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Abstract We demonstrate that the strict upper bounds on
the energy scale of inflation and on the tensor-to-scalar
ratio can be somewhat relaxed if we assume that – after
an initial period of slow rolling when scales probed today
in CMB experiments exit the Hubble radius – the equa-
tion of state of the background changes to correspond to
an almost marginally accelerating universe. Constructing an
actual model in which this happens appears, however, to be
unnatural.

1 Introduction

The inflationary scenario, the current paradigm of early
universe cosmology, is currently facing serious challenges
coming from fundamental physics. On one hand, there are
swampland criteria (see e.g. [1,2] for original works and [3,4]
for reviews) which imply that the potential energy functions
required to obtain inflation in an effective field theory of
simple1 single field inflation is inconsistent with constraints
coming from superstring theory (see e.g. [8,9]). On the other
hand, a generalization of Penrose’s cosmic censorship [10]
has been proposed [11] which states that scales which were
trans-Planckian in the early universe must remain hidden by
a Hubble horizon.2 This is called the Trans-Planckian cen-
sorship conjecture (TCC). Assuming standard vacuum initial
conditions for the fluctuations, and standard Big Bang cos-
mology after the end of inflation, the TCC leads to severe
constraints on any inflationary model [13]. Demanding that

1 Note that these constraints are alleviated [5,6] in models of warm
inflation [7].
2This also shields (at least at the level of linear fluctuations) super-
Hubble scales from the non-unitarity of an effective field theory analysis
[12].
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inflation be consistent with the TCC and allow for a causal
structure formation scenario leads to an upper bound

V 1/4
e < 1010GeV, (1)

where Ve is the potential energy density at the end t = te of
the period of inflation. Assuming that the potential energy
does not change by a large factor between the time t∗ when
scales which are currently observed exit the Hubble radius
and the end of inflation3 this leads to an upper bound on the
tensor to (observed) scalar ratio r of 4

r < 10−30. (2)

Some ways to mitigate these constraints have been sug-
gested, e.g. by assuming a non-standard cosmological history
after the end of inflation [15–18], non-standard initial condi-
tions for the fluctuations [19,20], and others [21–24] (see also
[25]) 5. Here, we explore by how much the above constraints
can be relaxed by allowing for the largest possible running
of the potential energy between t∗ and te. Note that given
the observational constraint on the slope and running of the
spectrum of cosmological perturbations on scales which are
currently being probed, it will require severe tunings of the
potential in order to be able to obtain the maximal change in
the potential energy which we here discuss. A similar study
to the one we report on was done in [27], who also asked how
much the constraints can be relaxed by letting the equation
of state during inflation approach the limiting value which

3 This is a well justified approximation in simple models of inflation.
4 Note that these bounds can in fact be strengthened in the case that the
inflationary epoch is preceded by a radiation phase with begins at the
Planck scale [14].
5 On the other hand, if we add the assumption that inflation is generated
by a potential of reasonable shape which yields a spectrum of cosmo-
logical perturbations in agreement with the CMB data, the constraints
on the scale of inflation are even more stringent [26].
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one requires for accelerated expansion. Whereas our analy-
sis makes use of a specific model for inflation, the one by
[27] is more general. The bounds we obtain on the tensor to
scalar ratio are similar, though in [27] they depend on the
reheating scale.

A few words on notation: we work with the usual
Friedmann–Robertson–Walker metric given by the line ele-
ment

ds2 = dt2 − a(t)2dx2, (3)

where t is physical time, x are the comoving spatial coordi-
nates and a(t) is the cosmological scale factor. The Hubble
expansion rate is H(t) whose inverse is the Hubble horizon,
and the Planck mass (whose inverse is the Planck length l pl )
is denoted by mpl . We work in natural units in which the
speed of light and Planck’s constant are set to 1.

2 The TCC bound for inflationary cosmology

The mathematical form of the TCC [11] applied to inflation-
ary cosmology is [13]

a(te)

a(ti )
l pl ≤ H−1(te), (4)

where ti is the beginning of inflation, and te is the end of
the inflationary phase. This expresses the condition that no
length which were sub-Planckian at the beginning of infla-
tion crossed the Hubble horizon by the end of inflation. After
inflation ends and the universe no longer undergoes acceler-
ated expansion, no wavelengths ever exit the Hubble radius,
and hence the condition (4) is sufficient for all times.

The reason why the Hubble radius is the relevant scale is
the following: in terms of the canonical fluctuation variables
(those whose action has a canonical kinetic term), the fluc-
tuations oscillate on sub-Hubble scales. It is only on super-
Hubble scales that the fluctuations become squeezed (see
[28] for a comprehensive review of the theory of cosmolog-
ical perturbations and [29] for an overview) and classicalize
[30]. Hence, if we do not want the classical fluctuations to
depend on trans-Planckian physics, we do not want any trans-
Planckian modes to cross the Hubble radius.

