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Abstract We find new realizations of Volkov–Akulov–
Starobinsky supergravity, i.e. Starobinsky inflationary mod-
els in supergravity coupled to a nilpotent superfield describ-
ing Volkov–Akulov goldstino. Our constructions are based
on the no-scale Kähler potential K = −3 log(T + T ) for
the inflaton field, and can describe de Sitter vacuum after
inflation where supersymmetry is broken by the goldstino
auxiliary component. In fact, we show that a more general
class of models with K = −α log(T + T ) for 3 ≤ α � 6.37
can accomodate Starobinsky-like inflation with the univer-
sal prediction ns � 1 − 2

Ne
and r � 4α

(α−2)2N2
e

, while for

6.37 � α � 7.23 viable hilltop inflation is possible (with
ns and r close to the above expressions). We derive the full
component action and the masses of sinflaton, gravitino, and
inflatino that are generally around the inflationary Hubble
scale. Finally, we show that one of our models can be dual-
ized into higher-derivative supergravity with constrained chi-
ral curvature superfield.

Introduction

Nilpotent superfields have proved to be an invaluable tool
for phenomenological supergravity: they can be used for de
Sitter uplifting without scalar fields [1–5], inflationary model
building [6–14], and describing string low-energy effective
theories in a manifestly supersymmetric way [15–22].

The usefulness of nilpotent (chiral) superfields in the con-
text of inflationary model building stems from the fact that
once the nilpotency constraint,

S2 = 0 , (1)

is imposed on the superfield S (we use boldface letters for
superfields, and the same non-bold letters for their leading
components), its leading, scalar component S is replaced by
the fermion bilinear ∼ (χ s)2 and vanishes from the scalar

a e-mail: yermek.a@chula.ac.th (corresponding author)

potential. More specifically, consider the scalar chiral super-
field that can be expanded as (using the notations and con-
ventions of Ref. [23])

S = S + √
2�χ s + �2Fs , (2)

where χ s is its chiral fermion, and Fs is its auxiliary compo-
nent. It can easily be checked that the nilpotency constraint
(1) is solved by S = (χ s)2/(2Fs). This implies that Fs

must be non-vanishing and the construction features sponta-
neously broken N = 1 supersymmetry that is non-linearly
realized on the goldstino χ s [24–28]. It was shown in Ref.
[29] that the resulting action is equivalent (via a non-linear
field redefinition) to the original Volkov-Akulov (VA) action
[30].1

So, on the one hand, nilpotent superfields add flexibil-
ity of the multi-superfield inflationary models, and on the
other, spontaneously break supersymmetry – all of this with-
out introducing extra dynamical scalars (the corresponding
scalars are assumed to be decoupled from low-energy theo-
ries [33]).

In this study we will be focusing on the Starobinsky(-like)
inflation [34–36], motivated by its remarkable agreement
with CMB measurements [37]. In Ref. [38] it was shown
by Cecotti, that (old-minimal) R + R2 supergravity is dual
to the standard supergravity coupled to two chiral multiplets
with

K = −3 log(T + T − CC) , W = γC(T − 1/2) , (3)

where T = T|�=0 and C = C|�=0 are the two chiral
scalars, and γ is some constant (throughout the paper we
will use Planck units, MP = 1). For C = 0 this leads to
the Starobinsky scalar potential for appropriately normal-

1 Recently an alternative approach (without nilpotent superfields) to
Volkov–Akulov supergravity in de Sitter space was proposed, that uses
unimodular supergravity [31,32].
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ized real part of T .2 In Ref. [6] the authors made a first step
towards bringing together Starobinsky inflation and Volkov-
Akulov supergravity, by replacing the unconstrained super-
field C in the Cecotti model with the nilpotent one S (see
also Ref. [40] for Rn-extension of Starobinsky supergrav-
ity with nilpotent goldstino). We will refer to the construc-
tion of Ref. [6] as the Antoniadis–Dudas–Ferrara–Sagnotti
(ADFS) model. In this model the nilpotency constraint (1)
ensures that the scalar S is replaced by the goldstino bilin-
ear, and the scalar sector includes only the inflaton – given
by ReT – and its superpartner (sinflaton) ImT that is heavy
during (and after) inflation. There is however one issue that
has to be addressed before proceeding to a more realistic
setup with matter fields included. At the minimum of the
potential of the ADFS model, the auxiliary component of
the goldstino vanishes, 〈Fs〉 = 0, which renders the solu-
tion S = (χ s)2/(2Fs) to the constraint (1) singular, as was
pointed out in Ref. [10].3 The goal of the present work is to
resolve this issue by introducing minimal amount of mod-
ifications to the Kähler potential and superpotential of the
original theory.

