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Abstract Predictions for Drell–Yan lepton pair production
at low dilepton mass and small x at the LHC usually have a
large scale dependence. This can be decreased by determin-
ing an optimal factorization scale. In this paper, we reduce
this scale by imposing a cutoff in azimuthal angle between
the transverse momentum of the leptons, properly taking into
account Sudakov effects. This allows one to probe the parton
distributions at smaller scales eliminating most of the current
theoretical uncertainty.

1 Introduction

The Drell–Yan process is one of the standard channels for
determining the parton distribution functions (PDFs), spe-
cially the sea quark ones. At the CMS experiment, for
instance, the production of the pairs of muons is measured
with a wide range of dilepton invariant mass, 15 < M <

3000 GeV at
√
s = 13 TeV [1]. The results are integrated

in dilepton rapidity and show good agreement with next-to-
next-to-leading order Drell–Yan predictions. For a similar
result from ATLAS, see Ref. [2].

It is possible to calculate the Drell–Yan (DY) cross section
through a factorized scheme: as a convolution of the parton
distributions (one for each involved proton) with the matrix
element using a factorization scale, μF . Schematically, we
have

σ =
∫

d xAd xB PDF(xA, μF )

×|M(μF)|2 × PDF(xB, μF ) , (1)

where the matrix element, M(μF ), is calculated in a pertur-
bative manner. The convolution is in x space, i.e., the longitu-
dinal momentum fraction carried by the partons. At leading
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order (LO), there is a big scale dependence, whereas, at next-
to-leading order (NLO), there is a smaller dependence and so
on for higher orders until that, if we consider all perturbative
terms, the result would be independent of scale, assuming it
is a convergent series. The conventional choice for the fac-
torization scale is M for the DY process.

It is known that at small x NLO theoretical predictions
there is a large factorization scale dependence, usually quan-
tified by allowing for μF = M/2, 2M . This is due to the fact
that a variation of factorization scale will change the parton
distributions. If the whole perturbative series were present,
the matrix element would cancel this change. However, when
truncated at NLO, the matrix element contains only one par-
ton emission (see, e.g., Fig. 1), while the parton distributions
can emit many partons (average of 8 at small x and for the
LHC energies, as estimated in Ref. [3]) when they are evolved
in μF . This uncertainty limits the precision in which the par-
ton distributions can be probed by the Drell–Yan process.

However, there is a procedure [3] to set an optimal scale,
which reduces the uncertainty due to the factorization scale.
The main idea is, in the limit of small x , to include part
of the NLO contribution already at the LO by changing the
parton distribution factorization scale at LO. It was applied
first for the DY process, but it has been also applied to other
processes, like cc̄ and bb̄ production [4] and J/ψ production
[5].

Given that at large scales the parton distributions are more
or less understood, it would be desirable to lower the opti-
mal scale. With this goal, in Ref. [6], a dilepton (or, equiv-
alently, photon) upper transverse momentum (kt ) cutoff was
imposed, therefore making the NLO contribution smaller
and then requiring a smaller optimal scale. In this way, one
has information as regards the PDFs at smaller scales, i.e.,
smaller than the scales that can currently be measured due
to experimental limitations. In this paper, we continue that
work by imposing a cut in the azimuthal angle between the
transverse momentum of the leptons (instead of a photon kt
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cut). This will be a complementary approach, which can be
tested both theoretically and experimentally.

There are other ways to resum small x parton evolution.
For example, an all-order small-x resummation matched to a
fixed-order DGLAP anomalous dimension [7] was obtained
some time ago. Also, by considering the perturbative coeffi-
cient functions at fixed order minus its expansion in αs series,
it was possible to resum small x effects in Refs. [8,9] and
have a better description of DIS data. In our work, we have
the advantage of being able to choose more exclusive observ-
ables by having an easier way of introducing cutoffs.

This paper is organized as follows: in Sect. 2, we discuss
how to reduce the NLO phase space through the azimuthal
angle cut. Then, in Sect. 3, we calculate the optimal scale
as a function of the cutoff. In Sect. 4, we show the effect of
the cutoff in the cross section and, in Sect. 5, we show the
stability of the results with regard to the choice of the remain-
ing factorization scale. Finally, we present our conclusions
in Sect. 6.

