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Abstract Recently it was proposed that the ten dimen-
sional tachyonic superstring vacua may serve as good start-
ing points for the construction of viable phenomenologi-
cal models. Such phenomenologically viable models enlarge
the space of possible string solutions, and may offer novel
insight into some of the outstanding problems in string
phenomenology. In this paper we present a three genera-
tion standard-like model that may be regarded as a com-
pactification of a ten dimensional tachyonic vacuum. We
discuss the features of the model as compared to a sim-
ilar model that may be regarded as compactification of
the ten dimensional SO(16) × SO(16) heterotic-string. We
further argue that in the four dimensional model all the
geometrical moduli are fixed perturbatively, whereas the
dilaton may be fixed by hidden sector non-perturbative
effects.

1 Introduction

The heterotic-string models in the free fermionic formula-
tion [1–3] provide a rich laboratory to develop the method-
ology of connecting string theory with observational data.
Since the late eighties this class of string compactifications
produced an abundance of three generation models [4–22],
with qualitatively realistic properties, as well as an arena
for investigation of cosmological scenarios [23]. The rel-
evant class of string compactifications are Z2 × Z2 orb-
ifolds of six dimensional toroidal manifolds [24–27], that
are related to compactifications on Z2 orbifolds of K3 × T2

surfaces. This class of internal spaces produces a rich symme-
try structure also from a purely mathematical point of view
[28].
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Since the early days of string phenomenology, the major-
ity of studies have been devoted to the analysis of the N = 1
supersymmetric string vacua. Supersymmetry is then bro-
ken in the effective low energy field theory limit by a gaug-
ino or matter condensate. Electroweak radiative breaking
also ensues by dimensional transmutation, and is compat-
ible with the observed parameter space. However, while
supersymmetry is an elegant theoretical construction, the
fact that it is not observed below the TeV scale lessens
some of its motivating attributes. It is therefore vital to
explore alternatives from the point of view of string the-
ory.

Investigation of non-supersymmetric string models to
date were conducted by studying compactifications of the
tachyon-free SO(16) × SO(16) ten dimensional heterotic
string theory [29–49]. This model can be generated as an
orbifold of the ten dimensional supersymmetric E8 × E8

heterotic-string, and the two vacua are connected by inter-
polation in a compactified dimension [31,32]. Additionally,
string theory gives rise to vacua that are tachyonic in ten
dimensions [29–31,33]. Recently, it was proposed in Ref.
[50] that these ten dimensional string configurations may
serve as viable starting points for constructing phenomeno-
logical models, and offer novel perspectives on some of the
outstanding issues in string phenomenology. Tachyon-free
four dimensional models may be constructed and ought to be
taken on par with the non-supersymmetric SO(16)×SO(16)

heterotic-string. Moreover, they may reveal alternative sym-
metries to those provided by spacetime supersymmetry. An
example is the Massive Boson–Fermion Degeneracy of [51–
53]. It was demonstrated in Ref. [50] that the ten dimen-
sional tachyonic modes may be projected out by Generalised
GSO projections. A standard-like tachyon free model was
presented in Ref. [50], albeit with six generations rather than
three. A tachyon-free three generation model in this class is
still outstanding.
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In this paper, we present such a three generation Standard-
like tachyon free Model that can be regarded as a compact-
ification of a tachyonic ten dimensional string vacuum. We
discuss the spectrum of the model and its distinct features
compared to the supersymmetric and non-supersymmetric
models emanating from the E8 × E8 and SO(16)× SO(16)

heterotic-string models. Furthermore, we argue that the inter-
nal space in our construction is entirely fixed, which follows
from the fact that all the untwisted geometrical moduli are
projected out in the given model. We suggest that in this
model all the moduli, aside from the dilaton, are fixed per-
turbatively, whereas the dilaton may be fixed by a hidden
sector racetrack mechanism [54,55]. As we elaborate in the
discussion, the internal structure of the model presented here
is obtained from a previously constructed supersymmetric
Standard-like Model [56]. Some characteristics of the two
models are consequently identical. Our present models might
therefore be regarded as deformation of the supersymmetric
model, which conforms with the conjecture in Ref. [50] that
all (2, 0) string compactifications are connected via orbifolds
or by interpolations.

2 Free fermionic constructions

In the free fermion formulation models are specified in
terms of boundary condition basis vectors and one-loop
Generalised GSO (GGSO) phases [1–3]. The E8 × E8 and
SO(16) × SO(16) models in ten dimensions are defined in
terms of a common set of basis vectors

v1 = 1 = {ψμ, χ1,...,6|η1,2,3, ψ
1,...,5

, φ
1,...,8},

v2 = z1 = {ψ1,...,5
, η1,2,3},

v3 = z2 = {φ1,...,8}, (1)

where we adopted the conventional notation used in the free
fermionic constructions [4,8–22,57–66]. The basis vector 1
is required by the consistency rules [1–3] and generates a
model with an SO(32) gauge group from the Neveu-Schwarz
(NS) sector. The spacetime supersymmetry generator is given
by the combination

S = 1 + z1 + z2 = {ψμ, χ1,...,6}. (2)

The choice of Generalised GSO phase C
[z1
z2

] = ±1 selects
between the E8 × E8 or SO(16) × SO(16) heterotic-
strings in ten dimensions. The relation in Eq. (2) dictates
that in ten dimensions the breaking of spacetime super-
symmetry is correlated with the breaking pattern E8 ×
E8 → SO(16) × SO(16). Equation (2) does not hold

in lower dimensions, and the two breakings are not corre-
lated.

It is noted that in both the E8 × E8 and SO(16)× SO(16)

heterotic-strings in ten dimensions, the tachyonic states
are projected out. The would-be tachyon in these models are
obtained from the Neveu–Schwarz (NS) sector, by acting on
the right-moving vacuum with a single fermionic oscillator:

| 0〉L ⊗ φ̄a |0〉R (3)

where in ten dimensions a = 1, . . . , 32. The GSO projec-
tion induced by the S-vector, which is the spacetime super-
symmetry generator, projects out the untwisted tachyons,
producing tachyon free models in both cases. As discussed
in Ref. [50] obtaining the ten dimensional tachyonic vacua
in the free fermionic formulation amounts to the removal
of the S-vector from the construction. For example, the
SO(16) × E8 heterotic-string model in ten dimensions is
generated by the basis vectors {1, z1} in Eq. (1), indepen-
dently of the GGSO phases. Other ten dimensional con-
figurations can similarly be obtained by substituting the
z1 basis vectors with z1 = {φ̄1,..., 4} and adding similar
zi basis vectors, with four periodic fermions, and utmost
two overlapping. These vacua are connected by interpola-
tions or orbifolds along the lines of Ref. [31], and, in gen-
eral, contain tachyons in their spectrum. Our interest here is
in the possibility of constructing tachyon free phenomeno-
logical vacua, starting from the tachyonic ten dimensional
vacua.

As noted in the ten dimensional case, compactifications
of the ten dimensional tachyonic vacua amounts to remov-
ing the vector S from the set of basis vectors. In four
spacetime dimensions the set {1, z1, z2} produces a non
supersymmetric model with SU (2)6 × SO(12) × E8 ×
E8 or SU (2)6 × SO(12) × SO(16) × SO(16). In this
case the untwisted tachyonic states in general reappear. It
is noted also that the left-moving vector bosons remain
in the spectrum, and are projected out by the additional
NAHE-set basis vectors. An alternative to removing the S-
vector from the construction is to augment it with peri-
odic right-moving fermions. A convenient choice is given
by

S̃ = {ψ1,2, χ1,2, χ3,4, χ5,6|φ̄1,..., 4} ≡ 1. (4)

In this case there are no massless gravitinos, and the
untwisted tachyonic states

|0〉L ⊗ φ̄1,..., 4|0〉R (5)
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are invariant under the S̃-vector projection. We note that
the untwisted tachyons are those that descend from the ten
dimensional vacuum, hence confirming that the model can
indeed be regarded as compactification of a ten dimensional
tachyonic vacuum. The advantage of using the vector S̃ is
that its projection on the chiral generation is retained, hence
facilitating the construction of three generation models. In
Ref. [50], a three generation model with S̃ was presented,
which is, however, tachyonic.

