
Eur. Phys. J. C (2020) 80:321
https://doi.org/10.1140/epjc/s10052-020-7877-y

Regular Article - Theoretical Physics

Stochastic inflaton wave equation from an expanding environment

Z. Habaa

Institute of Theoretical Physics, University of Wroclaw, 50-204 Wrocław, Poland

Received: 20 January 2020 / Accepted: 24 March 2020 / Published online: 13 April 2020
© The Author(s) 2020

Abstract We discuss the inflaton φ in an environment of
scalar fields χn on flat and curved manifolds. We average
over the environmental fields χn . We study a contribution of
superhorizon k � aH as well as subhorizon k � aH modes
χn(k). As a result we obtain a stochastic wave equation with
a friction and noise. We show that in the subhorizon regime
in field theory a finite number of fields is sufficient to pro-
duce a friction and diffusion owing to the infinite number of
degrees of freedom corresponding to differentk in χn(k). We
investigate the slow roll and the Markovian approximations
to the stochastic wave equation. A determination of the met-
ric from the stochastic Einstein–Klein–Gordon equations is
briefly discussed.

1 Introduction

Inflation is generated by an interaction of gravity with a scalar
field (inflaton) [1–5]. In a purely Hamiltonian system it is
impossible to reach a thermodynamic equilibrium exhibited
in the CMB radiation. The equilibration can be achieved by
an interaction with an environment of other fields (heat bath).
Then, the temperature of the inflaton subsystem is decreasing
during inflation. In the standard (cold inflation) approach a
mechanism of reheating [6,7] is applied to raise the temper-
ature. The presence of the environment limits the decrease
of temperature [8–10]. Berera [11] described the effect of
the environment by a stochastic modification of the inflaton
equation. He derived a stochastic equation from a linear inter-
action with an infinite set of scalar fields in a heat bath. The
model follows the well-known derivation of the Brownian
motion from dynamical systems [12,13]. We have obtained
the same stochastic equation in the low momentum regime
(k � 0) by different mathematical methods in [14]. In [11,14]
the expansion of the environment has been neglected in the
derivation (as we set a−2k2 � 0). What was essential for the
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result was an infinite set of fields with masses proportional
to couplings. Such a relation allows to apply the Markov
approximation. In Appendix B of Ref. [11] Berera derives
the same diffusion equation if there is only one field in the
environment but k � aH .

In this paper we investigate models of an interaction with
the environment in more detail starting from models in the
Minkowski space. We consider some generalizations of the
models of [11,14]. The main new result concerns the calcu-
lation of the effect of the subhorizon modes k � aH on the
wave equation of the inflaton. We show that if the momentum
and scale-dependent term in the scalar-field equations is dom-
inating (in the subhorizon regime k � aH) then we obtain
a different diffusive inflaton equation than the one resulting
from averaging over superhorizon modes (in disagreement
with [11]). The appearance of the diffusive behaviour in this
model is similar to the one discussed by Starobinsky and
Vilenkin [15–18] when modes with large k of the quantum
scalar field lead to a diffusive behaviour of the remaining
superhorizon modes k � aH in an expanding universe. In
such a case those authors were able to derive a stochastic
wave equation describing quantum fluctuations in an arbi-
trary inflaton potential. Quantum as well as thermal fluctua-
tions determine the CMB spectrum which can be compared
with observations [19,20].

