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Abstract We show how minimally-coupled matter fields of
arbitrary spin, when coupled to Ricci-based gravity theories,
develop non-trivial effective interactions that can be treated
perturbatively only below a characteristic high-energy scale
�Q . We then use this interactions to set bounds on the high-
energy scale �Q that controls departures of Ricci-Based
Gravity theories from General Relativity. Particularly, for
Eddington-inspired Born-Infeld gravity we obtain the strong
bound |κ| < 10−26m5kg−1s−2.

1 Introduction

The equivalence principle suggests the understanding of
gravitation as geometrodynamics, an idea which has proven
to be very powerful, lying at the heart of General Relativ-
ity (GR) and most of the alternative theories of gravity that
have been proposed in the past century. After a century of
Eddington’s expedition [3] that served as its first confirma-
tion, GR has performed outstandingly in predicting all the
gravitational phenomena experimentally observed up to date.
Despite the success of GR in explaining experimental data,
there are many (theoretical) reasons to go beyond GR, such
as the information paradox, the understanding of the nature
of space-time singularities, or the search for a quantum the-
ory of gravity [4–8]. GR was built under the assumption that
the affine connection is completely determined by the metric
(i.e. the Riemannian/metricity postulate). Such assumption
was natural at the time GR was formulated, as only Rie-
mannian (or metric) geometries were known, and implies
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that all the geometric information is encoded in the 1metric.
Shortly after the birth of GR the torsion tensor was intro-
duced in differential geometry. Until that moment, it was
thought that the only possible affine connection was the Levi-
Civita connection of a metric, thus being the one employed
in the construction of GR. The existence of the torsion tensor
pointed out that the connection and the metric are actually
two independent objects, and it gave birth to the study of non-
Riemannian geometries2 [9]. After non-Riemannian geome-
tries were developed, it became clear that the assumption that
the connection must be the Levi–Civita connection of the
metric is an unnecessary postulate that must be experimen-
tally tested [10]. Up to date, the validity of the Riemannian
postulate is experimentally well established at low-energy
scales (large volumes), although it remains untested at high
energy scales (small volumes) [11–18]. Some approaches to
quantum gravity suggest that geometric structures other than
the metric could be needed to account for all space-time prop-
erties at energy scales higher than the ones currently tested
in gravitational experiments [19–22].

In order to be able to explore the physical consequences
of non-Riemannian geometrical structures, one must first
understand what are the differences between Riemannian and
non-Riemannian manifolds. From a mathematical point of
view, such differences are encoded in two geometrical ten-
sors that measure departures from Riemannianity: the tor-
sion tensor Sλ[μν] ≡ 2�λ[μν], and the non-metricity tensor
Qλμν ≡ −∇λgμν , which by definition vanish in Rieman-
nian space-times. Once these differences are characterized

1 It would be fair to say that, though the missing mass problem and
the expansion of the universe can be perfectly explained within GR,
extra ingredients which have not been found yet are needed to account
for this phenomena, and other solutions that imply modifications of the
gravitational sector have also been taken into account.
2 Non-Riemannian geometries are characterized precisely by the inde-
pendence between the affine connection of a non-Riemannian manifold
and its metric structure.
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within these two tensor fields, one is ready to study the role
that they might play in gravitational physics. Given a gravi-
tational action, one may or may not assume the Riemannian
postulate before deriving the gravitational dynamics. This
choice gives rise to two different frameworks under which
one can study any theory of gravitation: if one assumes the
postulate, it is said that one employs the metric formalism,
whereas if not, one employs the metric-affine formalism.
By using the metric framework any gravitational action will
give rise only to Riemannian space-times and therefore, in
order to explore the physics associated to non-Riemannian
terms, one must employ the metric-affine formalism. In prac-
tice, while in the metric formalism one derives the dynam-
ics of the theory from the action by first applying the met-
ric postulate and then varying the action with respect to
the metric, in the metric-affine formalism one treats both
metric and connection as fundamental fields and obtains
their dynamics by varying the action with respect to both of
them.

A wide variety of modifications to GR can be charac-
terized by higher-order curvature terms in the action. This
alternative theories have been studied since the middle of
the last century, with the aim of solving some of the theo-
retical problems listed above, and more recently for giving
an explanation to the dark phenomena as well, without a
clear success in their resolution (see [23–28] and references
within). From a physical perspective, higher-order curvature
terms are well motivated for several reasons. For instance,
in order to renormalize matter fields in curved space-time,
RαβμνRαβμν , RμνRμν and R2 terms must be present in the
effective action [29–31]. It has also been proven that grav-
ity theories with quadratic curvature terms are renormaliz-
able and asymptotically free in the metric framework [32–
34], although they suffer from ghost-like degrees of free-
dom which break unitarity [35,36]. The origin of these ghost
degrees of freedom can be traced back to the fact that for
higher-order curvature theories of gravity, the metric formal-
ism gives rise to fourth-order equations of motion for the
metric [37,38].3 In fact, one of the original motivations to
study gravitational theories within the metric-affine frame-
work is that, even for higher-order curvature Lagrangians, the
field equations for the metric are always second order, which
could in principle alleviate the ghost problem, although it
has been recently proved that this is not aways the case [39].
In the past fifteen years, the metric-affine framework has
gained more attention due to some interesting results con-
cerning the avoidance of space-time singularities in black-
hole scenarios or in Big-Bang cosmologies even at a classi-
cal level and coupled to standard matter sources [41–53].
Given the fact that some approaches to quantum gravity
present similar bouncing solutions, it has been suggested

3 With the well known exception of Lovelock theories [66].

that metric-affine gravities could be understood as a low-
energy limit of a possible quantum theory of gravity [19–
22,54].

First works in gravitation which took into account non-
Riemannian geometries dealt with the possibility of includ-
ing the torsion tensor in the description of gravitation, and
it was seen that fermions naturally generate torsion when
coupled to GR [55]. Afterwards, it was discovered that one
can obtain the same results by constructing the gauge theory
of the Poincaré group4 [56,57]. Some authors tried then to
understand what could be the observable consequences of
torsion and used them to place experimental constraints to
the possible existence of a non-vanishing torsion tensor in
different contexts [58–64]. Despite the effort put in under-
standing the observable effects of torsion, existence (or lack)
of observables related to non-metricity is not yet well under-
stood. The first works that included non-metricity, only took
into account a special case of it, namely the Weyl vector
(Qαμν = 2Aαgμν) [65]. Later on, non-metricity was stud-
ied as a gauge potential arising in the gauge theory of the
group of affine transformations [56,57]. More recently, mod-
ifications of the GR Lagrangian have been studied using
the metric-affine formalism, where non-metricity is not con-
strained to vanish. In this regard, although the metric-affine
version of GR has field equations identical to those of the
metric version5 [66–68] and non-metricity vanishes in both
frameworks, higher-order curvature theories generally have
non-trivial non-metricity tensors3, and it is still not clear what
its physical implications might be. It was recently pointed out
that in a broad class of theories of gravity named Ricci-based
gravity theories (RBG), non-metricity corrections perturba-
tively induce effective interactions in spin 1/2 fields, which
were used to experimentally constrain the allowed param-
eters of the Lagrangians of the RBG family [2]. This class
of gravitational models is defined by a Lagrangian that is
an arbitrary analytic function of the metric and the Ricci
tensor which features diffheomorphism and projective sym-
metries; and it encompasses a wide variety of models that are
currently under active research; such as Eddington-inspired-
Born-Infeld gravity models (see [69] for a review and [52,70–
81] for recent results), Palatini f (R) and f (R, R(μν)R(μν))