In Sect. 1 we review the ADFS model and discuss the
problem of vanishing Fs in more detail. In Sect. 2 we show
how the issue can be resolved by modifying the model in
two different ways, while keeping the no-scale structure of
the Kähler potential, K = −3 log(T + T + . . .). Section 3
is devoted to generalization of the Kähler potentials of the
aforementioned models as K = −α log(T + T + . . .) and
derivation of the scalar potential that includes a Starobinsky-
like inflationary plateau. The full action, including fermions,
is derived in Sect. 4, where we compare masses of the fields
at different α. In Sect. 5 we use slow-roll approximation to
derive the prediction for the inflationary observables ns and
r . In Sect. 6 we review the gravitational dual of the ADFS
model, and show that one of our models can also be dual-
ized into higher-derivative supergravity where the nilpotency
constraint for the chiral curvature superfield is modified com-
pared to the ADFS model. Section 7 is left for conclusion,
and some basic supergravity formulae and conventions that
we use here can be found in Appendix.

1 The original proposal – ADFS model

The ADFS model is based on the following setup

K = −3 log(T + T − SS) , (4)

W = λ + βS + γ ST , (5)

2 Although the original potential has tachyonic instability at C = 0,
it can be removed by adding quartic correction ∼ |C |4 to the Kähler
potential (3), as was shown in Ref. [39].
3 In Ref. [10] the authors also propose a different class of Volkov–
Akulov–Starobinsky supergravity models where the Kähler potential
has the simplest shift-symmetric form, K = (T + T )2/2.

where λ, β, γ are some real parameters (this superpotential
coincides with that of Eq. (3) if we set β = −γ /2 and λ = 0),
T includes inflaton and sinflaton fields, and S is the leading
component of the nilpotent superfield so that S2 = S2 = 0.
Thus, the Kähler potential (4) can be expanded as

K = −3 log(T + T ) + 3SS

T + T
. (6)

Once the action is derived we can apply the solution S =
(χ s)2/(2Fs) to the nilpotency constraint, and after using the
parametrization

T = t0
2

(
e

√
2
3 ϕ + i

√
2

3
τ

)
, (7)

where t0 > 0 (i.e. choosing upper-half-plane of the Poincaré
disk) is the VEV of T so that at the minimum ϕ = 0, the
bosonic Lagrangian reads

e−1L = 1

2
R − 1

2
(∂mϕ)2 − 1

2
e−2

√
2
3 ϕ

(∂mτ)2

−γ 2

12

(
1 − e−

√
2
3 ϕ

)2

− γ 2

18
e−2

√
2
3 ϕ

τ 2 , (8)

where we used t0 = −2β/γ (found by solving the vacuum
equations), assuming that βγ < 0 as required for the exis-
tence of a stable minimum. The masses of the inflaton ϕ and
sinflaton τ (w.r.t. the Minkowski minimum at ϕ = 0) are

mϕ = mτ = γ /3 . (9)

During inflation, ϕ � 1, the τ effective mass is unchanged
because its kinetic term and mass term are coupled to the
same exponential of ϕ and canonical rescaling of τ fully
absorbs any background value of ϕ. On the other hand the
Hubble scale during inflation is H � √

Vinf/3 � γ /6, so
that mτ � 2H .

Once the inflaton settles at the minimum ϕ = 0, we have4

〈DTW 〉 = 3γ λ

2β
, 〈DSW 〉 = 0 , (10)

which means that S = (χ s)2/(2Fs) diverges, and the nilpo-
tency constraint is no longer valid. Moreover, SUSY becomes
broken by Ft instead of Fs . Although we can set λ = 0 so
that Ft vanishes, the gravitino mass,

m3/2 = 〈eK/2|W |〉 = γ 3/2λ

2
√

2β3/2
, (11)

will vanish as well.

4 The relation between DiW ≡ Wi +KiW and Fi is given by Eq. (81)
in the Appendix.
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2 Improved models

Here we will show that adding a single, T -linear term in the
superpotential can improve upon the original ADFS model
by changing the auxiliary VEVs as

〈DTW 〉 = 0 , 〈DSW 〉 
= 0 , (12)

and introducing a tunable cosmological constant that can be
used to describe the dark energy.

Consider the case

K = −3 log(T + T − SS) , (13)

W = λ − μT + βS + γ ST , (14)

where we assume that all the parameters {λ,μ, β, γ } are real
and non-vanishing. Ignoring the sinflaton for a moment, this
leads to the scalar potential (after using the parametrization
(7))

V = γ 2

12
+ 1

3

(
βγ − 2μ2

)
t−1 + 1

3

(
β2 + 6λμ

)
t−2 , (15)

where for convenience we introduced the notation t ≡ T +
T = t0e

√
2/3ϕ . The vacuum value t0 for the above potential

can be easily found as

t0 = −2
β2 + 6λμ

βγ − 2μ2 . (16)

Now, recall that DTW must vanish at the minimum (and
DSW must not) in order for the S to be identified with the
goldstino superfield. Deriving DTW for the setup (13) and
(14) and assuming τ = 0 we have

DTW = μ

2
− 3λ

t
. (17)

Requiring DTW to vanish at t = t0 leads to t0 = 6λ/μ, so
that λ/μ must be positive. Substituting this into Eq. (16) we
arrive at the condition

βμ = −3γ λ . (18)

The cosmological constant can be calculated from Eq. (15)
by using t0 = 6λ/μ,

V0 = 1

108λ2 (9γ 2λ2 − 6λμ3 + β2μ2 + 6βγλμ) . (19)

Then, we can use Eq. (18) to eliminate e.g. β in the cosmo-
logical constant and observe that

V0 = − μ3

18λ
< 0 , (20)

i.e. V0 turns out to be negative as long as none of the param-
eters of the superpotential is zero.