Note that (4) is a necessary but not necessarily a sufficient
condition for predictions in cosmology to be shielded from
trans-Planckian effects.6

6 Note that the sensitivity of the predictions of standard inflationary
models to trans-Planckian physics was suggested a long time ago in
[31] (see e.g. [32] for a review and references to the large volume of
followup works). However, if one assumes that local Lorentz invariance
holds down to the smallest scales, then it can be shown that there is no
such problem [33,34].

The weakest possible form of the TCC (still assuming con-
stant Hubble expansion rate during inflation, standard cos-
mology after the end of inflation, and the usual initial con-
ditions for fluctuations) results from taking the initial time
of inflation ti to be the time t∗ when the current comoving
Hubble scale exits the Hubble radius, i.e. by having inflation
last the least number of e-foldings consistent with inflation
providing a causal mechanism of structure formation. Thus,
(4) becomes

a(te)

a(t∗)
l pl ≤ H−1(te). (5)

In the following we will use the abbreviated notation ae ≡
a(te) and a∗ ≡ a(t∗).

The condition (5) yield the upper bound (2) on the energy
scale of inflation. This is easy to understand: the TCC leads to
an upper bound on the duration of inflation, but demanding
that the current Hubble scale was smaller than the Hubble
radius at the beginning of inflation yields a lower bound. The
smaller the energy scale of inflation, the more e-foldings of
exponential expansion it takes for the Planck length to expand
to the Hubble length, and in this way the TCC can be satisfied
for low-scale inflation. Given the upper bound on the energy
scale of inflation, an upper bound on the amplitude of the
spectrum of gravitational waves results, given by (2).

Note that a specific inflationary models which are safe
from the TCC constraint have been proposed in [35,36].
Applications of the TCC to other cosmological issues have
been considered in [37,38]. The implications of the TCC for
holographic cosmology have been studied in [39], and con-
nections between the TCC and the swampland criteria have
been explored in [40–42].

3 Relaxing the TCC bound

In this Letter we investigate to what extent the above bounds
can be relaxed by abandoning the assumption that the Hubble
expansion rate is fixed during inflation. We will be working
in the context of inflation mediated by a canonically normal-
ized scalar field ϕ slowly rolling in a potential V (ϕ). In order
to obtain a small scalar spectrum tilt on observable scales,
the potential has to change very little during the couple of
e-foldings of inflation when the range of scales which are
currently probed by CMB and large-scale structure observa-
tions exit the Hubble radius. But it is possible to imagine that
after these scales have exited the Hubble horizon, the field
starts to roll faster, being only constrained by the requirement
that accelerated expansion persists, i.e. that

ϕ̇2 < V (ϕ). (6)
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We will in the following assume that the ratio of kinetic
and potential energy is independent of time (after the ini-
tial period when scales which are observed today exit the
Hubble radius), i.e. we take

ϕ̇2 = βV (ϕ), (7)

where β is a constant which must satisfy

β < 1 (8)

in order to have accelerated expansion. This model is called
constant roll inflation [43] and its predictions have been com-
pared to observations in [44].

In order to be consistent with the TCC, there is an upper
bound on the duration of inflation and hence an upper bound
on the change in the potential energy between the time t∗
when the current comoving Hubble scale exits the Hubble
radius (we will denote with V∗ the value of the potential
energy density at this time) and the end of inflation when the
potential energy is Ve. Assuming that the inequality (5) is sat-
urated, we can derive (see Appendix) the following relation
between V∗ and Ve:

Ve =
(

1

3

(
1 + β

2

)
Ve
m4

pl

)β̃

V∗, (9)

with

β̃ ≡ 3β

2(1 + β/2)
. (10)

Taking all the dependence on Ve to the left hand side of the
equation we get

V 1−β̃
e = κm−4β̃

pl V∗, (11)

with

κ ≡
(

1

3

(
1 + β

2

))β̃

. (12)

The condition that the comoving length corresponding to
the current Hubble radius H−1

0 exits the Hubble radius after
time t∗ reads

H−1
0

a∗
ae

ae
a0

< H−1∗ , (13)

where the subscripts 0 stands for the present time.
We will assume that the Standard Big Bang phase of radi-

ation domination begins after the end of inflation. In this case
the ratio of the scale factors ae and a0 is the inverse of the
corresponding radiation temperatures (if we neglect entropy

production between te and t0 (taking entropy production into
account would only change our result by aO(1) factor). Thus

ae
a0

= T0

Te
= 3−1/4g∗(Te)1/4 T0

(mpl He)1/2 , (14)

where we have used

g∗(Te)T 4
e = Ve (15)

and the Friedmann equation which relates Ve and He. Note
also that T0 and H0 are related via

g∗(T0)T
4
0 = T0

Teq
ρ0 = 3m2

pl H
2
0
T0

Teq
, (16)

where Teq is the temperature at the time of equal matter and
radiation. In the above, g∗ is the number of effective spin
degrees of freedom in the radiation bath.

Let us now return to the condition (13) for inflation to last
sufficiently long to be able to provide a causal mechanism
for the generation of structure. Assuming that the TCC is
saturated yields

ae
a∗

= mpl

He
. (17)

Inserting (14) into (17) into (13) and making use of (9)
yields

H∗ < H0
a0

ae

ae
a∗

= g∗(T0)1/2g∗(Te)
−1/4 T0mpl

V 1/4
e

(
Teq
T0

)1/2
(1 + β/2)−1/4.