The plan of this paper is the following. In Sect. 2 we
review a minor generalization of the model of Refs. [11,14].
In Sect. 3 we discuss in detail the model in Minkowski space-
time. In Sect. 4 we study the environmental fields for sub-
horizon momenta in de Sitter space. In Sect. 5 we explore an
expansion in a fixed homogeneous metric which is close to
exponential. We eliminate the environmental fields, average
over the initial values and obtain a stochastic wave equa-
tion for the inflaton with a friction and noise. We briefly
discuss the slow roll conditions resulting from our modifica-
tion of the stochastic equation for warm inflation. We show
that in some approximations the resulting wave equation for
the inflaton can be treated as a Markovian stochastic wave
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equation. In Sect. 6 we briefly discuss the Friedman equa-
tion which determines the homogeneous metric ( the Hubble
variable as a function of the inflaton field). We believe that
the averaging over the initial values simulates some quantum
effects in cosmological models as the quantum field theory
at finite temperature tends to the classical field theory with
random initial conditions distributed according to the classi-
cal Gibbs law. The thermal noise in the inflaton equation can
play a similar role as the scalar quantum fluctuations (dis-
cussed in [4]) which together with the quantum fluctuations
of the gravitational field during de Sitter expansion (calcu-
lated earlier in [21]) lead to the correct evaluation of the
power spectrum (this can be done by means of the methods
developed in [22,23]).

2 Scalar fields interacting linearly with an environment

We consider the Lagrangian which is an extension of the
well-known oscillator model discussed in [12,13]

L = 1

2
∂μφ∂μφ − V (φ)

+
∑

n

(
1

2
∂μχn∂

μχn − 1

2
m2

nχnχn − λnU (φ)χn

)
, (1)

where U (φ) is a certain interaction. U (φ) = φ is a simple
choice (considered in [11,14]) but the results of averaging
over χn do not depend essentially on U . The number of par-
ticles in the classical mechanics of [12,13] is infinite. Only in
the limit of an infinite number of degrees of freedom the irre-
versible diffusive behaviour can appear. In field theory even
with a finite number of fields we have an infinite number of
degrees of freedom (the spatial Fourier modes). Averaging
over those modes can lead to a diffusive dynamics. Equations
of motion read

g− 1
2 ∂μ(g

1
2 ∂μφ) = −V ′ −U ′(φ)

∑

n

λnχn, (2)

g− 1
2 ∂μ(g

1
2 ∂μχn) + m2

nχn ≡ Mnχn = −λnU (φ), (3)

where gμν is the metric tensor and g = | det[gμν]|. We can
consider classical as well as quantum systems (2)–(3). Elim-
inating the quantized fields χ we obtain a quantum version
of the environmental noise. The quantum noise can approx-
imate the quantum fluctuations of scalar and gravitational
fields as it does in the e-fold time [22,23].

In the flat expanding metric

ds2 = dt2 − a2dx2 (4)

Equation (3) reads

∂2
t χn + 3H∂tχn − a−2�χn + m2

nχn = −λnU (φ). (5)

where H = a−1∂t a. We can solve Eq. (3) for χn

χn = Anχ
cl
n − λn

∫
dx ′Gn(x, x

′)U (x ′), (6)

where we denoteU (x) = U (φ(x)), Gn is the Green function
of the operator Mn , An is any operator commuting with Mn

andχcl
n are solutions of the homogeneous equationMnχ

cl
n =

0. When we insert χn of Eq. (6) in Eq. (2) then it takes the
form

g− 1
2 ∂μ(g

1
2 ∂μφ) + V ′

= U ′ ∑

n

λ2
nGnU +U ′η ≡ δφ +U ′η, (7)

where

η = −
∑

n

Anλnχ
cl
n . (8)

In the homogeneous metric (4) we can take the spatial Fourier
transform of Eq. (3). Then, the operators An become just
functions An(k). In classical field theory (with the energy-
momentum tensor Tμν) in Minkowski space

∫
T 00(χ)dx

is a constant of motion as long as there is no coupling
to φ. Then, the Gibbs distribution at temperature β−1 is
dχ exp(−β

∫
T 00(χ)dx). A natural covariant generalization

to a manifold is the weight factor for classical configurations
of the form

exp

(
−

∫ β

d4x
√
gT 00(χ)