theories (see [82] for a review and [47–51,83–92] for recent
results), Weyl gravity (see [93–97] for recent results) or oth-
ers. Generic properties of the full class of RBG theories
have also been recently studied in [69,98–103], finding the
remarkable result that they can generically be mapped into
GR with a modified matter sector. Indeed, it has been shown
that the modifications that introduce RBGs with respect to
GR do not change the number of degrees of freedom of the

4 Known as Einstein–Cartan–Sciamma–Kibble or ECKS theory.
5 If one considers coupling spinors to GR this is not strictly true, since
there arise torsion corrections sourced by spin-density.
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theory, but rather they modify the way in which the mat-
ter sector interacts. In this sense, note that introducing other
irreducible pieces of the Riemann, such as e.g. the Weyl ten-
sor or the antisymmetric Ricci tensor will generally excite
new gravitational degrees of freedom. Thus we see that the
modifications introduced by the (symmetrized) Ricci tensor
are of different nature than those introduced by other covari-
ant objects associated to the affine connection, and must be
studied in detail separately. Contact interactions induced by
gravity in Palatini f (R) have already been studied by Flana-
gan [104] within the scalar-tensor representation of 1/R,
though these results were questioned by Vollick6 [107,108].
Nonetheless, due to the fact that non-metricity in f (R) is
of the Weyl kind and that f (R) theories are projectively
invariant, these contact interactions cannot be interpreted
as induced by non-metricity in the context of 1/R where
non-metricity can be gauged away by means of a projec-
tive transformation [82,83,99]. This is not the case for RBG
theories more general than f (R) models, which generally
feature non-metricity which cannot be gauged-away by a
projective transformation. Experimental constraints related
to the non-metricity tensor have also been recently consid-
ered in the context of Lorentz symmetry breaking. However it
was assumed that the non-metricity tensor has constant non-
vanishing vacuum expectation value which breaks Lorentz
invariance. This assumption allowed to set bounds on the
existence of a background non-metricity tensor [109]. Given
that the non-metricity of RBG models exactly vanishes in
vacuum, the conclusions from such work do not apply in this
context. However, notice that for any gravity theory whose
dynamics shows a Lorentz violating non-metricity by means
of a vacuum expectation value or otherwise, then the conclu-
sions of [109] would apply to such theory.7

The purpose of this paper is to show that the modifications
of the space-time metric induced by non-metricity-related
terms in Ricci-based theories of gravity can be understood,
below the non-metricity energy scale �Q , as effective oper-
ators for fields of every spin which give rise to new contact
interactions, as well as using these operators to set observa-
tional bounds on the RBG family. The conclusions presented
here generalize the results obtained in [2] for spin 1/2 fields.
The structure of the paper is as follows. In Sect. 2 we will

6 The main argument by Vollick is that field re-definitions may not
always be allowed in curved space-times, however, the proof of the
equivalence theorem for the S-matrix [105,106] that ensures that
observables are invariant under field redefinitions does not seem to rely
on Minkowski space-time, and no argument was provided in the discu-
sion on why this could be a crucial point. In any case, the equivalence
theorem should hold in particle physics experiments, where curvature
effects can be neglected to a high degree of accuracy.
7 For instance, a first approach to the metric-affine formulation of bum-
blebee gravity, which could potentially feature a non-vanishing vev for
the non-metricity tensor, was considered in [110].

introduce RBG theories and then show how non-metricity
appears in this context. In Sect. 3 we will show how in a
(1/�Q)4n expansion of the space-time metric the n > 0
terms, which are directly related to the non-metricity tensor,
consist of effective operators of dimension 4(n + 1). Since
they appear through the metric, these operators couple the
matter stress-energy tensor to (at least) the kinetic term of
all matter fields. As particular examples, we will explicitly
derive the effective operators that generate self-interactions
for scalar and vector fields, and interactions between two
fermions and two vectors. In Sect. 4, we will couple the
Standard Model (SM) to a generic RBG, and we will use the
corresponding effective Lagrangians to compute the lowest-
order contributions of these corrections to the scattering pro-
cesses e−γ → e−γ and γ γ → γ γ . These results will allow
us to set experimental constraints to the RBG parameters,
which directly translate into lower bounds to the scale �Q

once a specific RBG theory is chosen. We will then use our
bounds for the RBG family to constrain a particular RBG
model which has recently attracted much interest, namely
Eddington-Inspired Born-Infeld gravity (EiBI).

2 Ricci-based gravities and the non-metricity tensor

Let us begin with a short discussion of the field equations of
RBG theories and the particular form that the non-metricity
tensor adopts within this class of gravity models. The action
of (projectively-invariant) RBGs is given by

S = 1

2κ2

∫
d4x

√−gFRBG
[
gμν, R(μν),�RBG

]

+Sm
[
gμν,
, �α

μν

]
, (1)

where FRBG is any analytic scalar function of gμν and R(μν),
κ = M−1

P is the Einstein constant (with MP the Planck
mass), and �RBG is a (high-)energy scale which characterizes
deviations from GR. It is useful to define the non-metricity
scale �Q = √

PP�RBG and it is the scale at which the
non-metricity tensor (and thus deviations from GR) become
non-perturbative in RBG models. Here R(μν) is defined as a
function of the connection �α

μν , which is a priori indepen-
dent of the metric in the metric-affine (or Palatini) approach.
The reason why we only consider the symmetric part of the
Ricci tensor in the action (which amount to consider only
the projectively-invariant sub-class of the Ricci-based fam-
ily) is because, as shown recently in [39,40], the inclusion of
its antisymmetric part generally unleashes the propagation
of ghostly degrees of freedom related to the projective mode
of the connection, and therefore the non-projectively invari-
ant theories within the RBG family are not healthy from a
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physical point of view.8 This is also the case for scalar-tensor
metric-affine theories [113]. Let us also point out that typi-
cally RBGs are constructed in agreement with the principles
of Metric Theories of Gravity (see [11,114]), and therefore
any gravitational field other than the metric typically does
not couple to the matter fields, which ensures that the theo-
ries satisfy Einstein’s Equivalence Principle. Here we depart
from the principles of Metric Theories of Gravity by allowing
for a coupling between matter fields and connection, which
would break the EEP. However, as we will see later, this cou-
pling is not relevant for the physical scenarios that we are
interested in.