By looking at Eq. (16) it is clear that if we set β = 0,
the condition t0 = 6λ/μ (i.e. 〈DTW 〉 = 0) is automatically

satisfied! Moreover, the cosmological constant becomes

V0 = γ 2

12
− μ3

18λ
, (21)

so that we can fine-tune the parameters to yield V0 ∼ 10−120.

2.1 The case β = 0

Let us now analyze in more detail the model (13) and (14)
with β = 0. After using Eq. (7) with t0 = 6λ/μ and elim-
inating γ in terms of V0, μ and λ via Eq. (21), the bosonic
Lagrangian reads5

e−1L = −1

2
(∂mϕ)2 − 1

2
e−2

√
2
3 ϕ

(∂mτ)2 − V0

− μ3

18λ

(
1 − e−

√
2
3 ϕ

)2

− μ3

27λ
e−2

√
2
3 ϕ

τ 2 , (22)

where the τ 2-term in the scalar potential was originally pro-
portional to γ 2 that we eliminated via Eq. (21) while neglect-
ing V0 due to its relative smallness. In what follows, we will
similarly eliminate γ via Eq. (21) as γ ≈ √

2μ3/(3λ).
The scalar masses can be read off as m2

ϕ = m2
τ =

2μ3/(27λ). The potential in ϕ-direction is presented in
Fig. 1a where we include the points ϕi and ϕ f represent-
ing the start and end of (observable) inflation, respectively,
assuming 55 e-foldings. Due to the coupling of τ -kinetic
term to the inflaton, we draw the potential in τ -direction sep-
arately at different reference points ϕ = 0, ϕi , and ϕ f , after
canonical rescaling of τ – see Fig. 1b.

As we already mentioned, 〈DTW 〉 = 〈Ft 〉 = 0 when
substituting t0 = 6λ/μ, while 〈DSW 〉 = 3γ λ/μ and the
auxiliary field 〈F̃ s〉 reads6

〈F̃ s〉 = −γ

√
λ

6μ
= −μ

3

= 0 . (23)

Therefore,S can be consistently identified as a nilpotent gold-
stino superfield. Since 〈F̃ s〉 is controlled by μ, its value is
independent of CMB observations, because they – specifi-
cally observations of the amplitude of scalar perturbations
[37] – fix only the ratio μ3/λ ∼ 10−8 (in Planck units).

The gravitino mass is m2
3/2 = μ3/(54λ), i.e. mϕ = 2m3/2

and the inflaton can perturbatively decay into two gravitini
at the reheating stage. We can also relate it to the inflationary
Hubble scale m3/2 � H , where H � √

Vinf/3 ∼ 10−5.
This model can be dualized into higher-derivative (R2)

supergravity with a constrained chiral curvature superfield,
as will be shown in Sect. 6.

5 This can be identified with the original ADFS Lagrangian if we
replace μ3/(18λ) → γ 2/12 and put V0 = 0.
6 The commonly used definition F̃ s – given by Eq. (82) – is related
to the �2-expansion coefficient Fs as Fs = e−K/6 F̃ s , as explained in
Appendix.
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(a) (b)

Fig. 1 The scalar potential of (22) for μ = 2, λ = 1 and V0 = 0. Subfigure a represents ϕ-dependent slice (τ = 0), while Subfigure b represents
τ -dependent slice for different background values of ϕ: solid line stands for ϕ = 0, dashed line for ϕ = ϕ f , dotted line for ϕ = ϕi

2.2 The case γ = 0 with modified Kähler potential

We find that there exists a similar realization of the Starobin-
sky model (22), albeit with some key differences, if we
slightly modify the Kähler potential as

K = −3 log

(
T + T − SS

(T + T )2

)
= −3 log(T + T )

+ 3SS

(T + T )3
, (24)

and in the superpotential set β 
= 0, γ = 0:

W = λ − μT + βS . (25)

In this case the scalar potential becomes

V = β2

3
− 2μ2

3
t−1 + 2λμt−2 , (26)

where t = t0e
√

2/3ϕ as before. This time τ does not appear in
the scalar potential. The potential for τ can be generated e.g.
along the lines of Refs. [41,42] where quartic ∼ (T − T )4

stabilizing terms were considered as modifications of the no-
scale Kähler potential.

Comparing the potential (26) with the potential (15) at
β = 0, it is clear that they only differ in their constant terms.
Thus, t0 = 6λ/μ is also a minimum for the potential (26),
and 〈DTW 〉 = 0, while 〈DSW 〉 = β 
= 0 as required.