(18)

We now use the Friedmann equation to relate H∗ and V∗

H2∗m2
pl = 1

3
V∗(1 + β/2) (19)

and insert the relation (9) between Ve and V∗ to turn the
above inequality into an upper bound on the energy scale V∗
of inflation

V 1/4∗ < κ̃mpl

(
T0

mpl

)γ

. (20)

with

κ̃ ≡
(

1

1 + β/2

)γ

3γ /2(g∗(T0))γ /2(g∗(Te))
−γ /4

(
Teq
T0

)γ /2

κ−γ /(4(1−β̃)) (21)
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where

γ = 1

3 + β̃/(1 − β̃)
. (22)

Note that κ̃ is a factor of order unity.
To evaluate the above bound, we will consider the case

β̃ = 3

4
. (23)

This corresponds to a value of β close to its upper bound.
In this case, neglecting factors of order unity, the bound (20)
becomes

V 1/4∗ < mpl

(
T0

mpl

)1/6

∼ 10−5mpl (24)

which is lower than the scale of inflation in the simplest slow-
roll models, but much higher than the scale determined using
an almost constant value of H during inflation.

The energy scale of inflation when scales observed today
exit the Hubble radius determines the amplitude of the gravi-
tational wave spectrum on these scales. The power spectrum
of gravitational waves is

Ph ∼
(

H

mpl

)2

∼ V∗
m4

pl

< 10−20. (25)

Assuming that the scalar fluctuations have the amplitude
which is observed, the resulting tensor to scalar ratio r obeys
the bound

r < 10−10, (26)

which is far lower than the value which will be measurable
in upcoming CMB polarization experiments.

4 Conclusions and discussion

We have studied to what extent the upper bound on the energy
scale of inflation which follows from the TCC can be relaxed
by removing the condition that H is approximately constant
during the entire period of inflation. We have shown that it
is possible to relax the upper bound on the scale of inflation
to the value given in (24), which relaxes the upper bound on
the tensor to scalar ratio to (26). This is obtained by assum-
ing that after the couple of e-foldings of slow-roll inflation
(which is required in order to obtain the small tilte in the
scalar spectrum which is observed on cosmological scales),
the equation of state of the field driving inflation changes
dramatically from w � −1 to w ∼ −1/3, the maximal

value which is consistent with having accelerated expansion
of space.

Note that the bounds (24) and (26) are not strict upper
bounds. They are obtained for a value of the equation of
state which is close to the upper bound, but which does not
quite saturate it. It is important, however, to emphasize that
the more the equation of state deviates from w � −1, while
maintaining slow-roll when scale of cosmological interest
exit the Hubble radius, the more baroque the required model
building becomes. In fact, a more natural way to raise the
upper bound on the tensor to scalar ratio r is by considering
warm inflation [7]. In this context, a Hubble constant which
decreases substantially during inflation is naturally obtained,
and hence a larger value of r can be obtained for similar
reasons to the ones we have discussed here. This was worked
out recently in [21–24].

Our results are in good agreement with those of [27], who
also considered the extent to which the constraints on the
energy scale at the onset of inflation by assuming an equation
of state during the inflationary phase which approaches w =
−1/3. Our analysis is in the context of a specific model for
inflation, namely constant roll inflation, whereas the one by
[27] is more general. The bounds we obtain on the tensor to
scalar ratio are similar, though in [27] they depend on the
reheating scale.
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Appendix

In this Appendix we derive the key equation (9) which is used
in the above analysis. Our starting point is (7)

(ϕ̇)2 = βV, (27)
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Integrating both sides over time yields

∫
dϕ = √

3β

∫
V 1/2dt = 1√

β/2 + 1

√
3βmpl

∫
Hdt.

(28)

If we integrate over the time interval which saturates the TCC
we have

e
∫
Hdt = mpl

He
. (29)

Inserting this into (28) yields

�ϕ = 1√
β/2 + 1

√
3βmpl ln

(
mpl

He

)
. (30)

Consider now the equation of motion for a homogeneous
canonically normalized scalar field ϕ in an expanding back-
ground

ϕ̈ + 3H ϕ̇ + V ′ = 0. (31)

Taking the time derivative of (7) yields

ϕ̈ = β

2
V ′, (32)

and, inserting this result back into the equation of motion
gives

(
β

2
+ 1

)
V ′

V
+

√
3β

√
1 + β/2

mpl
= 0, (33)

or, equivalently,

dV

V
= −

√
3β√

1 + β/2

dϕ

mpl
. (34)

After integration this becomes

ln
Ve
V∗

= −
√

3β√
1 + β/2

�ϕ

mpl
= − 3β

1 + β/2
ln
mpl

He
, (35)

where in the second step we have inserted (30). After expo-
nentiation, and using the Friedmann equation to substitute
for He in terms of Ve we obtain (9).
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