)
(9)

where the integral d4x is over a volume β in space-time.
There is an analog in quantum statistical mechanics to the
formula (9) which is applied as a statistical operator in quan-
tum non-equilibrium statistical mechanics. For a homoge-
neous metric (4) the volume β in Eq. (9) can be expressed
as a time interval [0, β] times the space volume. After aver-
aging over the solutions Anχ

cl
n (t,k) the correlation function

of the noise is

〈η(x)η(y)〉 =
∫

dkdk′〈A∗
m(k)An(k′)χcl

n (k′, t ′)χcl∗
m (k, t)〉

λnλm exp(ikx − ik′y). (10)

In this way we obtain a stochastic wave equation (7)with a
friction δφ and the noise η. There is some arbitrariness in
the choice of the potentials U and V , the number of fields
χ , the masses and the couplings. In [11,14] U (φ) = φ, an
infinite set of fields is chosen and the masses are propor-
tional to the couplings. As shown in [14] if we ignore the k
dependence of Mn (superhorizon domain) then we obtain a
wave equation of warm inflation [8,9] with the friction pro-
portional to ∂tφ and the noise η as the white noise. In the
Appendix B of Ref. [11] one field χ with large momenta is
discussed. It is claimed that its effect is the same as an infinite
number of χ fields leading to an alternative derivation of the
same stochastic equation for inflaton. We disagree with this
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claim. For low momenta of the environmental fields another
stochastic equation (studied in [30]) appears than for large
momenta. We study these equations in detail in this paper
beginning with the simple case of the Minkowski space in
the next section.

3 Environment in the Minkowski background

In Minkowski space a = 1. We can solve Eq. (3) exactly for
Fourier transforms

χn(t,k) = cos(ωnt)χn0(k) + sin(ωnt)ω
−1
n �n(k)

−λn

∫ t

0
sin(ωn(t − s))ω−1

n U (s,k)ds

≡ ω
− 1

2
n (An exp(iωnt) + A∗

n exp(−iωnt) − λnGnU

(11)

where (χn0(k),�n(k)) are the initial values for the wave
equation, U (s,k) means the Fourier transform of U (s, x)
and

ω2
n = m2

n + k2. (12)

Inserting (11) in Eq. (2) we obtain an explicit formula

∂μ∂μφ + V ′ =
∑

n

λ2
nU

′
∫

dk exp(ikx)

×
∫ t

0
sin(ωn(t − s))ω−1

n U (s,k)ds +U ′η,

(13)

where

η = −
∑

n

λn(cos(ωnt)χn0(k) + sin(ωnt)ω
−1
n �n(k))

≡ −
∑

n

λnω
− 1

2
n (An exp(iωnt) + A∗

n exp(−iωnt)). (14)

The friction term could also be expressed in a Lorentz covari-
ant form (Eqs. (2)–(3) are Lorentz invariant in Minkowski
space, hence solutions should preserve this invariance)

−i
∑

n

λ2
nU

′
∫ t

0

∫
dk exp(−ikμ(xμ − yμ))sign(k)

×δ(k2 − m2
n)U (s, y)dy0dy

where sign(τ ) is an odd function with sign(τ ) = 1 for τ > 0
and x = (t, x).

The Hamiltonian for the wave fields χn is (� = ∂τχ )

Hn = 1

2

∫
dx(�2 + (∇χ)2 + m2

nχ
2) =

∫
dkA∗

n Anωn

(15)

Then, the expectation value with respect to the Gibbs density
(9) is

〈A∗
n(k)Am(k′)〉 = β−1δmnδ(k − k′)ω−1

n

In quantum theory A∗
n(k) and Am(k′) become creation and

annihilation operators. Then, the expectation value is

1

2
〈A∗

n(k)Am(k′) + Am(k′)A∗
n(k)〉

= δmnδ(k − k′) h̄
2

coth

(
1

2
h̄βωn

)
.