Taking similar steps as in the previous subsection, we find
the cosmological constant

V0 = β2

3
− μ3

18λ
, (27)

and use this relation to eliminate β in terms of V0, μ and λ.
Then, the scalar potential reads

V = V0 + μ3

18λ

(
1 − e−

√
2
3 ϕ

)2

, (28)

while the kinetic terms are the same as in Eq. (22).
As for the F̃ s , its vacuum value is

〈F̃ s〉 = −2
√

6β

(
λ

μ

) 3
2 = −2λ . (29)

In contrast with the previous model, this is controlled by λ

instead of μ.

3 Generalization

Here we consider generalization of the Kähler potential as

K = −α log

(
T + T − SS

(T + T )n−1

)
= −α log(T + T )

+ αSS

(T + T )n
, (30)

while the superpotential is kept the same,

W = λ − μT + βS + γ ST . (31)

α is a positive real number, and n is an arbitrary real number.
After imposing the nilpotency constraint, the Kähler poten-
tial (30) describes SU (1, 1)/U (1) scalar manifold with the
Kähler curvature RK = −2/α.

The scalar potential of this setup at τ = 0 reads

V = γ 2

4α
tn+2−α + βγ

α
tn+1−α + β2

α
tn−α
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+α2 − 7α + 4

4α
μ2t2−α

−(α − 5)λμt1−α + (α − 3)λ2t−α . (32)

For our analysis we will also use the necessary condition

〈DTW 〉 = 1

2
(α − 2)μ − αλ

t0
= 0 . (33)

Let us start with the special value α = 2 for which the
first term in Eq. (33) vanishes identically. This forces λ = 0
and the potential takes the form

V = tn

2

(γ

2
+ βt−1

)2 − 3μ2

4
. (34)

Stable minimum exists if βγ < 0, but it is always an AdS
minimum.

When α < 2, the t2−α-term has a positive power of t while
the t−α-term has a negative power. That means that we cannot
have an inflationary plateau approaching a constant positive
value unless μ or λ is zero. But if μ (or λ) vanishes, Eq. (33)
forces λ (or μ) to vanish as well, so λ = μ = 0. This leads
to m3/2 = 0, which is phenomenologically unacceptable.

Next, consider 2 < α < 3. Notice that among the last
three terms of Eq. (32) the t−α-term is negative, and has
the largest power of t−1, which destabilizes the potential
unless n is chosen in such a way that either of the first three
terms has t−m with m ≥ α. On the other hand, the existence
of the inflationary plateau with positive height requires the
existence of a constant positive term in the above potential.
Such a constant term can come from the first, second, or third
term if n = α − 2, n = α − 1, or n = α, respectively. When
n = α − 1 or n = α, the first term has a positive power of t ,
which prevents the required flatness of the potential (because
negative powers are also present and come from the last three
terms). When n = α − 2, positive powers of t are absent
but the (negative) t−α-term is left uncompensated, and will
destabilize the potential. Thus, we conclude that α < 3 is
unsuitable for our purposes and in what follows assume that
α ≥ 3.

When α ≥ 3, the last term of Eq. (32) becomes positive or
zero. Starobinsky-like structure of the scalar potential can be
obtained by the choice (I) β = 0 and n = α−2, or (II) γ = 0
and n = α, where α = 3 reproduces the two Starobinsky
models that we described in the previous section.

The potentials for the cases I and II only differ in their
constant terms, and share the two critical points

t0(1) = 2αλ

(α − 2)μ
, t0(2) = 2α(α − 3)λ

(α2 − 7α + 4)μ
. (35)

These describe four different types of scalar potentials
depending on the parameter ranges. First, if λμ > 0 and
3 ≤ α ≤ α∗ where α∗ ≡ (7 + √

33)/2 ≈ 6.37, the t0(1) is
a single critical point that is also the minimum. Second, if
λμ < 0 and 3 < α < α∗, the t0(2) takes up the role of the

minimum. The third possibility is λμ > 0 and α > α∗. Here
the two critical points coexist: t0(1) is the minimum, while
t0(2) becomes a local maximum. For all other parameter val-
ues no critical points exist.

Substituting the two solutions into Eq. (33) we obtain (for
the cases where t0(1) and t0(2) are the minima, respectively)

〈DTW 〉|t0(1)
= 0 , 〈DTW 〉|t0(2)

= α + 1

α − 3
μ . (36)

〈DTW 〉|t0(2)
can only vanish if μ = 0, but this invalidates

the critical points (35), i.e. the potential does not admit sta-
ble (as well as metastable) minima in this case. Therefore,
excluding the second possibility where λμ < 0 and t0(2) is
the minimum, we are left with λμ > 0 and α ≥ 3.

