
p + 1

)
,∀p �= 3 , (B36)

where we excluded the value p = 3 for which, in the case of a
constant superpotential, the D-term vanishes in the minimum,
making the new FI-term singular, and a different superpoten-
tial is used in Sect. 4.2.

References

1. D.Z. Freedman, A. Van Proeyen, Supergravity (Cambridge Uni. Pr,
Cambridge, 2012), p. 607p

2. I. Antoniadis, E. Dudas, S. Ferrara, A. Sagnotti, The Volkov–
Akulov–Starobinsky supergravity. Phys. Lett. B 733, 32 (2014).
arXiv:1403.3269 [hep-th]

3. D.Z. Freedman, Supergravity with axial gauge invariance. Phys.
Rev. D 15, 1173 (1977)

4. R. Barbieri, S. Ferrara, D.V. Nanopoulos, K.S. Stelle, Supergravity,
R invariance and spontaneous supersymmetry breaking. Phys. Lett.
113B, 219 (1982)

5. N. Cribiori, F. Farakos, M. Tournoy, A. Van Proeyen, Fayet–
Iliopoulos terms in supergravity without gauged R-symmetry. J.
High Energy Phys. 2018, 32 (2018). arXiv:1712.08601 [hep-th]

6. I. Antoniadis, A. Chatrabhuti, H. Isono, R. Knoops, Fayet–
Iliopoulos terms in supergravity and D-term inflation. Eur. Phys. J.
C 78(5), 366 (2018). arXiv:1803.03817 [hep-th]

7. I. Antoniadis, A. Chatrabhuti, H. Isono, R. Knoops, The cosmo-
logical constant in supergravity. Eur. Phys. J. C 78, 718 (2018).
arXiv:1805.00852 [hep-th]

8. I. Antoniadis, J.P. Derendinger, F. Farakos, G. Tartaglino-
Mazzucchelli, New Fayet–Iliopoulos terms in N = 2 supergravity.
JHEP 1907, 061 (2019). arXiv:1905.09125 [hep-th]

9. E. Cremmer, S. Ferrara, C. Kounnas, D.V. Nanopoulos, Naturally
vanishing cosmological constant in N = 1 supergravity. Phys.
Lett. 133B, 61 (1983)

10. J.R. Ellis, C. Kounnas, D.V. Nanopoulos, Phenomenological
SU(1,1) supergravity. Nucl. Phys. B 241, 406 (1984)

11. I. Antoniadis, A. Chatrabhuti, H. Isono, R. Knoops, Inflation from
supersymmetry breaking. Eur. Phys. J. C 77(11), 724 (2017).
arXiv:1706.04133 [hep-th]

12. L. Alvarez-Gaume, C. Gomez, R. Jimenez, Minimal inflation.
Phys. Lett. B 690, 68 (2010). arXiv:1001.0010 [hep-th]

13. L. Alvarez-Gaume, C. Gomez, R. Jimenez, A minimal inflation
scenario. JCAP 1103, 027 (2011). arXiv:1101.4948 [hep-th]

14. G. Börner, H.P. Dürr, Classical and quantum fields in de Sitter
space. Nuovo Cimento A (1965–1970) 64, 669 (1969)

15. A. Böhm, Dynamical group and mass spectrum. Phys. Rev. 145,
1212 (1965)

16. M. Dine, N. Seiberg, E. Witten, Fayet–Iliopoulos terms in string
theory. Nucl. Phys. B 289, 589 (1987)

17. A.A. Starobinsky, A new type of isotropic cosmological models
without singularity. Phys. Lett. 91B, 99 (1980)

18. S. Ferrara, R. Kallosh, A. Van Proeyen, T. Wrase, Linear versus
non-linear supersymmetry, in general. JHEP 1604, 065 (2016).
arXiv:1603.02653 [hep-th]

123

http://arxiv.org/abs/1403.3269
http://arxiv.org/abs/1712.08601
http://arxiv.org/abs/1803.03817
http://arxiv.org/abs/1805.00852
http://arxiv.org/abs/1905.09125
http://arxiv.org/abs/1706.04133
http://arxiv.org/abs/1001.0010
http://arxiv.org/abs/1101.4948
http://arxiv.org/abs/1603.02653

	New Kähler invariant Fayet–Iliopoulos terms in supergravity and cosmological applications
	Abstract 
	1 Introduction
	2 Fayet–Iliopoulos term without gauged R-symmetry: a review
	3 A set of Kähler invariant Fayet–Iliopoulos terms
	4 No-scale models and cosmological applications
	4.1 Dilaton case
	4.2 Compact volume case

	5 Gauging the axion shift symmetry
	6 Conclusion
	Acknowledgements
	Appendix A: Multiplet calculus
	Appendix B: Fermion masses
	References