Our tachyon free three generation model is constructed
by using a modified NAHE-set [67,68], with the S-vector
replaced by the S̃-vector. We refer to it as the NAHE-set.
The basis vectors of the NAHE-set are shown in Eq. (6).

ψμ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

1 1 1 1 1 1,…,1 1 1 1 1 1 1 1 1 1 1 1

S̃ 1 1 1 1 0,…,0 0 0 0 0 0 1 1 1 1 0 0
b1 1 1 0 0 1,…,1 1 0 0 0 0 0 0 0 0 0 0

b2 1 0 1 0 1,…,1 0 1 0 0 0 0 0 0 0 0 0

b3 1 0 0 1 1,…,1 0 0 1 0 0 0 0 0 0 0 0

(6)

y3,...,6 ȳ3,...,6 y1,2, ω5,6 ȳ1,2, ω̄5,6 ω1,...,4 ω̄1,...,4

1 1,…,1 1,…,1 1,…,1 1,…,1 1,…,1 1,…,1

S̃ 0,…,0 0,…,0 0,…,0 0,…,0 0,…,0 0,…,0

b1 1,…,1 1,…,1 0,…,0 0,…,0 0,…,0 0,…,0

b2 0,…,0 0,…,0 1,…,1 1,…,1 0,…,0 0,…,0

b3 0,…,0 0,…,0 0,…,0 0,…,0 1,…,1 1,…,1

The model generated by Eq. (6) produces some novel fea-
tures. The untwisted tachyonic states are projected out by
the projections of each of the basis vectors bi i = 1, 2, 3.
Hence, the model is tachyon free. For a suitable choice
of GGSO phases, the four dimensional gauge group is
SO(10) × SO(6)3 × SO(16). Aside from the hidden sector
reduction E8 → SO(16), the gauge symmetry generated by
(6) is identical to that generated by the NAHE-set. The nov-
elty is in the structure of the chiral generations. Whereas in
models that descend from the SO(16) × SO(16) heterotic-
string the chiral generations may retain their supersymmetric

structure, up to some charges, i.e. the states from the sectors
S + bi may remain massless and produce scalar states in the
chiral 16-representation of SO(10) [49], in NAHE based
models the states from the S̃+bi -sectors do not produce
massless states.

The construction of three generation models in this class
proceeds by adding three or four additional basis vectors
to the NAHE-set. The additional basis vectors break the
SO(10) GUT group to one of its subgroups, and simulta-
neously reduce the number of chiral generations to three
generations. One from each of the sectors b1, b2 and b3.
In addition to the spacetime vector bosons that produce the

four dimensional gauge group, the untwisted sector produces
electroweak Higgs doublets that couple to the chiral genera-
tions from the sectors bi and can be used to generate fermion
masses. In that respect NAHE-based models produce a struc-
ture which is similar to that of NAHE-based models. The
caveat is that in general the NAHE-based models will be
tachyonic, which stems from the proliferation of tachyon
producing sectors, once the four dimensional gauge group
is broken to smaller factors [49].
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Our three generation model is constructed as a variant
of the Standard-like Model published in Ref. [56]. The basis
vectors that extend the NAHE-set and generate the Standard-
like Model are given by

ψμ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

α 0 0 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0
β 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0
γ 0 0 0 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 0 0 0 1

2
1
2

1
2

1
2

(7)

y3y6 y4 ȳ4 y5 ȳ5 ȳ3 ȳ6 y1ω5 y2 ȳ2 ω6ω̄6 ȳ1ω̄5 ω2ω4 ω1ω̄1 ω3ω̄3 ω̄2ω̄4

α 1 0 0 1 0 0 1 1 0 0 1 1
β 0 0 1 1 1 0 0 1 0 1 0 1
γ 0 1 0 0 0 1 0 0 1 0 0 0

The basis vectors α, β and γ are identical to those used
in [56]. Modular invariance constraints necessitates that the
GGSO phases are modified. However, the only modifications
are in the phases that involve the phases associated with the
basis vector S̃, with the choice of generalised GSO coeffi-
cients:

1 S̃ b1 b2 b3 α β γ
⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

1 1 1 −1 −1 −1 −1 −1 i
S̃ 1 1 1 1 1 −1 −1 i

b1 −1 −1 −1 −1 −1 −1 −1 i
b2 −1 −1 −1 −1 −1 −1 1 i
b3 −1 −1 −1 −1 −1 1 −1 1

α −1 −1 −1 −1 1 1 1 1
β −1 1 −1 1 −1 −1 1 1
γ −1 −1 1 1 −1 −1 −1 −i

(8)

In some respects therefore the vacuum defined by Eqs. (6,
7) and (8) shares some of the properties of the model of
Ref. [56]. These similarities are particularly noted with
respect to the untwisted sector and the sectors b1, b2 and b3

that produce the Standard Model spectrum. The two vacua
are of course entirely different as the one in Ref. [56] is super-
symmetric, whereas the one defined by Eqs. (6, 7, 8) is not.
We further remark that the model of Ref. [56] can be used to
explore tachyon free compactifications of SO(16)×SO(16)

heterotic string, similar to the models studied in [49]. This is

obtained by using the basis vectors of Ref. [56], i.e. with an
unmodified S-vector, but with the change of phases

C

[
S

β

]
= C

[
S

γ

]
= −1 → C

[
S

β

]
= C

[
S

γ

]
= +1. (9)

The resulting spectrum is tachyon free. With these modifica-
tions the only sectors that break supersymmetry are sectors
that extend the NAHE-set. Hence, in this case the chiral mat-
ter spectrum still exhibits a supersymmetry-like structure, as
discussed in [49].

Turning back to the model defined by (6, 7) and (8), as
discussed in Ref. [56], the basis vectors of the model utilise
both symmetric and asymmetric boundary conditions with
respect to the sets of internal worldsheet fermions {y|ȳ}3,...,6,
{y1,2, ω1,2|ȳ1,2, ω̄5,6}, and {ω|ω̄}1,...,4. Each of these three
sets is periodic in b1, b2 and b3, respectively. This assignment
induces the doublet–triplet splitting mechanism [69,70] on
the untwisted 5 + 5̄ multiplets, where symmetric assignment
keeps the triplets and projects the doublets, and vice versa
for the asymmetric assignment. The novelty in the model of
Ref. [56], and as can be seen from Eq. (7) is that both sym-
metric and asymmetric boundary conditions are utilised with
respect to the two sectors b1 and b2, whereas only asymmet-
ric boundary conditions are utilised with respect to b3. The
result is that both the untwisted doublet and triplets, i.e. the
entire 5 + 5̄ representations are projected from the first and
second planes that couple to the states from the sectors b1

and b2, whereas the third untwisted plane produces a pair of
electroweak Higgs doublets that couples to the states from the
sector b3 at leading order. This model, like the model of Ref.
[56], contains one additional scalar Higgs doublet beyond
the Standard Model. We note that the weak doublet scalar
states H2, H̄2, H46, H̄46, H47, H̄47, H56, H̄56, H57, H̄57

in Tables 7, 8, 9 and 10, are exotic vector-like states that
should receive a heavy mass. Such states are common
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in free fermionic models. The electroweak doublet states
h̃,

¯̃h H8, H̄8, H13, H̄13 in Tables 7 and 2 are space-
time fermionic states. Hence, the only available electroweak
Higgs doublets are those arising in the NS-sector. A leading
top quark Yukawa coupling is obtained at the cubic level of
the potential due to the boundary condition assignment in the
γ -basis vector [71,72]. An unintended consequence of these
assignments is that the untwisted moduli space is reduced
substantially, due to the projection of additional SO(10) sin-
glet fields from the spectrum. This led to the suggestion in
Ref. [56] that all the moduli in the model, aside from the
dilaton, are fixed. This structure is expected to persist in the
present model.