When we calculate the expectation value of η with respect to
the measure d A exp(−βH) then we obtain

〈η(x)η(x ′)〉 = β−1
∫

dk exp(ik(x − x′))

×
∑

n

λ2
nω

−2
n cos(ωn(t − t ′)). (16)

In quantum theory we should consider an anticommutator
on the lhs of Eq. (16). Then,β−1ω−2

n →ω−1
n

1
2 h̄ coth(h̄ 1

2βωn)

on the rhs. So that the quantum thermal expectation values
tend to classical expectation values (in the Gibbs state) when
h̄β → 0.

Let us distinguish two regimes: small k and large k. In the
first case we neglect k in ωn . Then

〈η(x)η(x ′)〉 = (2π)3β−1δ(x − x′)
×

∑

n

m−2
n λ2

n cos(mn(t − t ′)). (17)

Let (2π)
3
2 λn = γ̃mn then

〈η(x)η(x ′)〉 = γ̃ 2β−1δ(x − x′)
∑

n

cos(mn(t − t ′)). (18)

If mn are uniformly distributed then (because of oscillations
of the cosine) the sum (18) is concentrated at small t − t ′.
We could e.g. apply the Poisson summation formula (for
mn � n)

2

L

∑
cos

(
2π

ns

L

)
=

∑

n

δ(s − nL)

or approximate the sum in Eq. (18) by an integral over mn

leading to the δ function. In both cases (for a large L or in
the approximation

∑
n γ̃ 2 · · · = γ 2

∫
. . .) we obtain

〈η(x)η(x ′)〉 = β−1γ 2δ(x − x′)δ(t − t ′) (19)

with a certain γ � γ̃ .
Next let us consider the friction δφ in Eqs. (7) and (13).

Writing

sin(ωn(t − s))ω−1
n = ∂s(cos(ωn(t − s))ω−2

n )

and integrating by parts we get the term

U ′ ∑ λ2
nω

−2
n

∫
dkU (t,k) exp(ikx)
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which under the assumptions leading to Eq. (19)can be con-
sidered as modification of the potential V → V + qU 2 with
q � δ(0) (this is the mass renormalization if U � φ as in the
Leggett model [24]). The second term from the integration
by parts

−U ′ ∑ λ2
nω

−2
n

∫
dk exp(ikx) cos(ωnt)U (0,k)

under the assumptions used at Eq. (19) is proportional to δ(t)
and to the initial values of the field. We will neglect this term
for t > 0. After the integration by parts the friction term
takes the form

U ′ ∑

n

λ2
n

∫
ω−2
n cos(ωn(t − s))∂sUds.

We have got the same kernel as the one in Eq. (16) which we
approximated by δ(t−s) in Eq. (19) for the correlation of the
noise. In fact these kernels are related by a version of the fluc-
tuation dissipation theorem [25]. With these approximations
Eq. (2) in Minkowski space reads

∂2
t φ − �φ + V ′ + γ 2U ′∂tU = U ′η (20)

with the noise (19). This is the equation which would have
been derived in [11] and [14] when a = 1. Note that in the
limit of a strong friction we obtain

U (φ(t, x)) � γ −2
∫ t

η(s, x)ds.

Hence, U (φ) behaves like a Brownian motion in classical
field theory and in the high temperature limit of the quantum
field theory. If V ′ is of the same order as γ 2U ′∂tU (this may
be the case because of the U 2 renormalization mentioned
below Eq. (19)) then Eq. (20) after the neglect of the second
order derivatives reads

γ 2U ′∂tU + V ′ = U ′η. (21)

U has a large time asymptotic distribution

dU exp

(
−βγ −4

∫
dx

∫
dU

V ′

U ′ (U )

)
,

where
∫
dU V ′

U ′ (U ) means that we first express V ′U ′−1 as a
function of U and subsequently calculate its indefinite inte-
gral. So, U ′ �= 0 may change the form of the asymptotic
behaviour of the inflaton modifying the discussion in [26].