2 Imposing an azimuthal angle cut φ0

Drell–Yan process at NLO is given by a collision between
a parton A and parton B, resulting in another parton C and
a photon, the latter splitting into leptons D and E. The most
important case at small x , where the gluon distribution dom-
inates, is the QCD Compton scattering: a gluon and a quark
are the initial partons that result in the quark C and the lep-
tons D and E, as shown in Fig. 1. We define the Mandelstam
variable t = (pC − pA)2.

The leptons D and E with the corresponding transverse
momentum �pDt and �pEt are separated by an azimuthal angle
φ. If we take φ to be the smallest angle, it will vary between
0 < φ < π , with the upper limit corresponding to the
back-to-back configuration. With an azimuthal angle cut, we
reduce the number of events taken into account by selecting
only the ones with φ > φ0, i.e., closer to the back-to-back
configuration. In Fig. 2, we present only the lepton pair, D
and E, and show the cut off region in red.

By introducing the cutoff, we expect to lower optimal scale
that will be described in the next section. In this way, we are
able to safely probe parton distribution at lower scales by
reducing the big uncertainty involved in the choice of this
scale as shown in Fig. 1 of Ref. [6].

3 Determination of the optimal scale

Following the procedure of Ref. [6], we use the parton cross
section for the NLO subprocess qg → qγ ∗ → qll differen-
tial in M2, in t and in the lepton transverse momenta. This is
integrated in the two lepton variables, keeping the restriction

Fig. 1 The Compton scattering diagram of the NLO Drell–Yan pro-
cess: gluon A and quark B are the initial particles, resulting in a quark
C and a photon, which in turn splits into a pair of leptons D and E. This
diagram has a divergence in the t channel and it is the most relevant one
at NLO for small x due to the gluon distribution

Fig. 2 Transverse momentum vector of leptons D and E, separated by
an azimuthal angle φ. For a given cutoff φ0, the green region corre-
sponds to allowed values of angles φ > φ0, i.e. the part of phase space
which is taken into account in the calculation. The red region is cut off,
therefore, the events that are closer to the back-to-back configuration
are the relevant (measured) ones

in the azimuthal angle of φ > φ0:

∫
d pDt

∫
d pEt

d σ̂ (qg → qll)

d M2d td pDtd pEt
�(φ − φ0). (2)

We also use the LO parton cross section convoluted with
DGLAP g → qq splitting function [10] that does not have a
dependence on the lepton variables:

α2αs z

9M4

z2 + (1 − z)2

t
. (3)

We equate both expressions (NLO vs. LO convoluted with
DGLAP) and integrate in t . The infrared divergences cancel
(the cut does not touch the divergence). There is a further
integration in z = M2/ŝ with fixed M , accounting for an
incoming gluon flux of 1/z, where the parton c.o.m. energy
is

√
ŝ. Thus, we have an equation that can be used for finding

the optimal scale, μ0.
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In the next step, to calculate the cross section, we will use
the factorized scheme:

σ = PDF(μ0) × CLO + PDF(μF) × CNLO(μ0) (4)

using the optimal scale, μ0, in the parton distribution appear-
ing at leading order and also in the next-to-leading order
coefficient, CNLO. By using the optimal scale μ0 we include
in the LO term all the NLO contributions which depends
on factorization scale and enhanced by a large ln(1/x)—
that is, we resum inside the LO low-x PDF the terms
[αs ln(μF/M) ln(1/x)]n . Of course now, the first of these
terms should not be taken into account at NLO to avoid dou-
ble counting; this is done by setting μF = μ0 in CNLO.

However, since there is a cutoff applied, it is necessary to
take care of the situation of a parton that emits other partons
during the evolution that may spoil the cutoff. In other words,
we must take into account possible parton emissions from the
optimal scale (μ0) up to the hard scale (

√
ŝ) which give a sup-

plementary transverse momentum to the dilepton. For exam-
ple, a configuration in which the leptons are exactly back-to-
back (φ = π ) when the dilepton has no transverse momen-
tum can be changed to another configuration like φ = π/2 if
the dilepton is given the appropriate transverse momentum.
We will do that at double logarithm accuracy.