The field equations of a general RBG with minimally cou-
pled matter fields are obtained by varying the above action
(1) with respect to metric and connection. In [69], it is proven
that by performing appropriated field redefinitions, and inte-
grating out the connection field equations, (projectively-
invariant) RBG theories admit an Einstein frame representa-
tion, where the field equations are

Gμ
ν(q) = κ2

|�|1/2

[
Tμ

ν − δμ
ν

(
FRBG

2κ2 + T

2

)]
, (2)

∇α

[√−qqμν
] − δμ

α∇ρ

[√−qqνρ
] = κ2�α

μν

+ √−q
[
Sμ

λαq
να + Sα

αλq
νμ − δμ

λS
α

αβq
νβ

]
. (3)

Here Tμ
ν ≡ gμαTαν , T = Tμ

μ, and Gμ
ν(q) ≡

qμαGαν(q); where qμν is an auxiliary metric defined by
the relation

√−|q|qμν ≡ √−g∂FRBG/∂Rμν , and |�| ≡
|q|/|g|. Also 2�α

μν ≡ δSm/δ�α
μν is the hypermomen-

tum current which accounts for the coupling between the
matter fields and the affine connection see e.g. [115]. Once
one replaces qμν by gμν , the second equation is identi-
cal to the one satisfied by the connection in metric-affine
GR when coupled to matter with arbitrary hypermomen-
tum. Thus the connection must be the Levi–Civita connec-
tion of qμν (up to a projective mode) [66,99] plus cor-
rections that involve the hypermomentum current (see e.g.
[40,116,117]). For minimally coupled bosonic fields [118],
the hypermomentum vanishes, and therefore the solution to
(3) has vanishing torsion, but carries non-metricity since
∇μgαβ is non-vanishing. For minimally coupled fermionic
fields the non-metricity will also be non-vanishing, but also
the non-vanishing fermionic hypermomentu will source a
totally antisymmetric torsion term of the form Sαμν =

8 Let us comment that it was shown in [111], and later re-analised
in [112], that the torsion-free version of the model R + αR[μν]R[μν]
can be written as GR with an extra dynamical Proca field. This result
was generalized in [39,40], where it was seen that even in the case of an
RBG with broken projective symmetry, in which the antisymmetric part
of the Ricci tensor is included in the action, the torsion-free constraint
turns the ghosts associated to the projective mode into of a healthy Proca
field.

−iκ2|�|−1/2εαμνσ

[

̄γ σ γ5


]
. As we will explain later, the

effects of this torsion term induced by the fermionic hyper-
momentum will be of sub-leading order in the physical sce-
nario considered in this work, and thherefore we will neglect
this term in what follows.

From the definition of qμν and the RBG field equations, it
can be shown that it is always possible to find an on-shell rela-
tion between the space-time metric and the auxiliary metric
of the form gμν = qμα(�−1)αν [69]. This new matrix relat-
ing the two metrics is called the deformation matrix, and it
is completely specified once a specific RBG Lagrangian is
chosen. It is crucial to note that the deformation matrix is an
on-shell function of the stress-energy tensor which always
admits a 1/�Q expansion of the form

(�−1)αν = δα
ν + 1

�4
Q

(
αT δα

ν + βT α
ν

) + O(�−8
Q ), (4)

where the first term in the expansion must be δα
ν if we want to

recover GR as a low-energy limit of the corresponding RBG
model. In fact, from (2) it is clear that all RBG have exactly
the same dynamics as GR in vacuum at a classical level,
given that their field equations become identical when T μ

ν =
0. In the above expansion, the different RBG models are
characterized by the value of the dimensionless coefficients
α and β, which are completely specified once a particular
RBG Lagrangian is chosen. As required for consistency, it
can be seen that α, β and all higher-order coefficients in (4)
exactly vanish if the GR Lagrangian FRBG = gμνRμν is
chosen.

Using the definition of non-metricity and (4), we can see
that within RBG models the non-metricity tensor takes the
form Qλμν = −∇λ

(
qμα�−1α

ν

)
. Therefore, we can use (3)

and (4) and write the metric and non-metricity tensors as

gμν = qμν + 1

�4
Q

(
αTqμν + βTμν

)
+ O(�−8

Q ), (5)

Qλμν = 1

�4
Q

(
α(∇λT )qμν + β∇λTμν

)
+ O(�−8

Q ) , (6)

up to order �−8
Q corrections. Let us point out that, as a conse-

quence of the equations of motion for the connection (3) and
the expansion of the deformation matrix (4), the 1/�4n

Q (with
n > 0) corrections to the metric are directly related to the
non-metricity tensor. The existence of these terms implies a
non-metricity of the form (6), and vice versa, the existence
of a non-metricity like (6) implies the 1/�4n

Q corrections to
the metric in (5). In light of this, we can thus understand the
perturbative effects of non-metricity within RBG theories by
taking 1/�Q as a small coupling. As a remark, notice that
despite the fact that the α-dependent term in (6) comes from
a vectorial non-metricity that can be gauged away from the
connection by performing a projective transformation, the
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term with β is a genuine contribution of non-metricity which
cannot be eliminated from the connection by means of any
symmetry. However, let us point out that unless conformal
re-scalings of the metric are a symmetry of the specific RBG
theory, the effects associated to α can still arise because of
its presence in (5). Thus, for the α term to be unphysical, the
theory must have projective as well as conformal symmetry.

It is now pertinent to discuss the role of the auxiliary metric
qμν . Notice that we can write the gravity Lagrangian FRBG

as an on-shell function of the matter fields and qμν , which
allows us to make an analogy between (2) and the Einstein
equations of GR. Indeed, the GR field equations for the space-
time metric gμν are Gμ

ν(g) = κ2Tμ
ν are identical to the

field equations for the auxiliary metric qμν in RBG theories
(see (2)) but coupled to a non-linearly modified matter sec-
tor. As shown in [1,69,100,101], the difference between GR
and a generic RBG theory is that the right-hand side of (2)
can be seen as a modified stress-energy tensor if one writes
� and FRBG as functions of the matter fields (which can
be done on-shell). Given this parallelism between the field
equations of gμν in GR and those of qμν in RBG theories,
the role of the auxiliary metric qμν in RBG is exactly analog
to that of the space-time metric gμν within GR. More explic-
itly, qμν is the gravitational field that can be associated to
the usual long-range gravitational interactions (exchange of
gravitons [98]). Once understood the physical meaning of the
auxiliary metric, it becomes apparent that we can write it as
qμν ≈ ημν + δqμν , where δqμν encodes the corresponding
Newtonian and post-Newtonian corrections to Minkowski
space-time in a given RBG model [119,120]. Notice that the
effects associated to δqμν can always be eliminated locally by
a suitable choice of coordinates. On the contrary, the effects
associated to the local distributions of energy and momentum
induced by the deformation matrix �μ

ν cannot be eliminated
in this way.