We can derive the slow roll conditions leading to the
approximation (21). They require |∂2

t φ| � γ 2|U ′∂tU | and
|∂2
t φ| � |V ′|. These conditions are satisfied if

|V ′′(U ′)−4 − 2V ′(U ′)−5U ′′| � γ 4.

The slow roll approximation can be applied to quantum fields
as well. We can see that with the friction term the quan-
tum field behaves like a diffusion process. In a linear model
when V = m2

2 φ2 and U ′ = 1 then the slow roll requirement

is m2 � γ 4 which does not depend on φ. The correlation
functions in this model

〈φtφt ′ 〉 � exp

(
−m2

γ 2 |t − t ′|
)

are the same as the ones for the Ornstein–Uhlenbeck process
[27]. The model (21) can be considered as a limit H � γ 2

of the model in de Sitter space discussed in the next section
(in this sense ∂tU brings the friction in the Minkowski space
as the Hubble constant does in the de Sitter space, in both
cases the strong friction approximation is applicable).

Next, assume that k is large in comparison to mn . Then,
neglecting the masses in Eq. (16) we have

〈η(x)η(x ′)〉 = 4πβ−1κ2
∫

dk sin(k|x − x′|)(k|x − x′|)−1 cos(k(t − t ′)) (22)

where

κ2 =
∑

n

λ2
n .

If |x − x′| = 0 then

〈η(x)η(x ′)〉 = 8κ2π2β−1δ(t − t ′) (23)

In general, from the integral ( [28], formula 3.721)
∫ ∞

0
du

sin(zu) cos(wu)

u

= π

4
(sign(z − w) + sign(z + w)) (24)

we have

〈η(t, x)η(t ′, x′)〉 = π2β−1κ2|x − x′|−1
(
sign(|x − x′| + t − t ′)

+sign(|x − x′| − t + t ′)
)

(25)

Note that the covariance (25) is vanishing for the time-like
separations

|x − x′| < |t − t ′|. (26)

Let us still discuss various forms of the friction term δφ in
Eq. (7). If we do not integrate by parts then the friction in
Eq. (7) has an explicitly Lorentz covariant form

κ2U ′
∫ t

0
D(x − y)U (y)d4y

where

i D(x − y) =
∫

d4k exp(−ik(x − y))sign(k0)δ(k
2)

is the commutator function for the massless quantum scalar
field. The friction term in Eq. (13) can also be expressed in
a Lorentz invariant way as
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π2κ2U ′
∫ t

0
|x − y|−1

(
δ(τ − τ ′ + |x − y|) − δ(τ − τ ′ − |x − y|)

)
U (y)dy

= π2κ2U ′
∫ t

0
sign(x0 − y0)δ((x − y)2)U (y)d4y

Now, Eq. (7) takes the form

∂μ∂μφ + V ′(φ) + 4π2κ2U ′
∫ t

0
|x − y|−1

(
δ(τ − τ ′ + |x − y|) − δ(τ − τ ′ − |x − y|)

)
U (y)dy

= U ′η (27)

The kernel in Eq. (13) with mn = 0 after an integration by
parts is

K (t − s, x − x′) = 4π

∫
dkk2 cos(k(t − s))k−2

× sin(k|x − x′|)(k|x − x′|)−1

= π2|x − x′|−1
(
sign(|x − x′| + t − s)

+sign(|x − x′| − t + s)
)

This kernel is the same as the covariance (25) of the noise
and is vanishing for time-like separations.