Spacetime vector bosons in the model defined by (6, 7)
and (8) are obtained only from the untwisted sector. The
observable gauge symmetry is defined by the charges carried
by the observable chiral matter states i.e. those arising from
the sectors b1, b2 and b3. It is given by:

SU (3)C × SU (2)L ×U (1)C ×U (1)L ×U (1)1,2,3

×U (1)4,5,6. (10)

where,

U (1)C = TrU (3)C ⇒ QC =
3∑

i=1

Q(ψ̄ i ) , (11)

U (1)L = TrU (2)L ⇒ QL =
5∑

i=4

Q(ψ̄ i ) . (12)

The flavour U (1)1,2,3 are generated by the worldsheet com-
plex fermions η̄1,2,3 whereas U (1)4,5,6 are generated by
ζ̄ 1,2,3. The complex fermions ζ̄ i are defined as ζ̄ 1 =
(1/

√
2)(ȳ3 + ȳ6), ζ̄ 2 = (1/

√
2)(ȳ1 + ω̄5) and ζ̄ 3 =

(1/
√

2)(ω̄2 + ω̄4). Each of the sectors b1, b2 and b3 is
charged with respect to U (1)i and U (1)i+3. The appearance
of the additional U (1)4,5,6 symmetries arises due to the use
of asymmetric boundary conditions that are essential for fix-
ing the geometrical moduli [73]. We note that this structure
of the observable gauge symmetries is similar to that of the
Standard-like Models in [10–12].

The hidden sector of the model arises from the complex
worldsheet fermions φ̄1,...,8 and is given by

SU (2)1,..., 6 ×U (1)7,8, (13)

where U (1)7,8 symmetries correspond to the combinations
for worldsheet charges

Q7 =
6∑

i=5

Q(φ̄i ) and Q8 =
8∑

i=7

Q(φ̄i ). (14)

In NAHE-based models, the vector combination

ζ = 1 + b1 + b2 + b3, (15)

may give additional spacetime vector bosons that enhance
the hidden sector gauge gauge, which are, however, projected
out in the model defined by Eqs. (6, 7) and (8), and the hid-
den sector is not enhanced. The retention/projection of the
enhancing states from the ζ -sector correspond to the x-map
of Refs. [74,75]. The hidden sector gauge group differs from
that of Ref. [56] due to the right-moving periodic fermions in
the S̃-vector. The Neveu–Schwarz sector produces in addi-
tion to the graviton, dilaton, antisymmetric tensor and space-
time vector bosons, one pair of electroweak Higgs doublets
h3 and h̄3; six pairs of SO(10) singlet fields, which are
charged with respect to U (1)4,5,6; and three fields that are
neutral under the entire four dimensional gauge. These NS
scalar fields are the same as those that are obtained in the
model of Ref. [56]. The two model differ in the fermionic
spectrum generated in the S- and S̃-sectors, respectively, and
in any combination that contains these vectors, on which we
elaborate below. The full massless spectrum of the model is
presented in Appendix A. All sectors, fermonic and bosonic,
have CPT conjugates that are not displayed explicitly in the
tables in Appendix A.

2.1 Analysis of the spectrum

As mentioned, the model under investigation takes the model
of [56] and transforms S to S̃ and applies the phase changes
in Eq. (9). The states in the Hilbert space of this model are
presented in Appendix A. It is worth exploring further the
action of S̃-map on sectors in this model and how it differs
from the SUSY generator, which is induced by the S-map. In
supersymmetric vacua the superpartners of the states from a
given sector ρ are obtained from the sector S + ρ. In non-
supersymmetric models in which supersymmetry is broken
by a GGSO phase [49], the states from the sector S+ρ may be
projected out, but more generally they remain in the Hilbert
space with modified charges. Hence, these sectors retain the
Fermi–Bose degeneracy of the massless states. Additionally,
in such models, in general, there are sectors for which the
states in the sector S+ρ are massive. These sectors therefore
do not preserve the Fermi–Bose degeneracy. Additionally,
the ζ -sector induces the ζ -map. In models with enhanced
hidden sector gauge group, the ζ -mapped sectors ρ + ζ ,
complements the states from a sector ρ to representations
of the enhanced symmetry group. In models in which the
enhancing states are projected out, the states will be mapped
to other representations. However, in many cases the number
of states is preserved overall. This phenomenon was observed
e.g. in the case of spinor–vector duality of Refs. [62–66,76]
under the x-map and reflects the modular properties of the
underlying partition function. Similar properties may there-
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fore be exhibited in the models with broken supersymmetry
that reflect their underlying modular properties. Due to the
assignment of Ramond boundary conditions to φ̄3456 in S̃
there are many sectors such as those listed in Tables 9, 10,
3 and 5 for this model, where no S̃-mapped states appear in
the spectrum. The most common reason for this is that the
S̃-mapped sector gains additional contributions to the mass
formula on the right due to the addition of the Ramond φ̄3456

in S̃, thus making the S̃-mapped sector massive. The most
notable sectors of this type are the bi i = 1, 2, 3 sectors that
produce the three chiral generations, one from each of the sec-
tors b1, b2 and b3, whereas the bosonic states in the sectors
S̃+bi i = 1, 2, 3 are massive. This should be contrasted with
the model generated by employing the phase modification in
Eq. (9), which breaks supersymmetry, but retains the scalar
states from the sectors S+bi i = 1, 2, 3. However, the sector
1 + S̃ + b3 +α +β shown in Table 4, is projected out by the
GGSO projections from the NAHE-basis, despite giving rise
to massless states a priori. In NAHE-based models such a pro-
jection of a super-partnered state cannot occur. We also note
the existence of fermionic states in the S̃-sector that trans-
form as doublets of the electroweak symmetry and an hidden
SU (2) gauge group suggesting the possible implementation
of electroweak symmetry breaking by fermion condensates.

The sectors shown in Table 6 exhibit the mapping prop-
erty mentioned above. The left-moving sector of the S̃-vector
is the same as that of the S-vector. Hence, the S̃-vector still
maps spacetime fermions to spacetime bosons. The 2γ -map
correspond to the x-map of Refs. [74,75], which is a map
between the spinorial sectors b j , j = 1, 2, 3, to the vectorial
producing sectors b j +2γ (or b j +x). The ζ -map then corre-
spond to the map to sectors that supplement the hidden sector
representations when the hidden sector gauge symmetry is
enhanced, and otherwise maps to other states that descend
from the massive spectrum. The states in these sectors are
therefore arranged in three groups of four. Understanding the
detail structure of the spectrum is crucial not only for under-
standing the properties of a single model, but rather in order
to understand the global structure that underlies the larger
space of vacua, as demonstrated by the spinor–vector dual-
ity [62–66,76]. Another observation of the S̃-map is that for
certain sectors the addition of the Ramond φ̄3456 can change
the mass formula on the right so as to map a spinorial sector
to a vectorial one. Such an outcome is observed, for example,
in sector b3 ± γ which is spinorial, whereas S̃ + b3 ± γ is
vectorial.

As is common in (2, 0) heterotic-string compactifications
[77], the model generated by the basis vectors in (6, 7) and
GGSO phases in (8) contains sixU (1) symmetries with non-
vanishing trace,

TrU (1)1 = TrU (1)2 = TrU (1)3 = −24

TrU (1)4 = TrU (1)5 = TrU (1)6 = −12. (16)

Five combinations of these U (1)’s are anomaly free and one
combination, given by

U (1)A = 2(U (1)1 +U (1)2 +U (1)3)

+(U (1)4 +U (1)5 +U (1)6), (17)

remains anomalous. The anomalous U (1) is removed by the
Green–Schwarz–Dine–Seiberg–Witten mechanism [78,87],
but gives rise to a tadpole diagram in string perturbation
theory at one-loop order [79], which reflects the instabil-
ity of the string vacuum. The mismatch between the bosonic
and fermionic states at different mass levels produces a non-
vanishing vacuum energy, which similarly gives rise to a
tadpole diagram, indicating the instability of the string vac-
uum. We may contemplate the possibility of suppressing one
against the other so that they conspire to cancel. The anoma-
lous U (1) contribution is proportional to the trace over the
massless fermionic states and the sign can be altered by
the GGSO projections [77,79]. Both the anomalous U (1)

and the vacuum energy will depend on further details of
the model, which are very complicated, e.g. the potential
of the remaining scalar fields in the spectrum, that can shift
the vacuum. A comprehensive analysis is beyond our scope
here, and possibly out of reach in terms of the contempo-
rary tools available due to the large number of fields in our
quasi-realistic model. However, we note that the same issues
also plague the supersymmetric vacua with an anomalous
U (1) as well as vacua that are compactifications of the non-
supersymmetric SO(16) × SO(16) heterotic-string. There-
fore, a shift of the vacuum is either legitimate, or illegitimate,
in both cases. Any statement about the stability of the string
vacua is at best speculative. We therefore propose that all
of the non-tachyonic string vacua should be considered on
equal footing. We can compactify the different ten dimen-
sional vacua on the same internal structure and try to learn
from the properties at the different limits. In the next section
we illustrate this with regard to the question of stability of
the model.