In light of the above discussion it is clear that within RBG
theories the space-time metric is associated to two different
kinds of phenomena, namely, (1) the propagation of gravi-
tons, which is responsible for the standard Newtonian and
post-Newtonian effects associated to the space-time curva-
ture generated by the integration over the matter sources, and
(2) new effects associated to the local distribution of matter
stress–energy, which are intimately related to the existence
of a non-metricity tensor of the form (6). Let us emphasize
with some extra care the two roles that the space–time met-
ric plays in Ricci-based theories of gravity. Point (1) refers
to the standard effects of gravity, while point (2) is some-
thing new and characteristic of metric-affine theories such
as RBGs. Gravitation is usually understood as an attrac-
tive long–range interaction mediated by a massless spin 2
field (the graviton) described by perturbations to the space–
time metric gμν around a given background. These effects
are sourced by total amounts of mass/energy and become

stronger the higher the total mass/energy of the sources. In
the classical limit, they correspond to the usual Newtonian
and post-Newtonian corrections described by GR [119,120].
In RBG theories this long-range interaction associated to a
spin 2 field, now described by perturbations of the auxil-
iary metric qμν , is only a part of the space-time metric gμν

as is apparent from (5). The rest of the space–time metric
is described by terms sensitive to the local distribution of
energy-density, which are point-wise functions of the Tμ

ν .
Moreover, from the structure of the field equations in RBGs,
the existence of these corrections is necessarily related to a
non-vanishing non-metricity tensor of the form (6), which
suggests naming them as non-metricity-induced corrections.
These corrections are a novel feature that can distinguish
RBG theories from other alternatives to GR, and understand-
ing whether they also arise in more general theories is cur-
rently ongoing work.

As pointed out in [2], the non-metricity-induced correc-
tions to the metric open a new window to look for new grav-
itational effects in the high-energy-density regime, which is
not necessarily the usual strong (gravitational) field regime
where the post-Newtonian corrections become dominant (see
[84,102] for astrophysical examples). Indeed, in order to
look for non-metricity-induced corrections this picture sug-
gests to look for scenarios with weak gravitational fields,
where space–time curvature effects (i.e. Newtonian and post-
Newtonian terms) are negligible, but high-energy-density
processes occur. These conditions are actually realized in
particle accelerators on Earth’s surface, since in those exper-
iments the Newtonian and post-Newtonian terms due to the
gravitational field of the Earth or of the interacting particles
can be neglected, thus having qμν ≈ ημν . Therefore, within
an arbitrary RBG theory, the space-time around Earth’s sur-
face will be described by a Minkowskian background with
small departures from GR described by the 1/�4n

Q correc-
tions in (5) which may become relevant for some high-energy
processes.

3 Effective interactions in RBG theories

We have already explained the equations that govern the
dynamics of RBG theories, showing how the non-metricity
tensor induces corrections in the metric gμν which are
related to local (instead of global) energy-momentum-
density. Therefore, we are now in the position of understand-
ing the phenomenology related to this geometrical object
(the non-metricity tensor) within RBG theories. In [2] it was
found that these corrections can be understood as perturba-
tive effective interactions below the scale �Q for spin 1/2
fields. Here we will generalize this result, showing how these
non-metricity-induced effective interactions are not specific
of spin 1/2 fields, but a rather general consequence associ-

123



340 Page 6 of 14 Eur. Phys. J. C (2020) 80 :340

ated with the non-metricity tensor within RBG theories. In
the following section we will show how effective interactions
arise for scalar, fermion and vector fields by deriving the cor-
responding effective Lagrangians. After these Lagrangians
are derived, it will be clear that they induce effective inter-
actions between any two pairs particle-antiparticle appear-
ing in an arbitrary matter sector. This interactions are such
that they respect all the symmetries of the original matter
action. To give some examples, we will derive the operators
contributing to self interactions for spin 0 and spin 1 fields,
and the operator contributing to fermion-vector scattering.
As we will use these operators to constrain the scale �Q that
characterizes RBG models, we are interested on scattering
experiments on Earth’s surface. As explaiend in Sect. 2, in
this scenario the space-time metric of an RBG theory can be
written as

gμν = ημν + 1

�4
Q

(
αTqμν + βTμν

) + O(�−8
Q ), (7)

which is obtained from (5) after neglecting Newtonian and
Post-Newtonian corrections to qμν . Up to orderO(�−8

Q ) cor-
rections, its determinant is thus given by

√−g = 1 + 4α + β

2�4
Q

T + O(�−8
Q ). (8)

Notice that, as the connection is the Levi–Civita connection
of qμν , and we have qμν ≈ ημν , the connection symbols
will vanish up to Newtonian and post-Newtonian corrections,
which will be neglected in particle physics experiments on
Earth’s surface.9

The ingredients that we need in order to construct the
effective Lagrangian are equation (7), an expression for the
connection,10 and a matter action. We will do this for the
actions that describe spin 0, 1/2 and 1 fields. Let us first start
with the covariant Lagrangian for a (complex) minimally
coupled scalar field in an arbitrary non-Riemannian space-
time, with an arbitrary potential, and which can in principle
interact with gauge bosons through its covariant derivative

Ls=0 = √−g
[
gαβ∇̃α�∗∇̃β� + V0

]
. (9)

Here ∇̃ takes into account the standard space-time covariant
derivative together with the possible gauge interactions and
Vs corresponds to a generic potential term for a field with spin
s, with s = 0 in the scalar case. By making use of (5) and (8)
we can expand the above Lagrangian around a Minkowski

9 To be more exact, if we consider fermions, they will contribute as
a source of torsion to the connection, and there would arise torsion-
induced interactions as explained in [55,56] However, it has been
recently argued that such interactions are beyond current experimen-
tal reach [64], and therefore we will neglect torsion in our discussion.
10 Notice that it vanishes up to torsion corrections generated by the
fermions.

background plus perturbations suppresed by powers of �−4
Q .