3.1 The case I: β = 0 and n = α − 2

Here we consider β = 0 and n = α − 2 (with α ≥ 3), that is
reflected in the following setup,

K = −α log

(
T + T − SS

(T + T )α−3

)
, (37)

W = λ − μT + γ ST . (38)

After using the generalized form of the parametrization
(7),

T = t0
2

(
e

√
2
α
ϕ + i

√
2

α
τ

)
, t0 = 2αλ

(α − 2)μ
, (39)

and eliminating γ in terms of V0, λ, μ,

γ 2

4α
= V0 + 12(α − 2)α−2μα

(2α)αλα−2 , (40)

we obtain the final form of the scalar potential,

V = V0 + (α − 2)α−2μα

(2α)αλα−2

{
12 + α(α2 − 7α + 4)e

(2−α)

√
2
α
ϕ

+ 2α(α − 2)(5 − α)e
(1−α)

√
2
α
ϕ+ + (α − 2)2(α − 3)e

−α

√
2
α
ϕ

+
[

2α(α − 3)e
−α

√
2
α
ϕ + 24

α
e
−2

√
2
α
ϕ

]
τ2

}
, (41)

where we set V0 = 0 everywhere except as the cosmological
constant. When α = 3 we obtain exactly the Starobinsky
scalar potential (22), whereas for 3 < α ≤ α∗ the potential is
deformed, but it still includes a Starobinsky-like inflationary
plateau for ϕ � 1 (we will perform slow-roll analysis in the
upcoming sections).

When α > α∗ the potential develops a local maximum
at t0(2) given by Eq. (35), and thus does not belong to
Starobinsky-type models. However, viable (hilltop) inflation
is still possible as confirmed in Ref. [43] where the analyzed
models include similar scalar potential. In that work it is
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found that the spectral tilt compatible with PLANCK data
[37] can be reproduced by the model as long as α � 7.23.
This result applies here as well. The plots of the scalar poten-
tial at τ = 0 for different values of α are given in Fig. 2. When
α > 7.23, the curvature of the potential on the left-side of
the maxima is too large to accommodate the observed value
of the tilt ns , as demonstrated by the examples of Fig. 2b.

At the minimum ϕ = 0 or t = t0, the inflaton F-term
vanishes, while

〈F̃ s〉 = − γ

2α
t

α
2 −1

0 = −
√

3

α3 μ , (42)

where we used Eq. (40) with V0 = 0. The gravitino mass
reads

m2
3/2 = 4(α − 2)α−2μα

(2α)αλα−2 . (43)

3.2 The case II: γ = 0 and n = α

Upon fixing γ = 0 and n = α, the Kähler potential and
superpotential take the form

K = −α log

(
T + T − SS

(T + T )α−1

)
, (44)

W = λ − μT + βS . (45)

Here β can be eliminated via

β2

α
= V0 + 12(α − 2)α−2μα

(2α)αλα−2 , (46)

and the potential takes the form

V = V0 + (α − 2)α−2μα

(2α)αλα−2{
12 + α(α2 − 7α + 4)e(2−α)

√
2
α
ϕ

+2α(α − 2)(5 − α)e(1−α)

√
2
α
ϕ+

+(α − 2)2(α − 3)e−α

√
2
α
ϕ + 2α(α − 3)e−α

√
2
α
ϕ
τ 2

}
,

(47)

Setting α = 3 leads to the potential (28) with vanishing sin-
flaton mass. For α > 3, however, the mass term for τ is gen-
erated. The only difference between Eqs. (41) and (47) is the
presence of the second term in the square brackets of Eq. (41)
that prevents the vanishing of the sinflaton mass for α = 3
and can be traced back to the ST coupling in the superpo-
tential (38). The potential (47) is exactly the same as the one
described in Ref. [43] (see the case ω1 < 0 there). However,
in contrast with the models described here, in Ref. [43] we
used alternative Fayet–Iliopoulos D-terms [44,45] to gener-
ate constant contribution to the scalar potential, whereas here

the constant term is obtained from the S- or ST -term in the
superpotential, while the nilpotency of S plays a crucial role.

As regards the F-terms,

〈F̃ s〉 = −β

α
tα/2
0 = − 2

√
3√

α(α − 2)
λ , (48)

while 〈F̃ t 〉 once again vanishes. The gravitino mass is given
by Eq. (43).

For the potentials (41) and (47) at τ = 0 and ϕ � 1
(slow-roll), the Hubble parameter is given by

H2 � 4(α − 2)α−2μα

(2α)αλα−2 = m2
3/2 , (49)

and the observed scalar amplitude fixes the parameter ratio
μα/λα−2 at ∼ 10−8 or 10−7, depending on the exact value
of α.

4 Full component action in unitary gauge

We derive here the full component action including fermions,
for the both cases (I and II). Once the nilpotency constraint
S2 = 0 is solved as S = (χ s)2/(2Fs), the goldstino sector
will be generated where supersymmetry is non-linearly real-
ized. But local supersymmetry allows us to choose the gauge
where χ s = 0 (unitary gauge) that greatly simplifies the
action. After proper rescaling of the inflatino, χ → χ t0/

√
α

(we can drop the upper index t of χ t ), the full Lagrangian
reads

e−1L = 1

2
R − 1

2
(∂mϕ)2 − 1

2
e−2

√
2
α
ϕ
(∂mτ)2

− εklmnψkσ l Dmψn − ie−2
√

2
α
ϕ
χσmDmχ

−
[

1

2
e−2

√
2
α
ϕ

(
e

√
2
α
ϕ
∂mϕ − i∂m + τ

)
χσ nσmψn + h.c.