3 Moduli fixing

Next we discuss the question of the moduli in the string
model defined by Eqs. (7) and (8). The issue of moduli in
string compactification is intricate. It is only properly under-
stood in compactifications with (2, 2) worldsheet supersym-
metry and with at least N = 1 spacetime supersymmetry
[80], but not in the more generic (2, 0) compactifications.
Nevertheless, we can borrow from the terminology in those
cases. The fact that supersymmetric and non-supersymmetric
string vacua can be interpolated [32,47,48], suggest that the
moduli in the more generic compactifications with (2, 0)

worldsheet supersymmetry can be interpolated to the fields
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in the corresponding (2, 2) compactifications [50]. To study
the moduli in the model defined by Eqs. (7) and (8) we
follow the discussion in Ref. [73]. The geometrical moduli
in the model are identified in terms of worldsheet Thirring
interactions [84–86] that are invariant under the fermionic
transformation properties defined by a given set of basis vec-
tors, and are parameterised by untwisted fields in the mass-
less string spectrum [73]. For symmetric orbifold models,
the exactly marginal operators associated with the untwisted
moduli fields have the general form ∂X I ∂̄X J , where X I ,
I = 1, . . . , 6, are the coordinates of the six-torus T 6. The
untwisted moduli fields in this models admit the geomet-
rical interpretation of background fields, which appear as
couplings of the exactly marginal operators in the non-linear
sigma model action. The untwisted moduli scalar fields are
the background fields that are compatible with the orbifold
symmetry. In the fermionic formalism the exactly marginal
operators are given in terms of Abelian Thirring operators of
the form J iL(z) J̄ j

R(z̄), where J iL(z), J̄ j
R(z̄) are some left- and

right-moving U (1) chiral currents described by worldsheet
fermions. The untwisted moduli correspond to the Abelian
Thirring interactions that are compatible with the GGSO pro-
jections induced by the boundary condition basis vectors, in
a given string model.

The set of Abelian Thirring operators, and untwisted mod-
uli fields, is restricted by the projections induced by progres-
sive boundary condition basis vectors. The minimal basis set
in the model defined by Eqs. (7, 8) contains the two vectors
{1, S̃}. This set generates a non-supersymmetric tachyonic
model with SO(36)×SO(8) right-moving gauge group. The
tachyonic states are the surviving untwisted tachyonic states
in Eq. (5). As in the ten dimensional tachyon free vacua,
the six χI are identified with the fermionic superpartners
of the six bosonic coordinates. This is because the S̃-vector
preserves the left-moving structure of the S-vector in the cor-
responding non-tachyonic vacua. Each pair {yi , ωi } is iden-
tified with the fermionised version of the corresponding left-
moving bosonic coordinate Xi , i.e. i∂Xi

L ∼ yiωi . The two
dimensional action of the Abelian worldsheet Thirring inter-
actions is

S =
∫

d2zhi j (X)J iL(z) J̄ j
R(z̄) , (18)

where J iL(i = 1, . . . , 6) are the left-moving chiral currents

of U (1)6 and J̄ j
R( j = 1, . . . , 22), are the right-moving chi-

ral currents U (1)22. The couplings hi j (X), as functions of
the spacetime coordinates Xμ, are four dimensional scalar
fields that are identified with the untwisted moduli fields.
In the model with the two basis vectors {1, S̃} the 6 × 22
fields hi j (X) in Eq. (18) correspond to the 21 and 15 com-
ponents of the background metric GI J and antisymmetric
tensor BI J (I, J = 1, . . . , 6), plus the 6 × 16 Wilson lines
AIa . The hi j (X) fields parameterise the SO(6, 22)/SO(6)×

SO(22) coset-space of the toroidally compactified space.
The hi j untwisted moduli fields arise from the NS sec-
tor,

|χ I 〉L ⊗ |̄+J ̄−J 〉R , (19)

given in terms of the 22 complex right-handed world-sheet
fermions ̄+J and their complex conjugates ̄−J . The cor-
responding marginal operators are given as

J iL(z) J̄ j
R(z̄) ≡ : yi (z)ωi (z)(z) :: ̄+ j (z̄)̄− j (z̄) : . (20)

It is seen that the transformation properties of χ i , which
appear in the moduli (19), are the same as those of yiωi ,
which appear in the Abelian Thirring interactions (20). We
further note that the supersymmetric vacuum defined by
{1, S} and the non-supersymmetric vacuum defined by {1, S̃}
can be connected by continuous interpolations, by turn-
ing on the appropriate Wilson lines, as demonstrated in
the corresponding ten dimensional cases [31]. The impor-
tant observation is that the modification of the basis vector
S → S̃ does not affect the untwisted scalar moduli space
which is therefore identical in the two vacua, as well as in
the corresponding non-supersymmetric model that descends
from the SO(16) × SO(16) heterotic-string in ten dimen-
sions.

The ensuing analysis of the untwisted moduli follows
closely that of Refs. [56,73]. Adding the basis vectors b1,
b2 and b3, reduces the space of untwisted moduli scalars to
the three sets

hi j = |χ i 〉L ⊗ |ȳ j ω̄ j 〉R =

⎧
⎪⎨

⎪⎩

(i, j = 1, 2)

(i, j = 3, 4)

(i, j = 5, 6) ,

(21)

that parameterise the moduli space

M =
(

SO(2, 2)

SO(2) × SO(2)

)3

. (22)

These untwisted moduli fields are present in all symmetric
Z2 × Z2 orbifolds. In complexified form they correspond to
three Kähler and three complex structures of the Z2×Z2 orb-
ifold [73]. As in the case of the model of [56] The addition
of the three basis vectors beyond the NAHE-set results in the
projection of all the states in Eq. (21), i.e. all of the geomet-
rical moduli are projected out. One can further check that the
scalar states arising from the NS-sector are indeed identical
in the two models. It should be emphasised that this outcome
is particular to the boundary condition assignment for the set
of left-moving real fermions {y, ω}1,..., 6 and their specific
pairings [73]. The basic result is that due to this particular
assignment all the internal circles of the six dimensional torus
are shifted asymmetrically, hence fixing the moduli of all six
circles simultaneously, which is possible only in the case of
the Z2 × Z2 orbifold.
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Z2 × Z2 orbifold models also contain moduli from the
twisted sectors. It was argued in [73] that these moduli
are also projected out from the massless spectrum in our
string model. In the supersymmetric vacua this follows from
the reduction of E8 × E8 → SO(16) × S0(16) by the
basis vector set {1, S, ζ1 = 1 + b1 + b2 + b3, 2γ }. To
identify the twisted moduli in the fermionic Z2 × Z2 orb-
ifolds, it is instrumental to consider the set {1, S, ζ1, x},
with x = {ψ̄1,...,5, η̄1,2,3} [74,75]. The Z2 × Z2 orbifold
in the E8 × E8 case reduces the observable E8 symmetry
to E6 × U (1)2, and produces states in the 27 representa-
tion of E6 from the twisted sectors. Under the decompo-
sition of E6 → SO(10) × U (1), the 27 multiplet split as
161/2 +10−1 +12, in a convenient normalisation of theU (1)

generator. In the free fermionic construction the 16 spinorial
components are obtained from the sectors bi , whereas the
10 + 1 components are obtained from the sectors bi + x .
The sectors bi + x produce an additional E6 singlet field,
which is identified with the twisted moduli [73–75]. The
class of vacua with enhanced E6 symmetry possess (2, 2)

worldsheet supersymmetry. In vacua in which the E6 sym-
metry is reduced to SO(10) × U (1), the (2, 2) worldsheet
supersymmetry is reduced to (2, 0). The states from the sec-
tors bi +x are mapped to hidden sector matter states [73–75],
i.e. the twisted moduli are projected out. The only states that
arise from the twisted sectors in this case are the observable
and hidden sector matter states. These states have superpo-
tential mass terms and therefore should not be identified as
moduli. It should be emphasised, though, that any discussion
of the twisted moduli in the (2, 0) vacua should be taken
with a grain of salt, as their proper identification is only pos-
sible in vacua with (2, 2) worldsheet supersymmetry [80–
83].