The stochastic equation after an integration by parts reads

∂μ∂μφ + V ′(φ)

+κ2U ′
∫ t

0
ds

∫
dyK (t − s, x − y)∂sU (s, y)

= U ′η (28)

with the friction kernel K and the Gaussian noise (25). That
the variance of the noise and the kernel of the friction are
related follows from a version of the fluctuation dissipation
theorem [25]. Let us note that the result (27)–(28) is exact if
all mn = 0 and if the initial values of the χn fields are dis-
tributed according to the Gibbs weight factor exp(−βHn)(the
number of fields is irrelevant). If

|x − x′| � |t − t ′| (29)

then we can approximate the kernel K by a δ-function leading
to the stochastic equation

∂μ∂μφ + V ′(φ) + 2π2κ2U ′
∫

dy∂tU (t, y) = U ′η (30)

where η in this approximation has the correlation (23). The
condition (29) can be interpreted as a negligence of the spatial
dependence of φ. If the spatial dependence of φ is ignored
then we could identify Eqs. (20) and (30) although we have
derived them on a basis of different assumptions concerning
the χ fields (this could explain the “alternative” derivation of
the stochastic equation in Appendix B of [11]). In the strong

friction limit we obtain

2π2
∫

dyU (t, y) � κ−2
∫ t

η(s)ds

In Eq. (30) we can take V ′ into account and integrate both
sides over x. Then, we could conclude that

∫
dyU has an

equilibrium distribution. In contradistinction to the strong
friction limit of Eq. (20) only the space average tends to the
Brownian motion in Eq. (30) (and eventually to an equilib-
rium). However, there is a distinction between the results
(20) and (30). Equation (20) is derived under an assump-
tion of an infinite number of χ fields with properly chosen
masses, whereas Eq. (30) follows from Eq. (27) which is
exact if mn = 0. In conclusion, in the strong friction limit
the classical thermal field as well as the thermal quantum
fields behave as a stochastic process. As an example, if in
Eq. (30) we neglect second order time derivatives and assume
V = U 2 then
〈∫

dyU (t, y)
∫

dy′U (t ′, y′)
〉

� exp(−π−2κ−2|t − t ′|)

Hence,
∫
dyU (t, y) is the Ornstein–Uhlenbeck stochastic

process.

4 Exponentially expanding environment

In an expanding universe we write

χ = a− 3
2 χ̃ . (31)

Then, in the momentum space

∂2
t χ̃n + ω2

nχ̃n = −λna
3
2 φ, (32)

where

ω2
n = a−2k2 + m2

n − 3

2
∂t H − 9

4
H2.

First, let us consider low momenta a−1k � H so that for a
large time (as in [14]) we can neglect a−2k2 term. Then, we
assume that ω2

n > 0, H is slowly varying and ωn are approx-
imately constant. The approximate solutions of Eq. (32) at
λ = 0 are (the same as in Eq. (11))

ũn(k, x) = 1√
2ωn

(2π)−
3
2 exp(ikx − iωnt). (33)

They are normalized as
∫

dx(ũ′
n∂0ũ

∗
n − ũ∗

n∂0ũ
′
n) = iδ(k − k′).

In de Sitter space H = const . If we neglect a−2k2 and
assume m2

n > 9
4 H

2 then we can apply the same approxi-
mation as in Sect. 3. Now, Eq. (7) in de Sitter space reads
(for a(t) = exp(Ht))
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∂2
t φ − a−2�φ + 3H∂tφ + V ′ + γ 2U ′∂tU

+3

2
γ 2HU ′U = a− 3

2U ′η (34)

where the last two terms on the lhs of Eq. (34) result from the
integration by parts as in Eq. (20) with an extra term coming
from the transformation (31).The noise has the covariance

〈η(x)η(y)〉 = β−1γ 2δ(x − y) (35)

At slow roll approximation with the neglect of second order
derivatives we obtain

3H∂tφ + V ′ + γ 2U ′2∂tφ + 3

2
γ 2HUU ′ = a− 3

2U ′η (36)

with a = exp(Ht). The slow roll requirements are |∂2
t φ| �

|(3H+γ 2(U ′)2)∂tφ| and |∂2
t φ| � |V ′+ 3

2γ 2HU ′U |. These
conditions are satisfied if
∣∣∣∣

((
V ′ + 3

2
γ 2HU ′U

)
(3H + γ 2(U ′)2)−1

)′∣∣∣∣

� 3H + γ 2(U ′)2

As an example, if H = const , U ′ = 1 and V ′ = m2φ

then the slow roll condition is m2 � (3H + γ 2)2. It does
not depend on φ and allows to solve the slow roll stochastic
equation explicitly.If H is determined by Einstein equations
then H depends on φ (as will be discussed in Sect. 6). Then,
the slow roll conditions still must involve some requirements
allowing to determine H as a function of φ.