]

+ 1

4
e−2

√
2
α
ϕ

(
iεklmnψkσlψm + ψmσ nψm

)
χσnχ

− α − 4

8α
e−4

√
2
α
ϕ
χ2χ2 −

[
(α − 2)αμα

(2α)αλα−2

] 1
2

e−
√

2
α
ϕ

{(
1 − α

α − 2
e

√
2
α
ϕ + i

√
2α

α − 2
τ

)
ψmσmnψn

+
[
i

√
α

2

(
1 − e−

√
2
α
ϕ

)
− α

α − 2
e−

√
2
α
ϕ
τ

]
χσmψm

+ α − 1

2
e−2

√
2
α
ϕ

(
1 − α − 4

α − 2
e

√
2
α
ϕ − i

√
2α

α − 2
τ

)
χ2 + h.c.

}
− V , (50)
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(a) (b)

Fig. 2 The scalar potential (41)(47) at τ = 0 for μ = 2, λ = 1, V0 = 0 and different values of α. Subfigure a includes some Starobinsky-like
examples, including the marginal case α∗ ≈ 6.37. Subfigure b includes hilltop examples where the marker points represent local maxima

where spinor indices are suppressed, and the combined
Lorentz-/Kähler-covariant derivatives of the fermions are

Dmψn ≡ ∂mψn + ψnωm + 1

4
(KT ∂mT − KT ∂mT )ψn

= ∂mψn + ψnωm − i

√
α

8
e−

√
2
α
ϕ
∂mτψn , (51)

Dmχ ≡ ∂mχ + χωm + �T
T T ∂mTχ

−1

4
(KT ∂mT − KT ∂mT )χ (52)

= ∂mχ + χωm −
√

2

α
∂mϕχ + i

α − 4

2
√

2α
e−

√
2
α ∂mτχ .

(53)

The first line in Eq. (50) represents the kinetic terms,
while the second line represents the coupling between χ ,
ψm , and derivatives of the scalars. Four-fermion interactions
are included in the third line, and the last three lines consist of
fermion mass terms as well as the scalar potential V which is
the only difference between the models I and II: for the case
I V is given by Eq. (41), and for the case II by Eq. (47).

The ϕ-, ψm-, and χ -masses (around ϕ = 0) are the same
between models I and II,

mϕ = 2

[
(α + 1)(α − 2)α−1μα

(2α)αλα−2

] 1
2

,

m3/2 = 2

[
(α − 2)α−2μα

(2α)αλα−2

] 1
2

,

mχ = 2
α − 1

α − 2

[
(α − 2)α−2μα

(2α)αλα−2

] 1
2

, (54)

whereas the τ -mass is different,

mI
τ = 2

[
[12 + α2(α − 3)] (α − 2)α−2μα

α(2α)αλα−2

] 1
2

,

mII
τ = 2

[
α(α − 3)(α − 2)α−2μα

(2α)αλα−2

] 1
2

. (55)

To illustrate the relation between the masses at different
α, we include Fig. 3 where the mass-to-Hubble ratiosmϕ/H ,
mI,II

τ /H , m3/2/H , and mχ/H are plotted as functions of α

(after using the expression (49) for the inflationary Hubble
parameter, λ and μ dependence cancels out). In the case I
with α = 3, the masses of ϕ, τ , and χ coincide and are twice
the gravitino mass that is equal to the Hubble parameter. Once
we depart from the Starobinsky case α = 3, the masses split:
mϕ and mτ almost-linearly grow compared to H (and m3/2),
with ϕ becoming the heavier one, whereasmχ asymptotically
approaches H . In the case II the same is true except that mτ

is zero for α = 3, and with growing α it approaches the
behavior of mI

τ .

5 Slow-roll approximation

Let us consider the slow-roll regime of the Starobinsky-
like scenario that is available for 3 ≤ α ≤ α∗, α∗ =
(7+√

33)/2 ≈ 6.37. Assuming that τ is stabilized at τ = 0,
the potential for the both cases I and II is given by

V ∼ 1 + α

12
(α2 − 7α + 4)e(2−α)

√
2
α
ϕ + . . . , (56)

where the overall constant factor is irrelevant. We use the
standard definition of the slow-roll parameters

εi ≡ 1

2

(
V ′

V

)2
∣∣∣∣∣
ϕ=ϕi

, ηi ≡ V ′′

V

∣∣∣∣
ϕ=ϕi

, (57)

where ϕi is field value at the start of inflation (horizon cross-
ing). The slow-roll parameters are then related to the observ-
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Fig. 3 The mass-to-Hubble
ratios of the inflaton ϕ, sinflaton
τ , gravitino ψm , and inflatino χ .
The horizontal axis represents α

able spectral tilt and tensor-to-scalar ratio,

ns = 1 + 2ηi − 6εi , r = 16εi . (58)

In order to express these in terms of the elapsed number of
e-foldings Ne, we use

Ne =
∫ ϕi

ϕ f

dϕ
V

V ′ , (59)

where ϕ f can be neglected for the approximate results.
Using the formulae (56) to (59) we obtain

ns � 1 − 2

Ne
, r � 4α

(α − 2)2N 2
e

, (60)

which is the main result of this section.
One caveat here is that when α = α∗, the leading ϕ-term

in the potential (56) vanishes, and the next term should be
included, i.e.,

V ∼ 1 − α

6
(α − 2)(α − 5)e(1−α)

√
2
α
ϕ + . . . . (61)

In this case the tensor-to-scalar ratio is modified as

r � 4α

(α − 1)2N 2
e

. (62)

Nevertheless, Eq. (60) still provides a good approximation
for our purposes. The output of Eq. (60) can be compared with
the numerical results (see Table 1 in Ref. [43] for ω1 < 0
there), because the ϕ-dependent scalar potential with ω1 < 0
in that work is identical to what we obtained here.