More to the point, however, is the analysis of supersym-
metric flat directions that was carried out in Ref. [56]. It was
observed there that a certain class of flat directions, which are
designated as “stringent flat directions”, do not exist in the
model analysed in [56]. It was further argued that “stringent
flat directions” are the only flat directions that are exact to any
order in the superpotential, and that non-stringent flat direc-
tions must be broken at some order. In that case, it was argued
that all the moduli in the model are fixed, where the geometri-
cal moduli are fixed by the asymmetric boundary conditions,
whereas the supersymmetric moduli are fixed by the absence
of exact supersymmetric flat directions, and the dilaton may
be fixed by hidden sector non-perturbative effects [56]. It
was further argued that supersymmetry is broken pertuba-
tively in the model due to the existence of an anomalousU (1)

symmetry that produces a Fayet–Iliopolous term at one-loop
[87].

As discussed above, in respect to geometrical moduli, the
supersymmetric model of [56] and the non-supersymmetric
model discussed here, are identical, as the map S → S̃ does

not affect the geometrical moduli. Borrowing from the dis-
cussion of the absence of flat directions in the supersymmet-
ric case, we argue that also in the present vacuum all the
moduli are fixed. The argument is that the internal space in
the two vacua is identical and is not affected by the map
S → S̃, as can be seen from the assignment of the remain-
ing boundary condition basis vectors in Eq. (7) and in Ref.
[56].

We note here that in general in non-supersymmetric string
vacua one expects that at a certain order in perturbation the-
ory manifest supersymmetry breaking is also communicated
to the scalar potential, lifting any flat directions. However,
there are several caveats to this expectation. In the first place,
the models are connected by deformations to points in the
moduli space that admit tachyonic states. It is therefore not
entirely clear that a given non-supersymmetric string model
can stabilise at a finite value of the moduli. In the same vein,
stabilisation of the moduli is a dynamical problems involv-
ing a large number of scalar fields. Whether or not all the
moduli can stabilise at a finite value is a very hard problem
that occupies much of the discourse in string phenomenol-
ogy over the past two decades, and is still on going. Our
argument here does not rely on such considerations. In our
string model the geometrical moduli are simply projected
out. The model is therefore by construction not connected to
any points in the moduli space that admits tachyonic states.
Similarly, the geometric moduli are not merely stabilised.
They are frozen. Our model therefore provides an example
of non-supersymmetric string vacua in which all the moduli,
aside from the dilaton, are fixed, irrespective of the dynam-
ics of vacuum stabilisation. Whether the vacuum itself is
stable hinges on the possibility of stabilising the dilaton at
finite value, and with positive vacuum energy. We alluded
here to the possibility of using the racetrack mechanism
[54,55] to stabilise the dilaton. The question of the vac-
uum energy in the class pertaining models will be reported
in a future publication. However, we should stress that we
regard our model as exploratory, providing some insight into
novel possibilities in string phenomenology, rather than aim-
ing to address the full set of questions involved. Even if one
could demonstrate that a non-supersymmetric stable string
model with suppressed positive vacuum energy exists at one-
loop, its viability at higher order in string perturbation the-
ory will still be open, unlike the case for supersymmetric
vacua.

4 Discussion and conclusion

In this paper we presented a tachyon free three genera-
tion standard-like model that may be regarded as a com-
pactification of a tachyonic ten dimensional vacuum. The
model is non-supersymmetric and tachyon-free. It repre-
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sents a new class of phenomenological string vacua, with
notable differences compared to vacua that can be built on
the same internal structure. In this example, we consid-
ered the supersymmetric compactification of Ref. [56] as
well as the construction of a model in which supersym-
metry is broken by GGSO phase, á la Ref. [49]. This non-
supersymmetric version can be regarded as descending from
the non-supersymmetric SO(16) × SO(16) heterotic-string
in ten dimensions. Both this non-supersymmetric vacuum,
as well as the supersymmetric model of Ref. [56], utilise the
same set of boundary condition basis vectors with the sub-
stitution S̃ → S. In all three cases the untwisted NS scalar
spectrum is the same, indicating that the internal structure in
all three models is identical. The twisted spectrum is, how-
ever, entirely different. In the model presented here the states
from the sectors S̃ + b j are massive, whereas in the other
non-supersymetric model the corresponding states from the
sectors S + b j remain in the massless spectrum, albeit with
modified U (1) charges. Hence in this case the chiral gener-
ations still exhibit a supersymmetric like structure, although
they do not reside in super-multiplets. These examples illus-
trate how compactifications of the different ten dimensional
vacua can be used to explore the phenomenological proper-
ties on the same internal structure. In that respect compacti-
fications of the tachyonic ten dimensional vacua may reveal
new insight into outstanding issues in string phenomenol-
ogy.

Furthermore, as the internal structure of the model was
adopted from the previously constructed supersymmetric
model in Ref. [56], we used the observation made there in
regard to the absence of stringent flat direction, and conse-
quently the fixing of all moduli, to argue that in our present
model all moduli, aside from the dilaton, are also fixed pertur-
batively, whereas the dilaton may be fixed by hidden sector
non-perturbative dynamics. In Ref. [56] it was argued that the
absence of exact flat directions suggests that supersymmetry
is broken perturbatively in the model due to the existence
a Fayet–Iliopoulos term at one-loop. In our present model
supersymmetry is broken explicitly at the Planck scale, but
we carried forward the argument from Ref. [56] to propose
that all the moduli in the current model are also fixed and
hence the vacuum would be stable. We should warn, how-
ever, that any discussion of stability in non-supersymmetric
string vacua is speculative, fraught with uncertainty, and pos-
sibly premature. Nevertheless, we note that the conditions
that enable us to speculate on this stability are very partic-
ular to the configuration exhibited in this particular class of
standard-like models. For example it was observed in Ref.

[88] that in flipped SU (5) string vacua with internal structure
similar to the one used in Ref. [56], there do exist stringent
supersymmetric flat directions. The absence of stringent flat
directions is therefore specific to vacua with similar internal
structure and standard-like model gauge group. Similarly, as
noted in Ref. [73] the projection of the untwisted geometri-
cal moduli is specific to the pairing of the internal worldsheet
fermions employed in our model. In this regard, we note that
while the standard-like model in Refs. [5–7] shares many of
the phenomenological characteristics with the standard-like
model of Refs. [10–12], whereas in the later case the geo-
metrical moduli are fixed, in the former case they are not.
It is seen again that this property is specific to a particular
configuration and is not generic. We may infer conserva-
tively that the stability issue of the string vacuum can only
be addressed in the very specific string vacua that come close
to describing the Standard Model, rather than in the generic
cases.
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A The spectrum of the model

The following tables present the spectrum of the model given
in Sect. 2. All charges are multiplied by four and the CPT
conjugates are omitted for all states. Throughout the tables
we will make use of the vector combination: ζ = 1 + b1 +
b2 + b3 = {φ̄1,...,8}.