The solution of Eq. (36)in the limit of large γ is

δU ≡ U (φ(t, x)) − exp

(
−3

2
Ht

)
U (φ(0, x))

= γ −2 exp

(
−3

2
Ht

)∫ t

0
η(s, x)ds

The strong friction covariance 〈δUt (x)δUt ′(x′)〉 is exp(−
3Ht − 3Ht ′)min(t, t ′)β−1γ −2δ(x − x′) . Hence, we get
an extra damping factor in comparison to the case of the
Minkowski space (discussed at the end of Sect. 3).

It is instructive to consider the soluble case of Eq. (36)
withU ′ = 1, V ′ = m2φ. Then, the solution (with zero initial
condition) is the Ornstein–Uhlenbeck process

φt = exp

(
−3

2
Ht

)∫ t

0
exp

(
− m2

3H + γ 2 s

)
ηsds (37)

We have got the same result as the one for the de Sitter space

with the Hubble constant H → H + γ 2

3 or in Minkowski
space with a friction (and H = 0).

Another (complementary) regime is the one when the term
a−2k2 is dominating (a−1k � H and a−1k � mn). In such
a case ωn � a−1k. Hence, in the solution (33) of the wave
equation (32) (λn = 0)

exp

(
i
∫ t

0
ωn

)
� exp

(
ik

∫ t

0
a−1

)
= exp(ikτ),

where τ is the conformal time. In the conformal time (for the
exponential expansion a(t) = exp(Ht))

ds2 = (Hτ)−2(dτ 2 − dx2).

Equation (5) reads

∂2
τ χn − �χn − 2τ−1∂τχn + m2

n(τH)−2χn

= −λn(Hτ)−2U (38)

and Eq. (2)

∂2
τ φ − �φ − 2τ−1∂τφ

+V ′(τH)−2 = −U ′ ∑

n

λn(Hτ)−2χn (39)

The free Lagrangian of the χ fields is

L = 1

2
(H2τ 2(∂τχ)2 − H2τ 2(∇χ)2 − m2χ2) (40)

The statistical weight (9) with the Hamiltonian H = T 00

(with the momentum � = τ 2(∂τχ )) is

exp

(
−

∫ β

0
dτdx

√
gH

)

= exp

(
− 1

2

∫ β

0
dτ

∫
dx(Hτ)−4(H2τ 2(∂τχ)2

+H2τ 2(∇χ)2 + m2χ2)

)
(41)

For a large k we may ignore the massesmn . Then, the solution
of the free wave equation is

τ
3
2 H (1)

3
2

(kτ) � k− 1
2 τ exp(ikτ)

(
1 + i

kτ

)
(42)

where H (1)
3
2

is the Hankel function [28].

We can write the general solution in the form

χcl = Ã(k)k− 1
2 τ exp(ikτ)

(
1 + i

kτ

)

+ Ã∗(k)k− 1
2 τ exp(−ikτ)

(
1 − i

kτ

)
(43)

If we insert the solution (43) in the Hamiltonian (41) and
neglect the terms (decaying fast for large τ ;large τ means
small a, hence close to the Big Bang)

τ−2
∫

dkk−1 Ã(k)2 exp(2ikτ) (44)

and τ−2
∫
(∂τχ)2 ,then

∫
dx

√
gH � H−2

∫
dk|k| Ã∗(k) Ã(k) (45)
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The τ -dependence cancels for a large τ in Eq. (45) as
expressed in Eq. (41) because τ−2 in