After performing such expansion the scalar Lagrangian (9)
reads

Ls=0 = ηαβDα�∗Dβ� + V (0)
0 + LQ

s=0, (10)

where, given that Vs can depend on the metric in the most
general case, we have definedVs = ∑∞

n=0 �−4n
Q V (n)

s . Notice
that the first two terms in (10) are the usual Lagrangian for the
same complex scalar field in Minkowski space and with the
same gauge interactions (appearing inside Dμ now) and the

same potential11 andLQ
s=0 stands for a non-metricity induced

contact interaction term between the scalar field and the mat-
ter stress-energy tensor which to lowest-order in 1/�Q takes
the form

LQ
s=0 = 1

2�4
Q

[
(2α + β)Tημν − 2βTμν

]
Dμ�∗Dν�

+ 1

�4
Q

[
4α + β

2
V (0)

0 T + V (1)
0

]
+ O(�−8

Q ).

(11)

Given that the interacting terms are a product of the mat-
ter stress–energy tensor and some piece of the matter
Lagrangian, they respect all the symmetries of the original
matter action. At the same time they describe interactions
between the scalar field and all the matter fields in the model
present in the stress–energy tensor. Notice that even in the
free field case where there are no gauge interactions and or
potential term in the original action, there arise new interac-
tions for �. Then, as shown already in [1], any (minimally
coupled) free spin 0 field in an RBG theory can be identified
with a scalar field with the same quantum numbers that inter-
acts with all the fields in the matter Lagrangian but evolves
according to GR.

In order to discuss spin 1/2 fields, let us write down the
Lagrangian for a minimally coupled spin 1/2, (possibly)
interacting with gauge fields and with an arbitrary potential
in a general non-Riemannian space–time

Ls=1/2 = √−g

[
1

2
ea

μ
(
ψ̄γ a(∇̃μψ) − (∇̃μψ̄)γ aψ

)
+ V1/2

]
.

(12)

Here ∇̃μψ ≡ (
∂μ − �μ − Bμ

)
ψ , where �μ ≡ ωμ

abσab is
the space–time spinor connection and Bμ represents arbi-
trary gauge interactions. As usual ωμ

ab ≡ 1
2 (∂μebα +

ebβ�μα
β)ηacecα , σab ≡ 1/4

[
γb, γa

]
, and eaμ are the

tetrads, here defined by gμν = eaμebνηab. Using (7) and
up to lowest-order in 1/�Q the tetrads are given by

ea
μ = δa

μ − 1

2�4
Q

(
αT δa

μ + βTa
μ
) + O(�−8

Q ). (13)

11 Notice that Vs |gμν=ημν ≡ V 0
s .
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Having neglected torsion, this allows us to re-write the spinor
lagrangian (12) as

Ls=1/2 = 1

2

(
ψ̄γ μ(Dμψ) − (Dμψ̄)γ μψ

)

+V (0)
1/2 + LQ

s=1/2, (14)

where Dμψ = (
∂μ − Bμ

)
ψ accounts for the gauge interac-

tions. Notice that, again, we have the Lagrangian for the same
spin 1/2 field in Minkowski space (with the same gauge inter-
actions and potential) and a non-metricity-induced interac-
tion Lagrangian LQ

s=1/2. As in the scalar field case, this inter-
action term also describes a contact interaction term between
the spin 1/2 field and the matter stress–energy tensor which
respects all the original symmetries of the matter sector. To
lowest-order in the 1/�Q expansion, this interaction term is
given by

LQ
s=1/2 = 1

4�4
Q

[
(3α + β) Tημν − βTμν

]
[
ψ̄γμ(Dνψ) − (Dνψ̄)γμψ

]

+ 1

�4
Q

[
4α+β

2
T V (0)

1/2+V (1)
1/2

]
+O(�−8

Q ). (15)

This again describes an interaction between the ψ field and
all matter fields through the stress–energy tensor. Notice that,
as in the scalar field case, even in absence of potential and
gauge interactions in the original action, the field ψ becomes
an interacting field. As a remark, let us point out that unlike
in the scalar case, the equivalence between RBG with a free
spin 1/2 field and GR with an interacting spin 1/2 field has
not yet been found at a full non-perturbative level. This is due
to the fact that the spin 1/2 fields couple to the affine con-
nection. Nonetheless both the discussion on non-minimally
coupled matter fields in [99], as well as the work devel-
oped in [2], suggest that some analogy can also be found
in the fermionic case. However, as it was explained in Sect. 2
one would have to take into account the torsion sourced by
the fermions through their hypermomentum current, which
will introduce corrections through the covariant derivatives
in (12). The torsion tensor sourced by the fermions will be
of the form Sαμν = −iκ2|�|−1/2εαμνσ

[

̄γ σ γ5


]
. Thus,

expanding |�| = 1 + O(�−4
Q ) this introduces a well known

(see e.g. [55] 4-fermion interaction which is suppressed by
the Planck scale and alsoO(�−8

Q ) corrections to the effective
interaction lagrangian (15). Since we are considering terms
only up toO(�−4

Q ), these corrections can be neglected in this
work if the scale �Q is below the Planck mass. In the case
that �Q (and thus �RBG) is of the order of the Planck mass,
one would need to consider the extra 4-fermion interaction
induced by torsion through the fermionic hypermomentum.
However, given that we will use data on Light-by-light and
Compton scattering to constrain �Q , and that this torsion-
induced 4-fermion interaction term does not contribute to

these processes at tree-level, these corrections are of sub-
leading order even in the case �Q ∼ MP.

The last case that we will develop is the spin 1 field with
an arbitrary potential. The corresponding Lagrangian is given
by

Ls=1 = √−g

[
1

4
gμνgαβF†

μαFνβ + V1

]
, (16)

where Fμν = (dA)μν . From (5) and (8), we can once more
expand the spin 1 Lagrangian (16) around a Minkowski back-
ground, obtaining

Ls=1 =
[

1

4
ημνηαβF†

μαFνβ + V (0)
1

]
+ LQ

s=1. (17)

As in the two previous cases, the result of the expansion is
the usual Lagrangian for the same vector field in Minkowski
space-time with the same potential, and an interaction term
LQ
s=1 that describes an interaction between the vector field

and the stress-energy tensor. This term can be written to
lowest-order in inverse powers of �Q as

LQ
s=1 = 1

4�4
Q

[
(2α + β)Tημνηαβ − 2βημνT αβ

]
F†

μαFνβ

+ 1

�4
Q

[
4α + β

2
T V (0)

1 + V (1)
1

]
+ O(�−8

Q ).