See Tables 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.
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Table 1 The untwisted Neveu–Schwarz scalar states. All charges are multipled by 4

F Sector Name (C, L) QC QL Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (2)1,...,6 Q7 Q8

b NS (h) (1, 2) 0 −4 0 0 4 0 0 0 (1, 1, 1, 1, 1, 1) 0 0

(h̄) (1, 2) 0 4 0 0 −4 0 0 0 (1, 1, 1, 1, 1, 1) 0 0

(56) (1, 1) 0 0 0 0 0 4 4 0 (1, 1, 1, 1, 1, 1) 0 0

(̄56) (1, 1) 0 0 0 0 0 −4 −4 0 (1, 1, 1, 1, 1, 1) 0 0

(′
56) (1, 1) 0 0 0 0 0 −4 4 0 (1, 1, 1, 1, 1, 1) 0 0

(̄′
56) (1, 1) 0 0 0 0 0 4 −4 0 (1, 1, 1, 1, 1, 1) 0 0

(46) (1, 1) 0 0 0 0 0 4 0 4 (1, 1, 1, 1, 1, 1) 0 0

(̄46) (1, 1) 0 0 0 0 0 −4 0 −4 (1, 1, 1, 1, 1, 1) 0 0

(′
46) (1, 1) 0 0 0 0 0 −4 0 4 (1, 1, 1, 1, 1, 1) 0 0

(̄′
46) (1, 1) 0 0 0 0 0 4 0 −4 (1, 1, 1, 1, 1, 1) 0 0

(45) (1, 1) 0 0 0 0 0 0 4 4 (1, 1, 1, 1, 1, 1) 0 0

(̄45) (1, 1) 0 0 0 0 0 0 −4 −4 (1, 1, 1, 1, 1, 1) 0 0

(′
45) (1, 1) 0 0 0 0 0 0 −4 4 (1, 1, 1, 1, 1, 1) 0 0

(̄′
45) (1, 1) 0 0 0 0 0 0 4 −4 (1, 1, 1, 1, 1, 1) 0 0

(ξ1,2,3) (1, 1) 0 0 0 0 0 0 0 0 (1, 1, 1, 1, 1, 1) 0 0

Table 2 The S̃ and S̃ + ξ sectors. All charges are multipled by 4 and the combination ζ = 1 + b1 + b2 + b3 has been used

F Sector Name (C, L) QC QL Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (2)1,...,6 Q7 Q8

f S̃ h̃ (1, 2) 0 4 0 0 0 0 0 0 (1, 1, 1, 2, 1, 1) −4 0
¯̃h (1, 2) 0 −4 0 0 0 0 0 0 (1, 1, 1, 2, 1, 1) 4 0

ξ4 (1, 1) 0 0 0 0 0 0 0 0 (1, 1, 2, 1, 2, 1) 0 0

ξ5 (1, 1) 0 0 0 0 0 0 0 0 (1, 1, 2, 1, 2, 1) 0 0

φ1 (1, 1) 0 0 0 0 4 0 0 0 (1, 1, 1, 2, 1, 1) −4 0

φ2 (1, 1) 0 0 0 0 −4 0 0 0 (1, 1, 1, 2, 1, 1) 4 0

f S̃ + ζ ξ6 (1, 1) 0 0 0 0 0 0 0 0 (1, 2, 1, 1, 2, 1) 4 −4

ξ7 (1, 1) 0 0 0 0 0 0 0 0 (1, 2, 1, 1, 2, 1) −4 4

φ3 (1, 1) 0 0 4 0 0 0 0 0 (2, 1, 1, 1, 1, 1) 0 −4

φ4 (1, 1) 0 0 −4 0 0 0 0 0 (2, 1, 1, 1, 1, 1) 0 4
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Table 3 The observable matter sectors. All charges are multipled by 4

F Sector Name (C, L) QC QL Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (2)1,...,6 Q7 Q8

f b1 Q1 (3, 2) 2 0 −2 0 0 −2 0 0 (1, 1, 1, 1, 1, 1) 0 0

uc1 (3̄, 1) −2 −4 −2 0 0 2 0 0 (1, 1, 1, 1, 1, 1) 0 0

dc1 (3̄, 1) −2 4 −2 0 0 −2 0 0 (1, 1, 1, 1, 1, 1) 0 0

L1 (1, 2) −6 0 −2 0 0 2 0 0 (1, 1, 1, 1, 1, 1) 0 0

ec1 (1, 1) 6 4 −2 0 0 2 0 0 (1, 1, 1, 1, 1, 1) 0 0

Nc
1 (1, 1) 6 −4 −2 0 0 −2 0 0 (1, 1, 1, 1, 1, 1) 0 0

f b2 Q2 (3, 2) 2 0 0 −2 0 0 2 0 (1, 1, 1, 1, 1, 1) 0 0

uc2 (3̄, 1) −2 −4 0 −2 0 0 −2 0 (1, 1, 1, 1, 1, 1) 0 0

dc2 (3̄, 1) −2 4 0 −2 0 0 2 0 (1, 1, 1, 1, 1, 1) 0 0

L2 (1, 2) −6 0 0 −2 0 0 −2 0 (1, 1, 1, 1, 1, 1) 0 0

ec2 (1, 1) 6 4 0 −2 0 0 −2 0 (1, 1, 1, 1, 1, 1) 0 0

Nc
2 (1, 1) 6 −4 0 −2 0 0 2 0 (1, 1, 1, 1, 1, 1) 0 0

f b3 Q3 (3, 2) 2 0 0 0 2 0 0 −2 (1, 1, 1, 1, 1, 1) 0 0

uc3 (3̄, 1) −2 −4 0 0 2 0 0 2 (1, 1, 1, 1, 1, 1) 0 0

dc3 (3̄, 2) −2 4 0 0 2 0 0 −2 (1, 1, 1, 1, 1, 1) 0 0

L3 (1, 2) −6 0 0 0 2 0 0 2 (1, 1, 1, 1, 1, 1) 0 0

ec3 (1, 1) 6 4 0 0 2 0 0 2 (1, 1, 1, 1, 1, 1) 0 0

Nc
3 (1, 1) 6 −4 0 0 2 0 0 −2 (1, 1, 1, 1, 1, 1) 0 0

Table 4 The hidden sectors. All charges are multipled by 4 and the combination ζ = 1 + b1 + b2 + b3 has been used

F Sector Name (C, L) QC QL Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (2)1,...,6 Q7 Q8

b b1 + b2 + α + β 
αβ
1 (1, 1) 0 0 0 0 0 2 2 0 (1, 2, 1, 2, 1, 1) 0 0

̄
αβ
1 (1, 1) 0 0 0 0 0 −2 −2 0 (1, 2, 1, 2, 1, 1) 0 0


αβ
2 (1, 1) 0 0 0 0 0 −2 2 0 (2, 1, 2, 1, 1, 1) 0 0

̄
αβ
2 (1, 1) 0 0 0 0 0 2 −2 0 (2, 1, 2, 1, 1, 1) 0 0

f S̃ + b1 + b2 + α + β ̃
αβ
3 (1, 1) 0 0 0 0 0 2 −2 0 (2, 1, 2, 1, 1, 1) 0 0

¯̃


αβ
3 (1, 1) 0 0 0 0 0 −2 2 0 (2, 1, 2, 1, 1, 1) 0 0

f S̃ + b1 + b2 + α + β + ζ 
αβ
4 (1, 1) 0 0 0 0 0 2 −2 0 (1, 1, 1, 2, 1, 2) 0 0

̄
αβ
4 (1, 1) 0 0 0 0 0 −2 2 0 (1, 1, 1, 2, 1, 2) 0 0

Table 5 SO(10) singlets without S̃-partners. All charges are multipled by 4 and the combination ζ = 1 + b1 + b2 + b3 has been used

F Sector Name (C, L) QC QL Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (2)1,...,6 Q7 Q8

b α + β N1 (1, 1) 0 0 −2 2 0 0 0 0 (1, 2, 1, 2, 1, 1) 0 0

N̄1 (1, 1) 0 0 2 −2 0 0 0 0 (1, 2, 1, 2, 1, 1) 0 0

N2 (1, 1) 0 0 2 −2 0 0 0 0 (1, 2, 1, 2, 1, 1) 0 0

N̄2 (1, 1) 0 0 −2 2 0 0 0 0 (1, 2, 1, 2, 1, 1) 0 0

b α + β + ξ N3 (1, 1) 0 0 −2 −2 0 0 0 0 (1, 1, 1, 1, 1, 2) 4 0

N̄3 (1, 1) 0 0 2 2 0 0 0 0 (1, 1, 1, 1, 1, 2) −4 0

N4 (1, 1) 0 0 −2 −2 0 0 0 0 (1, 1, 1, 1, 1, 2) 4 0

N̄4 (1, 1) 0 0 2 2 0 0 0 0 (1, 1, 1, 1, 1, 2) −4 0
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Table 6 SO(10) singlets with S̃-partners. All charges are multipled by 4 and the combination ζ = 1 + b1 + b2 + b3 has been used