This situation is addressed by including Sudakov form
factors that ensure that there will be no emission between the
optimal scaleμ0 and

√
ŝ. This inclusion is detailed in Ref. [6],

here we briefly recall that, in the double log approximation,
the quark Sudakov factor is given by

Tq = exp
(
−αs Sq(μ0,

√
ŝ)

)
(5)

with

Sq = CF

π
�

(
ln(

√
ŝ/μ0) + iπ/2

)2
(6)

where CF = 4/3 and, at leading order,
√
ŝ = M . Simi-

larly, there is a Sudakov factor for the gluon. They enter the
Eq. (4) as factors that multiply respective the parton distri-
butions. Of course now we have to exclude the first term
αs(ln2(

√
ŝ/μ0) − π2/4) from the CNLO expression to avoid

the double counting.
One may argue that it is not clear how the Sudakov factors

could be used with the angular cut, since they are tradition-
ally used to account for no emission in a range of transverse
momentum. First of all, the Sudakov factor depends on vir-
tualities of single particles (as in the original paper [11]), not
transverse momentum. This means that we can use them here,
provided that we use as their arguments the inclusive scale M
or ŝ, where all possible dileptons are taken into account, and
the optimal scale μ0 with our cutoff. This is good at double

Fig. 3 Optimal scale as a function of the azimuthal angle cutoff with
and without Sudakov factors. We observe that for φ0 > 0.7π the
Sudakov factor does not affect much the factorization scale

logarithm accuracy and corrections to it will appear only at
NNLO. As shown in Ref. [3], the NNLO is rather small after
the choice of the optimal scale and that justifies our approach.
If we were to make completely sure that the cutoff was not
spoiled by the PDF evolution, we would have to calculate this
process to all orders or do a Monte Carlo evolution keeping
track of all variables of intermediate partons, but we do not
pursue this complicated approach.

In Fig. 3 the reduction is shown of the optimal scale with
the cutoff for the cases without and with Sudakov form factor,
for dilepton masses equal to 6 and 12 GeV. It starts with the
case of no cut applied (φ0 = 0) and ends in the most drastic
case of φ0 = π , where all phase space is cut off. In this range,
the optimal scale varies from μ0 = 1.45 M (no cutoff) to
μ0 = 0.

From Fig. 3, we clearly see that, in the region which starts
around φ0 = 0.7π , Sudakov effects are not so important on
the determination of the factorization scale. This is the most
important region to study smaller scales, since μ0/M < 0.7
in this case. Then, we can investigate predictions of Drell–
Yan cross section at smaller scales without worrying about a
new theoretical uncertainty due to the Sudakov form factors.

After including into the LO term most of the NLO contri-
bution, it would still be possible to use the parton distributions
at a different scale μ1 when computing the NLO contribu-
tion. Then the NNLO coefficient would depend on μ0 and
μ1 and the idea would be to choose μ1 in a way to make that
almost all of the NNLO contribution would be already taken
into account at lower orders. This would further reduce the
scale uncertainty. We do not pursue such calculation here, but
we argue, as first discussed in Ref. [3], that setting μ1 = μ0

already is a good choice, since the dominant diagram at small
x at NNLO is the one with two gluons in the initial state and
most of its contribution will be taken into account by correct-
ing both quark and antiquark legs of the LO diagram with LO
(and not NLO) DGLAP.
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Fig. 4 Drell–Yan differential cross section for M = 12 GeV (left) and
6 GeV (right). The upper curves correspond to the result without any
cut (μ0 = 1.45M), while the lower ones, to the result with an azimuthal
angle cutoff of φ0 = 0.85π . The bands display the 1σ PDF uncertainty
and show that they can be reduced by a proper measurement (with
current LHC precision) of such observable

Another possibility is to combine the azimuthal angle
cutoff with the transverse momentum cutoff discussed in
Ref. [6]. This would lower the optimal scale w.r.t. the appli-
cation of a single cut, but we expect it will not be much lower.
In fact, we expect that both cutoffs will be similar in the sense
that a large part of the phase space is cut by the two cuts. For
instance, the optimal scale for φ0 = 0.85π is μ0 = 0.44M ;
if we also cut the dilepton transverse momentum at k0 = M ,
the optimal scale is still 0.44M within rounding error, if we
set k0 = M/2, we have μ0 = 0.42M . In conclusion, apply-
ing both cuts should be weighted against the possible exper-
imental difficulties when measuring this new cross section,
depending on the setup it will be better to apply a single but
stricter cut.