(18)

Once again we find that even in the free vector field case
new contact interactions between the vector field and all the
matter fields in the action arise. These interactions respect all
the symmetries of the original matter action by construction.
The correspondence between RBG with a free spin 1 field
and GR with an interacting spin 1 field has been partially
established in [101], where it is shown that, in the electro-
static case (no magnetic field), Maxwell’s theory coupled
to an RBG is equivalent to some non-linear electrodynam-
ics coupled to GR. Although the discussion presented here
is at a perturbative level, a recent work shows that a non-
perturbative correspondence can be established even in full
generality [79].

We want to emphasize that the kind of analysis that we
have explicitly carried out for spin 0, 1/2 and 1 fields can
be generalized in a straightforward way to arbitrary spin
fields in the following sense: given that the metric tensor
couples to fields of every spin,12 the non-metricity-induced
corrections to the space-time metric (5) will induce effec-
tive interactions between any kind of matter field and the
matter stress-energy tensor, regardless of their spin or other

12 This implies that matter fields of any spin enter the matter stress-
energy tensor.
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quantum numbers. As shown above, the form of the inter-
actions can be obtained by using the 1/�Q expansion of
(5) in the corresponding Lagrangian. Then, if one neglects
Newtonian and post-Newtonian corrections, it is clear that
one would be able to write the covariant Lagrangian for an
arbitary spin field as a sum of the Lagrangian for that same
field in Minkowski space–time plus corrections. These cor-
rections would be given by a tower of contact interaction
terms induced by the non-metricicity-related corrections that
appear in (5) and are encoded in the LQ term. As in the cases
calculated above, these corrections will describe an effective
interaction between the matter stress-energy tensor Tμν and
the corresponding arbitrary spin field, thus respecting all the
symmetries of the original matter Lagrangians. In general,
the implications of these LQ are the following: (1) Below
the scale �Q , they describe a series of perturbative interac-
tions that can be directly related to the non-metricity tensor
within RBG theories. The energy scale �Q characterizes the
scale at which non-metricity becomes non-perturbative and
the expansions (5) and (6) (and therefore the perturbative
analysis) break down. (2) they can also be understood as
departures from GR associated with non-metricity-induced
corrections to the space-time metric which are sensitive to
the local distribution of energy-density instead of integrated
energy-density, and which are characterized by the scale �Q .
Notably these departures are different in nature than the dif-
ferences in the post-Newtonian behaviour of RBG models,
which are associated to integrated energy-density (curvature
effects) rather than to the local distribution of energy-density
(non-metricity effects), and which are characterized by the
Planck scale instead of �Q .

4 Constraints to EiBI and the full RBG family

The next natural step after the above discussion is to under-
stand the possible observability of these interactions arising
in RBG models and constrain the only free parameter of
a given RBG model, i.e., the non-metricity scale �Q . It is
beyond the scope of this paper to perform a systematic anal-
ysis of the effect of these interactions in all relevant observ-
ables, although a detailed study of the contribution of these
terms will be subject of forthcoming works. Nonetheless, it
is illustrative to derive some particular operators, as we can
then use them to confirm the constraints already found in [2]
by using different data.

4.1 Operators that contribute to self-scalar, self-vector and
vector-fermion interactions

Let us derive the operators corresponding to self-interactions
for spin 0 and spin 1 from the Lagrangians (11) and (18)
respectively and the vector-fermion operator from (15) and

(18). Given that the terms in which Tμν appears in (11) and
(18) are of order O(�−4

Q ), only the Minkowskian stress-
energy tensor will contribute to these operators to lowest-
order in 1/�Q . The stress–energy tensor T (s)

μν for spin s =
{0, 1/2, 1} fields can be derived from (9) and (16) from
the usual definition T (s)

μν ≡ − 2√−g
∂Ls
∂gμν . We can obtain the

Minkowskian stress-energy tensors by performing the sub-
stitution (∇μ, gμν) −→ (Dμ, ημν) in the curved space Tμν .
For spin 0, 1/2 and 1 they are given by

T (0)
μν = ημν

[
Dα�∗Dα� + V0

] − 2

[
D(μ�∗Dν)� + ¯∂V0

∂gμν

]

+ O(�−4
Q ), (19)

T (1/2)
μν = ημν

[
1

2

(
ψ̄γ α(Dαψ) − (Dαψ̄)γ αψ

) + V1/2

]

−
[
ψ̄γ(μ(Dν)ψ) − (D(νψ̄)γμ)ψ + 2

¯∂V1/2

∂gμν

]

+ O(�−4
Q ), (20)

T (1)
μν = ημν

[
1

4
F†

αβF
αβ + V1

]
−

[
F†

(μ|α|Fν)
α + 2

¯∂V1

∂gμν

]

+ O(�−4
Q ). (21)

Here, the bar over the terms ∂ V̄s/∂g indicates that the replace-
ment (∇μ, gμν) −→ (Dμ, ημν) has to be made after tak-
ing the functional derivative. The corresponding traces in 4
dimensions are:

T (0) = 2Dα�∗Dα� + 4V0 − 2ημν
¯∂V0

∂gμν
+ O(�−4

Q ),

(22)

T (1/2) = [
ψ̄γ α(Dαψ) − (Dαψ̄)γ αψ

]

+ 4V1/2 − 2ημν
¯∂V1/2

∂gμν
, (23)

T (1) = 4V1 − 2ημν
¯∂V1

∂gμν
+ O(�−4

Q ). (24)

After substitution of the stress-energy tensor and the trace
of a field of a given spin in the Lagrangian of any other field,
new interactions between them will arise. Let us exemplify
this with the following cases:

(1) Effective self interactions for a Higgs-like scalar field,
i.e. with a potential not dependent of the metric ∂V0/∂

g = 0.
(2) Effective self interactions for a photon-like field, i.e. a

U (1) vector field with V1 = 0.
(3) Effective interactions between a photon-like field and

a massless fermion, i.e. a fermion with V1/2 = 0 but
otherwise arbitrary.
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The corresponding operators for scalar self-interactions
are obtained after substituting the stress–energy tensor for a
complex scalar field (19) and its trace (22) in the effective
Lagrangian for the same complex scalar field (11). Then,
setting ∂V0/∂g = 0, for case 1) we have

LQ
�� = 1

�4
Q

[
(6α + β)(Dμ�∗Dμ�)(Dν�

∗Dν�)

− β(Dμ�∗Dμ�∗)(Dν�Dν�)

+ (21α + 5β)V0Dμ�∗Dμ� + (8α + β)(V0)
2
]
.

(25)

Notice that if the scalar field potential V0 does not depend
on the metric, we have V (0)

0 ≡ V0, as all the n > 0 terms

in the expansion V0 = ∑∞
n=0 �−4n

Q V (n)
0 vanish identically.