F Sector Name (C, L) QC QL Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (2)1,...,6 Q7 Q8

f b1 + 2γ V1 (1, 1) 0 0 0 −2 2 −2 0 0 (1, 1, 1, 1, 1, 1) −4 −4

V2 (1, 1) 0 0 0 −2 2 −2 0 0 (1, 1, 1, 1, 1, 1) 4 4

V3 (1, 1) 0 0 0 −2 2 2 0 0 (1, 1, 1, 1, 1, 1) −4 4

V4 (1, 1) 0 0 0 −2 2 2 0 0 (1, 1, 1, 1, 1, 1) 4 −4

V5 (1, 1) 0 0 0 −2 2 −2 0 0 (1, 1, 1, 1, 2, 2) 0 0

f b2 + 2γ V6 (1, 1) 0 0 −2 0 2 0 2 0 (1, 1, 1, 1, 1, 1) −4 −4

V7 (1, 1) 0 0 −2 0 2 0 2 0 (1, 1, 1, 1, 1, 1) 4 4

V8 (1, 1) 0 0 −2 0 2 0 −2 0 (1, 1, 1, 1, 1, 1) −4 4

V9 (1, 1) 0 0 −2 0 2 0 −2 0 (1, 1, 1, 1, 1, 1) 4 −4

V10 (1, 1) 0 0 −2 0 2 0 2 0 (1, 1, 1, 1, 2, 2) 0 0

f b3 + 2γ V11 (1, 1) 0 0 −2 −2 0 0 0 −2 (1, 1, 1, 1, 1, 1) −4 −4

V12 (1, 1) 0 0 −2 −2 0 0 0 −2 (1, 1, 1, 1, 1, 1) 4 4

V13 (1, 1) 0 0 −2 −2 0 0 0 2 (1, 1, 1, 1, 1, 1) −4 4

V14 (1, 1) 0 0 −2 −2 0 0 0 2 (1, 1, 1, 1, 1, 1) 4 −4

V15 (1, 1) 0 0 −2 −2 0 0 0 −2 (1, 1, 1, 1, 2, 2) 0 0

f b1 + 2γ + ζ V16 (1, 1) 0 0 0 −2 2 2 0 0 (1, 2, 2, 1, 1, 1) 0 0

V17 (1, 1) 0 0 0 −2 2 −2 0 0 (2, 1, 1, 2, 1, 1) 0 0

f b2 + 2γ + ζ V18 (1, 1) 0 0 −2 0 2 0 −2 0 (1, 2, 2, 1, 1, 1) 0 0

V19 (1, 1) 0 0 −2 0 2 0 2 0 (2, 1, 1, 2, 1, 1) 0 0

f b3 + 2γ + ζ V20 (1, 1) 0 0 −2 −2 0 0 0 2 (1, 2, 2, 1, 1, 1) 0 0

V21 (1, 1) 0 0 −2 −2 0 0 0 −2 (2, 1, 1, 2, 1, 1) 0 0

b S̃ + b1 + 2γ V22 (1, 1) 0 0 0 2 2 −2 0 0 (1, 1, 1, 2, 1, 1) 0 −4

V23 (1, 1) 0 0 0 2 2 2 0 0 (1, 1, 1, 2, 1, 1) 0 4

V24 (1, 1) 0 0 0 2 −2 2 0 0 (1, 1, 2, 1, 1, 2) 0 0

b S̃ + b2 + 2γ V25 (1, 1) 0 0 2 0 2 0 −2 0 (1, 1, 1, 2, 1, 1) 0 4

V26 (1, 1) 0 0 2 0 2 0 2 0 (1, 1, 1, 2, 1, 1) 0 −4

V27 (1, 1) 0 0 2 0 −2 0 −2 0 (1, 1, 2, 1, 1, 2) 0 0

b S̃ + b3 + 2γ V28 (1, 1) 0 0 2 −2 0 0 0 2 (1, 1, 1, 2, 1, 1) 0 4

V29 (1, 1) 0 0 2 −2 0 0 0 −2 (1, 1, 1, 2, 1, 1) 0 −4

V30 (1, 1) 0 0 2 2 0 0 0 2 (1, 1, 2, 1, 1, 2) 0 0

b S̃ + b1 + 2γ + ζ V31 (1, 1) 0 0 0 2 2 2 0 0 (2, 1, 1, 1, 1, 1) −4 0

V32 (1, 1) 0 0 0 2 2 −2 0 0 (2, 1, 1, 1, 1, 1) 4 0

V33 (1, 1) 0 0 0 2 −2 −2 0 0 (1, 2, 1, 1, 2, 1) 0 0

b S̃ + b2 + 2γ + ζ V34 (1, 1) 0 0 2 0 2 0 2 0 (2, 1, 1, 1, 1, 1) 4 0

V35 (1, 1) 0 0 2 0 2 0 −2 0 (2, 1, 1, 1, 1, 1) −4 0

V36 (1, 1) 0 0 2 0 −2 0 2 0 (1, 2, 1, 1, 2, 1) 0 0

b S̃ + b3 + 2γ + ζ V37 (1, 1) 0 0 2 −2 0 0 0 −2 (2, 1, 1, 1, 1, 1) 4 0

V38 (1, 1) 0 0 2 −2 0 0 0 2 (2, 1, 1, 1, 1, 1) −4 0

V39 (1, 1) 0 0 2 2 0 0 0 −2 (1, 2, 1, 1, 2, 1) 0 0

123
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Table 7 Exotic states with S̃-partners (i). All charges are multipled by 4 and the combination ζ = 1 + b1 + b2 + b3 has been used

F Sector Name (C, L) QC QL Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (2)1,...,6 Q7 Q8