4 Predictions with an azimuthal angle cutoff

As described in Sects. 2 and 3, we are now in a position to
lower the scale with an azimuthal angle cut and investigate
the effects of the cutoff in cross section. We are interested in
applying a cut for which Sudakov factors do not change much
our results, φ0 > 0.7π . A good choice will be φ0 = 0.85π ,
for which the optimal scale is reduced to μ0 = 0.44M . In
Fig. 4, we show our predictions for the differential cross sec-
tion in dilepton rapidity Y for the Drell–Yan process at LHC
energy of

√
s = 14 TeV. We use MMHT14 NLO PDFs [12]

and set the dilepton mass equal to 6 and 12 GeV.
The upper curves in Fig. 4 correspond to the absence of

any cutoff; therefore μF = μ0 = 1.45M . In this case, the
scale at which the partons are probed is still larger than the
usual choice μF = M . The lower curves correspond to the
cutoff φ0 = 0.85π , for which we have a much lower scale
(less than a third of 1.45M), but we still have a considerable

Fig. 5 Drell–Yan differential cross section given at two factorization
scales μF = μ0 (black) and μ0/2 (red). The azimuthal angle cutoff
φ0 = 0.85π is imposed, with optimal scale at LO given byμ0 = 0.44M .
This shows that the remaining factorization scale uncertainty is greatly
reduced

cross section, as it can be seen that approximately 50% of
the dileptons produced are kept.

We also calculate the 1σ error corridors coming from the
PDF uncertainty, that, depending on Y , are rather large. The
current precision of the measurements at the LHC is bet-
ter than this PDF uncertainty, leading us to believe that a
proper measurement of such observable would add new pre-
cise knowledge about the PDFs. In the next section we will
see that the remaining factorization scale will be smaller than
such bands.

5 Sensitivity of choice of factorization scale

We should now verify the behaviour of the cross section,
Eq. (4) with respect to the remaining factorization scale
dependence. Therefore, we set the scale at the LO PDF
(μF = μ0) and in the NLO coefficient CNLO(μ0), while
varying the factorization scale, μF , in the PDF multiply-
ing the NLO contribution. We will investigate the central
prediction μF = μ0 and also a smaller factorization scale
μF = μ0/2. Here we cannot use the larger μF = 2μ0,
because it would allow the DGLAP evolution to violate the
cutoff. This would happen by the emission of partons with
enough transverse momentum to produce a photon with some
transverse momentum. Therefore, the dilepton will have to
carry this momentum and the net effect will be a reduction of
the azimuthal angle φ, putting, in the forbidden region, some
events previously understood to be in the allowed region of
φ.

In Fig. 5, we show the scale variation described above for
the differential cross section in rapidity for M = 6 GeV and
12 GeV, setting the LHC energy to 14 TeV and, as an example,
applying the azimuthal angle cutoff φ0 = 0.85π with μ0 =
0.44M . The renormalization scale is kept fixed at μR = M .
We can see that changing the factorization scale does not
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change much the results. Therefore, the role of optimal scale
still holds and the uncertainty in the choice of scale is reduced.

6 Conclusion

In this work, we investigated the production of Drell–Yan
dileptons at small x with a cutoff that excluded smaller val-
ues of the azimuthal angle φ < φ0. Following the prescrip-
tion established in earlier work, we calculated the leading-
order optimal factorization scale using the dominant diagram
at NLO, i.e., the gluon–quark Compton scattering. In doing
so, the main theoretical uncertainty (factorization scale) was
reduced, as can be seen for φ0 = 0.85π at Fig. 5.

We provided the optimal scale as a function of the size
of the cutoff φ0 in Fig. 3. By introducing the cutoff, it was
possible to lower the scale at which the parton distributions
are probed, for example, μ0 = 0.44M at φ0 = 0.85π . In
order to avoid the DGLAP evolution of the PDFs spoiling
the proposed observable by the emission of a parton in the
cutoff region, appropriate Sudakov factors were included.
They changed the dependence of the optimal scale on φ0, but
for φ0 > 0.7π , the change of its absolute value is very small
and therefore the optimal scale is quite robust regarding this
correction.

Finally, we calculated the cross section of the discussed
observable with φ0 = 0.85π in Fig. 4, showing that indeed
we will have a smaller cross section by a factor of about 2
when compared with the case without the cutoff. The uncer-
tainty bands shown indicate that the determination of the
parton distributions can be improved, since the uncertainty
due to the factorization scale was greatly reduced.
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