For the vector self-interactions case, we must now substitute
the stress-energy tensor for a U (1) field and its trace in the
effective Lagrangian for that same vector field. Setting V1 =
0 we get the Lagrangian

LQ
AA = − β

8�4
Q

[
FμνF

μνFαβF
αβ − 4FμνF

ναFμ
σ F

σ
α

]
,

(26)

which is a particular of the well known C , P , Lorentz
and gauge invariant effective Lagrangian describing photon–
photon collisions below the mass scale of some charged
fermion. Notice that while the Euler–Heisenberg Lagrangian
[121–123] obtained by integrating out a massive lepton in the
QED path integral gives a relation b/a = −14/5 , the above
Lagrangian satisfies b/a = −4. The operators above con-
tribute, for instance, to the process γ γ → γ γ at tree level.
This contribution will be later used to set a lower bound on
�Q . Finally, for case (3), we have to substitute the stress-
energy tensor of the photon in the effective Lagrangian of
a spin 1/2 field (15) (with V1/2 = 0 and coupled or not
to the photon through Dμ), and then do the same with the
stress-energy tensor of that same spin 1/2 field in the effec-
tive Lagrangian for the photon (18). We then get an effective
dimension-8 operator describing an interaction between the
fermion pair and a photon pair of the form

LQ
ψ A = − 9β

4�4
Q

FμαFν
α

[
ψ̄γμ(Dνψ) − (Dνψ)γμψ

]

+ O
(
�−8

Q

)
.

(27)

This operator is generic for every fermion whether it has a
non-vanishing electric charge or not. Therefore it generates,
for instance, an effective photon–neutrino coupling at tree
level, or corrections to matrix elements for other processes
that are already tree level in the SM like for example Comp-
ton scattering. An effective interaction between neutrinos and
photons could have wide implications. To name one, it could

change the relation between the Cosmic Microwave Back-
ground and the Cosmic Neutrino Background temperatures,
which could also be used to constrain �Q .

4.2 Experimental constraints to |β|−1/4�Q in generic
RBGs

Even though almost every process is sensitive to contribu-
tions appearing in Ricci-based gravity theories, obtaining
constraints for the scale �Q is not straightforward. Correc-
tions induced in the vertices and in the partition distributions
functions of gluons and quarks make it very difficult to study
processes in which particles are produced via p p̄ production.
This makes high-energy data from LHC not convenient for
this study and requires to consider experimental bounds at
lower energies. Thus we will use for that purpose current data
on light-by-light and Compton scattering.

Light-by-light scattering occurs at loop level in the SM and
therefore it is very suppressed [124–126]. Therefore, it could
be interesting to obtain lower-energy bounds from experi-
ments searching photon self-interactions. This has been done
with X-ray pulses [127] obtaining an upper bound for the
cross section which can be used to constrain �Q . The differ-
ential and total cross sections for γ γ → γ γ that one obtains
from the RBG corrections (26) at tree level are given by

dσ
Q
γ γ→γ γ

d�
=

(
β

8�4
Q

)2
1

256π2 s
3

×
[
512 + 32

(
(1 − cos θ)4 + (1 + cos θ)4

)]
,

(28)

σ Q
γ γ→γ γ =

(
β

8�4
Q

)2
56

5π
s3, (29)

to lowest-order in 1/�Q . By demanding (29) to be in agree-
ment with the current experimental limit of γ γ → γ γ at 6.5
keV, σ

exp
γ γ→γ γ < 1.9 × 10−27 m2 [128], we can set a lower

bound

|β|−1/4�Q > 23.3 keV. (30)

Notice that the value of β is specified once a specific
RBG model is chosen, allowing to constrain directly the
energy scale �Q . Due to the difference in energies at which
Bhabha and photon–photon scattering are currently tested,
and the unobservability of photon self interactions in the
keV range with current experimental precision, the bound
obtained in (30) is considerably weaker than the one obtained
from electron-positron scattering in [2]. However, future
experiments searching for light-by-light scattering in the keV
range could help to tighten current constraints in RBG mod-
els, provided that a substantial increase in the experimental
resolution is achieved. If precision is not improved, higher-
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Fig. 1 Expected bounds on �Q for different values of the ratio σbound
s3

in logarithmic scale. Our bound is denoted by a red point

energy experiments will allow us to obtain stringent bounds
to RBG. In Fig. 1 we can see how the limit would change if
the precision is improved or the energy scale changes. For
instance, keeping the same upper limit σbound while increas-
ing the energy scale of the experiment in an order of mag-
nitude, bounds will improve roughly in one order of magni-
tude. Actually, light-by-light scattering has been measured by
ATLAS atO(GeV) for the invariant mass in LHC Pb–Pb col-
lisions [129]. After an involved analysis, these data allow to
set a lower bound to the mass scale of Born–Infeld electrody-
namics through its lowest order corrections to Maxwell elec-
trodynamics [130]. In the same spirit, they would allow to set
bounds to β/�4

Q through our Lagrangian (26). Although per-
forming an in-depth analysis of LHC data is out of the scope
of this work, a rough order-of-magnitude estimate allows us
to translate the bounds in [130] to bounds on generic RBGs,
obtaining an approximate bound of |β|−1/4�Q � 140 GeV,
which is in agreement with the bounds from Bhabha scatter-
ing obtained in [2].

We can however look for a tighter bound in more clean
high-energy experiments. To that end, let us consider Comp-
ton scattering as a probe for RBG corrections to the vector-
fermion cross-section. The most recent data for the cross-
section of Compton scattering comes from the L3 collabo-
ration [136], where the process was measured at different
energies as in Table 1. The differential for Compton scatter-
ing in RBG theories can be obtained from the SM Lagrangian
together with (27), and is given by

dσ
Q
e−γ→e−γ

d�
= 1

256π2s

⎡
⎣81

16

(
β

�4
Q

)2

(cos θ + 1)

(cos2 θ + 2 cos θ + 5)s4

+ 9

2

(
β

�4
Q

) (
3 cos2 θ + 2 cos θ + 11

)
Q2

es
2

+4Q4
e

cos2 θ + 2 cos θ + 5

cos θ + 1

]
. (31)

Table 1 Experimental values and SM prediction of the cross section
for Compton scattering taking from [136]
√
s (GeV) σ

exp
e−γ→e−γ

(GeV−2) σ
QED
e−γ→e−γ

(GeV−2)