f b2 + β H1 (1, 2) 0 0 0 0 0 2 0 −2 (1, 1, 2, 1, 1, 1) 0 0

H̄1 (1, 2) 0 0 0 0 0 −2 0 2 (1, 1, 2, 1, 1, 1) 0 0

b S̃ + b2 + β H2 (1, 2) 0 0 0 0 0 2 0 −2 (1, 1, 1, 1, 2, 1) 0 0

H̄2 (1, 2) 0 0 0 0 0 −2 0 2 (1, 1, 1, 1, 2, 1) 0 0

b b2 + b3 H3 (1, 1) −3 2 1 1 −1 −2 0 0 (1, 1, 2, 1, 1, 1) 2 2

+β ± γ H̄3 (1, 1) 3 −2 −1 −1 1 2 0 0 (1, 1, 2, 1, 1, 1) −2 −2

f S̃ + b2 + b3 H4 (1, 1) −3 2 1 1 −1 −2 0 0 (1, 1, 1, 1, 2, 1) 2 2

+β ± γ H5 (1, 1) −3 2 1 1 −1 −2 0 0 (1, 1, 1, 1, 1, 2) −2 −2

H̄4 (1, 1) 3 −2 −1 −1 1 2 0 0 (1, 1, 1, 1, 2, 1) −2 −2

H̄5 (1, 1) 3 −2 −1 −1 1 2 0 0 (1, 1, 1, 1, 1, 2) 2 2

b b1 + b3 H6 (1, 1) −3 2 1 1 −1 0 −2 0 (1, 1, 1, 2, 1, 1) −2 −2

+α ± γ + ζ H̄6 (1, 1) 3 −2 −1 −1 1 0 2 0 (1, 1, 1, 2, 1, 1) 2 2

f S̃ + b1 + b3 H7 (3̄, 1) 1 2 1 1 −1 0 2 0 (1, 1, 1, 1, 1, 1) 2 −2

+α ± γ + ζ H̄7 (3, 1) −1 −2 −1 −1 1 0 −2 0 (1, 1, 1, 1, 1, 1) −2 2

H8 (1, 2) −3 −2 1 1 −1 0 −2 0 (1, 1, 1, 1, 1, 1) 2 −2

H̄8 (1, 2) 3 2 −1 −1 1 0 2 0 (1, 1, 1, 1, 1, 1) −2 2

H9 (1, 1) −3 2 −3 1 −1 0 2 0 (1, 1, 1, 1, 1, 1) 2 −2

H̄9 (1, 1) 3 −2 3 −1 1 0 −2 0 (1, 1, 1, 1, 1, 1) −2 2

H10 (1, 1) −3 2 1 −3 −1 0 2 0 (1, 1, 1, 1, 1, 1) 2 −2

H̄10 (1, 1) 3 −2 −1 3 1 0 −2 0 (1, 1, 1, 1, 1, 1) −2 2

H11 (1, 1) −3 2 1 1 3 0 2 0 (1, 1, 1, 1, 1, 1) 2 −2

H̄11 (1, 1) 3 −2 −1 −1 −3 0 −2 0 (1, 1, 1, 1, 1, 1) −2 2

f b3 ± γ H12 (3̄, 1) 1 −2 1 1 −1 0 0 −2 (1, 1, 1, 1, 1, 1) 2 2

H̄12 (3, 1) −1 2 −1 −1 1 0 0 2 (1, 1, 1, 1, 1, 1) −2 −2

H13 (1, 2) −3 2 1 1 −1 0 0 −2 (1, 1, 1, 1, 1, 1) 2 2

H̄13 (1, 2) 3 −2 −1 −1 1 0 0 2 (1, 1, 1, 1, 1, 1) −2 −2

H14 (1, 1) −3 −2 −3 1 −1 0 0 −2 (1, 1, 1, 1, 1, 1) 2 2

H̄14 (1, 1) 3 2 3 −1 1 0 0 2 (1, 1, 1, 1, 1, 1) −2 −2

H15 (1, 1) −3 −2 1 −3 −1 0 0 −2 (1, 1, 1, 1, 1, 1) 2 2

H̄15 (1, 1) 3 2 −1 3 1 0 0 2 (1, 1, 1, 1, 1, 1) −2 −2

H16 (1, 1) −3 −2 1 1 3 0 0 −2 (1, 1, 1, 1, 1, 1) 2 2

H̄16 (1, 1) 3 2 −1 −1 −3 0 0 2 (1, 1, 1, 1, 1, 1) −2 −2

b S̃ + b3 ± γ H17 (1, 1) −3 −2 1 1 −1 0 0 2 (1, 1, 1, 2, 1, 1) −2 2

H̄17 (1, 1) 3 2 −1 −1 1 0 0 −2 (1, 1, 1, 2, 1, 1) 2 −2

b b1 + b2 H18 (1, 1) 3 2 1 1 1 2 −2 0 (1, 1, 1, 1, 2, 1) 2 −2

α + β ± γ + ζ H19 (1, 1) 3 2 1 1 1 2 2 0 (1, 1, 1, 1, 1, 2) −2 2

H20 (1, 1) −3 −2 −1 −1 −1 2 −2 0 (1, 1, 1, 1, 2, 1) −2 2

H21 (1, 1) −3 −2 −1 −1 −1 2 2 0 (1, 1, 1, 1, 1, 2) 2 −2

f S̃ + b1 + b2 H22 (1, 1) 3 2 1 1 1 −2 2 0 (1, 1, 2, 1, 1, 1) 2 −2

+α + β ± γ + ζ H23 (1, 1) −3 −2 −1 −1 −1 −2 2 0 (1, 1, 2, 1, 1, 1) −2 2

123
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Table 8 Exotic states with S̃-partners (ii). All charges are multipled by 4 and the combination ζ = 1 + b1 + b2 + b3 has been used

F Sector Name (C, L) QC QL Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (2)1,...,6 Q7 Q8

b b1 + b3 + α + β ± γ + ζ H24 (1, 1) 3 2 1 −1 −1 2 0 2 (1, 1, 1, 1, 2, 1) 2 −2

H25 (1, 1) 3 2 1 −1 −1 2 0 −2 (1, 1, 1, 1, 1, 2) −2 2

H26 (1, 1) −3 −2 −1 1 1 2 0 2 (1, 1, 1, 1, 2, 1) −2 2

H27 (1, 1) −3 −2 −1 1 1 2 0 −2 (1, 1, 1, 1, 1, 2) 2 −2

f S̃ + b1 + b3 H28 (1, 1) 3 2 1 −1 −1 −2 0 −2 (1, 1, 2, 1, 1, 1) 2 −2

+α + β ± γ + ζ H29 (1, 1) −3 −2 −1 1 1 −2 0 −2 (1, 1, 2, 1, 1, 1) −2 2

b b2 + b3 H30 (1, 1) 3 2 −1 1 −1 0 −2 2 (1, 1, 1, 1, 2, 1) 2 −2

H31 (1, 1) 3 2 −1 1 −1 0 −2 −2 (1, 1, 1, 1, 1, 2) −2 2

H32 (1, 1) −3 −2 1 −1 1 0 −2 2 (1, 1, 1, 1, 2, 1) −2 2

H33 (1, 1) −3 −2 1 −1 1 0 −2 −2 (1, 1, 1, 1, 1, 2) 2 −2

f S̃ + b2 + b3 H34 (1, 1) 3 2 −1 1 −1 0 2 −2 (1, 1, 2, 1, 1, 1) 2 −2

+α + β ± γ + ζ H35 (1, 1) −3 −2 1 −1 1 0 2 −2 (1, 1, 2, 1, 1, 1) −2 2

Table 9 Exotic spinorials without S̃-partners (i). All charges are multipled by 4 and the combination ζ = 1 + b1 + b2 + b3 has been used

F Sector Name (C, L) QC QL Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU (2)1,...,6 Q7 Q8

f b1 + α H36 (1, 2) 0 0 0 0 0 0 −2 2 (2, 1, 1, 1, 1, 1) 0 0

H̄36 (1, 2) 0 0 0 0 0 0 2 −2 (2, 1, 1, 1, 1, 1) 0 0

b b1 + b3 H37 (1, 1) −3 2 1 1 −1 0 −2 0 (2, 1, 1, 1, 1, 1) 2 2

+α ± γ H̄37 (1, 1) 3 −2 −1 −1 1 0 2 0 (2, 1, 1, 1, 1, 1) −2 −2

b S̃ + b3 H38 (1, 1) −3 −2 1 1 −1 0 0 −2 (2, 1, 1, 1, 1, 1) 2 −2

±γ + ζ H̄38 (1, 1) 3 2 −1 −1 1 0 0 2 (2, 1, 1, 1, 1, 1) −2 2

b b2 + b3 H39 (1, 1) −3 2 1 1 −1 2 0 0 (1, 2, 1, 1, 1, 1) −2 −2

+β ± γ + ζ H̄39 (1, 1) 3 −2 −1 −1 1 −2 0 0 (1, 2, 1, 1, 1, 1) 2 2

f S̃ + b2 + b3 H40 (1, 1) 3 2 −1 1 −1 0 2 −2 (1, 2, 1, 1, 1, 1) −2 2

+α + β ± γ H41 (1, 1) −3 −2 1 −1 1 0 2 −2 (1, 2, 1, 1, 1, 1) 2 −2

f S̃ + b1 + b3 H42 (1, 1) 3 2 −1 1 −1 −2 0 −2 (1, 2, 1, 1, 1, 1) −2 2

+α + β ± γ H43 (1, 1) −3 −2 1 −1 1 −2 0 −2 (1, 2, 1, 1, 1, 1) 2 −2

f S̃ + b1 + b2 H44 (1, 1) 3 2 1 1 −1 −2 2 0 (1, 2, 1, 1, 1, 1) −2 2

+α + β ± γ H45 (1, 1) −3 −2 −1 −1 1 −2 2 0 (1, 2, 1, 1, 1, 1) 2 −2

123
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