6 Dual gravitational actions

Let us first review the dual gravitational action of the ADFS
model. Using the Kähler potential and superpotential of Eqs.
(4)(5), the superspace action can be explicitly written as [6]

L
∫

d2�2E
[

3

8
(D2 − 8R)(T + T − SS) + λ + βS + γST

]
+ h.c.

=
∫

d2�2E
[
−3

8
(D2 − 8R)SS + λ + βS − T(6R − γS)

]
+ h.c. ,

(63)

where we used the superspace identity

∫
d2�2E(D2 − 8R)(T + T) + h.c. = −16

∫
d2�2ERT + h.c.

(64)

Varying the action with respect toT, we obtain the relation
S = 6R/γ so that we can eliminateS and arrive at the higher-
derivative (gravitational) action,

L =
∫

d2�2E
[

6β

γ
R − 27

2γ 2 (D2 − 8R)RR + λ

]
+ h.c.

(65)

The proper normalization of the Einstein–Hilbert part (the
first term) requires setting β = −γ /2,7 while the nilpotency
condition S2 = 0 translates into R2 = 0. The nilpotency
of R can be included in the action by adding a Lagrange
multiplier chiral superfield Z so that the final Lagrangian
reads

7 Alternatively, the constant factor ∼ β/γ in front of the Einstein–
Hilbert term can be absorbed by Weyl-rescaling of the metric, but this
is equivalent to setting β = −γ /2 because either way we are left with
just two independent (effective) parameters.
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L =
∫

d2�2E
[
−3R − 27

2γ 2 (D2 − 8R)RR + λ + ZR2
]

+h.c. (66)

Next, let us consider the dualization of our first model
given by Eqs. (13)(14) with β = 0. Following similar steps
as above we obtain

L =
∫

d2�2E[
−3

8
(D2 − 8R)SS + λ − T(6R − γS + μ)

]
+h.c. (67)

Varying with respect to T leads to the equation

S = 6

γ

(
R + μ

6

)
, (68)

which means that the nilpotency S2 = 0 corresponds to the
R-constraint(
R + μ

6

)2 = 0 . (69)

Eliminating S via (68) and adding the Lagrange multiplier
Z for the constraint (69) we arrive at the dual gravitational
action,

L =
∫

d2�2E
[
− 27

2γ 2 (D2 − 8R)

∣∣∣R + μ

6

∣∣∣2

+λ + Z
(
R + μ

6

)2
]

+ h.c. (70)

In contrast with the ADFS case, here the normalization of
the Einstein–Hilbert term by constant Weyl-rescaling does
not reduce the number of independent parameters.

This model has similar features to the one proposed in
Ref. [11]: both models have “shifted” nilpotency constraints
for the curvature superfield R, and both models lead to
Starobinsky inflation with de Sitter vacuum after inflation
where supersymmetry is spontaneously broken. However, the
actions are different (the difference in the Kähler potentials
is also clear on the dual scalar-tensor side), as well as the
predicted SUSY breaking scales – the gravitino mass in [11]
is of order 108 GeV.

Unfortunately, the model given by Eqs. (24)(25) – as well
as the generalized models of Sect. 3 – cannot be dualized into
higher-derivative supergravities (at least not by the standard
procedure that we used above).

7 Conclusion

In this work we introduced alternative models of Volkov–
Akulov–Starobinsky supergravity building upon the ADFS
model [6]. In the ADFS model, after inflation the vacuum
value of the auxiliary component of the goldstino superfield

vanishes, rendering the solution to the nilpotency constraint
singular. We studied two different types of modifications to
the ADFS setup that can improve the vacuum structure of the
F-terms as

〈Ft 〉 = 0 , 〈Fs〉 
= 0 , (71)

while preserving the no-scale-type Kähler potential.
Moreover, we showed that the Kähler potential can be

generalized while keeping all the desired properties, as

K = −α log

(
T + T − SS

(T + T )n−1

)
. (72)

For the superpotential

W = λ − μT + βS + γ ST , λμ > 0 , (73)

Starobinsky-like inflation with de Sitter vacuum (after infla-
tion) is possible for 3 ≤ α ≤ α∗ (α∗ = (7 + √

33)/2) and
hilltop inflation that agrees with CMB data [37] is possible
for α∗ < α � 7.23, if we choose {β = 0, n = α − 2}
or {γ = 0, n = α}. We found that the scalar potential in
these two cases is very similar to the one described in Ref.
[43]: the potential (47) of model II exactly coincides with
the potential of [43], while the potential (41) of model I has
a different τ 2-term with larger mτ (see e.g. Fig. 3). Also, in
Ref. [46] two-field analysis was performed for the same class
of models as in [43], where isocurvature effects are shown
to be small. This implies that in model I isocurvature effects
should be even more suppressed compared to model II, due
to the larger τ -mass, and substantially larger effective τ -mass
for ϕ � 1.