21 771.2 ± 21.6 764.8

29.8 370.6 ± 11.3 381.1

39.7 213.2 ± 5.4 214.7

49.7 128.7 ± 3.9 136.7

59.8 95.0 ± 3.5 94.6

69.8 70.6 ± 2.9 69.4

79.8 55.2 ± 2.6 53.1

92.2 38.8 ± 2.2 39.8

107.2 27.3 ± 2.2 29.4

122.3 20.0 ± 2.1 22.6

137.3 17.3 ± 2.1 17.9

159.3 9.1 ± 2.0 13.3

Fig. 2 Value of theχ2 for different values ofβ/�4
Q . The green and blue

bands indicate the allowed values of β/�4
Q at 1σ and 2σ probability,

respectively

where Qe is the charge of the electron. Note that in Table 1,
only the region of the phase space in which | cos θ | < 0.8 is
considered. This will be taken into account when placing the
bounds on �Q . As in Table 1 we have the experimental value
measured at 12 different energies, it is convenient to combine
all these measurements performing a χ2 test with 10 degrees
of freedom. As Fig. 2 shows, by studying the probability of the
resulting χ2 function we can exclude the quantity β/�4

Q up to
a certain probability. The green and blue bands contain the 1σ

and 2σ probability respectively.
In Fig. 2 the full 1σ probability is in the region β < 0. While

the implications of the sign of this parameter are not clear in
general, its role in some relevant models is well understood in
cosmological and black hole scenarios. At 2σ we get different
results for different signs of β:

|β|−1/4�Q > 0.39 TeV with β < 0, (32)

|β|−1/4�Q > 0.61 TeV with β > 0. (33)
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These are bounds for a general RBG theory. Once a specific
RBG model is chosen, the value of β is set and the bound
is translated to the only free parameter of the theory, which
is always related to the non-metricity scale �Q . Note that in
this case the SM, corresponding to β/�4

Q = 0 is already in
the 2σ probability region. That means that at 1σ the values of
β/�4

Q giving a lower value of the χ2 (higher probability) will
be negative compensating the SM contribution. As mentioned
before, at 2σ the SM is already in agreement with the data so
positive values of β give bounds in this region.

4.3 Constraints to Eddington-inspired Born–Infeld gravity

As a particular example, let us consider a widely discussed RBG
model named Eddington-inspired Born–Infeld theories (EiBI,
see [69] for a recent review), and in units G = c = 1, it is
defined by the action

SEiBI = ± 2

κ

∫
d4x

×
[(√

− det
(
gμν ± κR(μν)

)) − λ
√− det(gμν)

]
.

(34)

where κ is a common parametrization of �Q in the astrophysics
and cosmology literature and it is related to the non-metricity
scale as κ = 2c7h̄3�−4

Q . The values of β within EiBI dep-
pend on the sign in front of the κ parameter, which has the
values β = 1 for the minus sign and β = −1 for the plus
sign. In EiBI, while β = 1 leads to a bouncing cosmology,
β = −1 describes a cosmology in which an asymptotically
Minkowski past region connects with the present contracting
branch [131,135]. Interestingly, both solutions avoid the Big
Bang singularity13, although as found in [135], the propagation
of gravitational waves (GWs) generally presents instabilities in
these cosmological models. In particular, Beltran et.al. show
that for β > 0 GWs develop instabilities at the bounce due
to the fact that the propagation speed diverges and the friction
term vanishes, signaling a strong coupling problem. On the
other hand, for the asymptotically Minkowski solution (where
β < 0), they show that the pathologies are due to the vanishing
of the propagation speed, which could in principle be avoided by
including higher derivative terms. Regarding spherically symet-
ric solutions, while β = −1 are generally singular [45,131],
the β = 1 branch remarkably admits non-singular wormhole
space-times when coupled to Maxwell electrodynamics.

The above bounds for a general RBG model can be easily
translated to the EiBI theory, where β = ±1, finding

�BI
Q > 0.39 TeV with κ > 0, (35)

�BI
Q > 0.61 TeV with κ < 0, (36)

which in order to make contact with the astrophysics and cos-
mology literature can be translated into

13 Nonetheless, a potential Big Rip singularity could arise if phantom
dark energy is considered within EiBI [132].

|κ| < 10−26m5kg−1s−2. (37)

The bound obtained here is of the same order as the one obtained
in [2], and improves in 6 orders of magnitude the bound for
the scale �Q (or 24 orders of magnitude for the κ parameter)
other constraints obtained from astrophysical or nuclear physics
[78,133,134] phenomena.

5 Outlook

In this paper we have generalized the results presented in [2]
for spin 1/2 fields to spin 0 and spin 1 fields, and explained
why a generalization to arbitrary spin is straightforward. Con-
cretely, we have shown that minimally coupled matter fields,
when coupled to an RBG gravity, develop non-trivial interac-
tions. These interactions arise even in the usual weak gravi-
tational field limit (i.e. around a Minkowskian background),
and are due to the higher-order curvature terms in the RBG
Lagrangian. In this regard, notice that a recent technique has
been developed [1,100,101] showing how minimally coupled
matter fields coupled to an RBG can be mapped into GR cou-
pled to non-linearly interacting matter fields. It is then said that
RBGs admit an Einstein frame representation in which matter
fields become non-linear. Thus we point out that our methods
could be a perturbative version of this mapping between RBGs
and GR in which the non-linearities induced by the mapping
in the matter sector appear as effective interaction terms below
the non-metricity scale �Q . These interactions appear inde-
pendently of the spin of the fields, as can be seen from the
expansion (5) together with the fact that all matter fields cou-
ple to the metric, regardless of their spin. We have computed
the effective Lagrangians up to order O(�−8

Q ) corresponding
to a scalar (25), vectorial (26), and a spinor+vector (27) matter
sector. Finally we have used the vector self-interaction and the
vector-fermion interaction Lagrangians to set bounds on �Q

with data from Compton and photon-photon scattering. The
bound for �Q obtained from γ γ → γ γ is very low due to
the fact that the data are taken in the keV range, and the cross-
section increases as s3, nonetheless, since Compton scattering
data from LEP are taken around the 100 GeV range, we obtain
bounds for �Q which are of the same order as those obtained in
[2], currently the most stringent bounds for RBG theories and
EiBI in particular.

The existence of these effective interactions within RBG the-
ories suggests to further explore the available data on particle
physics experiments in order to tighten the constraints on the
different RBG models that are currently under study in the mod-
ified gravity community. Furthermore, it would be interesting
to find out whether these effective interactions are a particular
feature of RBGs, or instead they also arise in more general grav-
ity models, and could also be used to constrain them. Regard-
ing this, notice that these constraints arise from the perturba-
tive effects of the non-metricity-induced corrections to GR that
arise in generic RBGs. However, full non-perturbative solutions
of some particular RBG models are known [44,52,102,135],
and it would also be of interest to understand what is the non-
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perturbative counterpart of these non-metricity-induced inter-
actions that arise in the matter fields from the perspective of the
Einstein frame.
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