We derived the full component action for the general setup
(72), (73), and showed the behavior of the mass spectrum at
different α. With the exception of α = n = 3 with γ = 0
where the sinflaton mass vanishes, all the fields generally
have large masses comparable to the inflationary Hubble
scale, while 〈Fs〉 is not fixed by CMB observations.

Slow-roll approximation can be used when 3 ≤ α ≤ α∗,
and is shown to lead to the prediction

ns � 1 − 2

Ne
, r � 4α

(α − 2)2N 2
e

. (74)

Comparing these predictions with the numerical results of
[43], it can be seen that even for α∗ < α � 7.23 (hilltop
case) Eq. (74) provides good estimates.

Finally, we derived the gravitational dual action of the
model (13)(14), and showed that the nilpotency constraint
on the scalar-tensor side, S2 = 0, is translated into the
“shifted” nilpotency constraint for the chiral curvature super-
field, (R + μ/6)2 = 0 (in comparison, in the gravitational
ADFS model the curvature superfield satisfies R2 = 0). The
rest of the models that we proposed cannot be dualized into
higher-derivative SUGRA by the standard procedure due to
the forms of the corresponding Kähler potentials.
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Appendix

We follow the notations and conventions of Ref. [23], where
the superspace action for the chiral superfield coupled to stan-
dard Poincaré supergravity reads (MP = 1 and “mostly plus”
metric signature is used)

L =
∫

d2�2E
[

3

8
(D2 − 8R)e−K (�i ,�i )/3 + W (�i )

]
+h.c. , (75)

where E is the chiral density superfield, R is the chiral
curvature superfield, Dα,Dα̇ are the superspace (fermionic)
covariant derivatives with D2 ≡ DαDα and D2 ≡ Dα̇Dα̇ ,
and K and W are function of a given set of chiral superfields
�i . The operator (D2 − 8R) is the chiral projector in curved
superspace, so that the first term in Eq. (75) is D-term.

The component expansion of E and R is given by

2E = e
[
1 + i�σmψm − �2(M + ψmσmnψn)

]
, (76)

R = −1

6

[
M + �(σmσ nψmn − iσmψmM + iψmb

m) + .

+�2
(

1

2
R + iψmσ nψmn + 2

3
MM

+1

3
bmb

m − i∇mb
m+

+ 1

2
ψmψmM − 1

2
ψmσmψnb

n

+1

8
εabcd(ψaσ bψcd + ψaσbψcd)

)]
, (77)

where e ≡ det(eam) is determinant of the frame field (a –
Lorentz index, m – Einstein index), and ψmn ≡ D̃mψn −

D̃nψm with D̃mψn ≡ ∂mψn + ψnωm (Lorentz-covariant
derivative). Spinor indices are suppressed. The vector bm
and complex scalar M represent the old-minimal set of
SUGRA auxiliary fields. These fields become dynamical
when the superspace action is extended by (gravitational)
higher-derivative terms (see e.g. [47] for more details). We
use the definition of the scalar curvature R that has the oppo-
site sign compared to Ref. [23].

The generic matter chiral superfield has the standard
expansion,

�i = �i + √
2�χ i + �2Fi . (78)

After expanding the Lagrangian (75) in terms of the com-
ponent fields, eliminating the auxiliary components, and
Weyl-rescaling to Einstein frame, we obtain the scalar poten-
tial

V = eK
(
Ki j̄ DiW D j̄W − 3|W |2

)
, (79)

where K = K (�i , �i ) is the component Kähler potential,
W = W (�i ) is the component superpotential and the fol-
lowing standard notation is used

Ki j̄ ≡ ∂2K

∂�i∂� j
,

Ki j̄ ≡ K−1
i j̄

, DiW ≡ ∂W

∂�i
+ W

∂K

∂�i
. (80)

DiW are proportional to the corresponding auxiliary F-terms
via their algebraic equations of motion,

Fi = −eK/3Ki j̄ D j̄W , F j = −eK/3Ki j̄ DiW . (81)

There is a difference between the Wess–Bagger definition
of the auxiliary field Fi , as in Eqs. (78)(81), and a more
common definition

F̃ i = −eK/2Ki j̄ D j̄W , F̃ j = −eK/2Ki j̄ DiW . (82)

The latter is motivated by the fact that the scalar potential
can be written as

V = Ki j̄ F̃
i F̃ j + . . . , (83)

whereas if we use Fi , an extra K -dependent factor will
appear,

V = eK/3Ki j̄ F
i F j + . . . . (84)

The two fields are related by Fi = e−K/6 F̃ i .
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