√
gH cancels with τ 2

in (∇χ)2 resulting from the terms τ exp(ikτ) in Eq. (43).
We can calculate the expectation value of the noise

η(τ, x) = (Hτ)−2
∫

dk exp(ikx)

×
∑

n

λnk
− 1

2

(
Ãn(k)τ exp(ikτ)

(
1 + i

kτ

)

+ Ã∗
n(k)τ exp(−ikτ)

(
1 − i

kτ

))
(46)

with respect to the weight factor (41). We obtain

〈η(x)η(x ′)〉 = (Hτ)−1(Hτ ′)−1β−1κ24π

∫
dkk

×
(

cos(k(τ − τ ′))
k

− sin(k(τ − τ ′))
k2τ

+ sin(k(τ − τ ′))
k2τ ′

+cos(k(τ − τ ′))
k3ττ ′

)

sin(k|x − y|)(k|x − y|)−1 (47)

We can see that the last term of the sum in Eq. (47) is divergent
at small k. This is a typical infrared divergence of a massless
χ field theory in de Sitter space. It means that instead of the
random variable η we should consider η(x) − η(z) with a
fixed z = (s, z). Then, the variance

〈(η(x) − η(z))2)〉 = H−2β−1κ24π

∫
dkk

(1

k
(τ−2 + s−2)

−2(τ s)−1 cos(k(τ − s)) sin(k|x − z|)(k2|x − z|)−1

+(2
sin(k(τ − s))

k2τ 2s
− 2

sin(k(τ − s))

k2s2τ
)

× sin(k|x − z|)(k|x − z|)−1

+τ 4 + s4

k3τ 4s4 − 2τ 2s2 cos(k(τ − s))

× 1

k3τ 4s4 sin(k|x − z|)(k|x − z|)−1
)

is finite.
Using the formula (24) we calculate the Fourier transform

in Eq. (47) (neglecting the terms decaying fast for a large
time) with the result

〈η(τ, x)η(τ ′, y)〉 = (Hτ)−1(Hτ ′)−1β−1κ2π2

|x − y|−1
(
sign(|x − y| + τ − τ ′)

+sign(|x − y| − τ + τ ′)
)

(48)

When |x− y| → 0 then in Eq. (48) we obtain δ(τ − τ ′) (this
can be seen either from Eq. (47) or from Eq. (48) by a formal
Taylor expansion in |x − y| ).

The solution of Eq. (38) with mn = 0 (at large k we
neglect the masses) can be expressed by the Green function

G (discussed in detail in the next section, Eq. (73))

χn = −λnτ

∫ ∞

τ

G(τ, τ ′)τ ′−1(τ ′H)−2Udτ ′ + χcl
n (49)

where χcl is the solution with λn = 0 and

G(τ, τ ′) = −
( sin(k(τ − τ ′))

k
+ cos(k(τ − τ ′))

2k2τ

−cos(k(τ − τ ′))
2k2τ ′ + sin(k(τ − τ ′))

k3ττ ′
)

Using the formulas 3.741 of [28]
∫ ∞

0
du

sin(zu)

u
= π

2
sign(z)

∫ ∞

0
du

sin(zu) sin(wu)

u2 = π

2
min(w, z) (50)

and the integral (24) we can calculate the Fourier integrals in
order to express the kernel G in configuration space

G(τ, x; τ ′, y) = 4π2|x − y|−1

(
δ(τ − τ ′ + |x − y|) − δ(τ − τ ′ − |x − y|)

+1

8
(τ−1 − τ ′−1)(sign(|x − y| + τ − τ ′)

+sign(|x − y| − τ + τ ′)) + 1

4ττ ′min(τ − τ ′, |x − y|)
)

(51)

Note that

|x − x′|−1
(
δ(τ − τ ′ − |x − x′|) − δ(τ − τ ′ + |x − x′|)

)

= 2sign(x0 − x ′
0)δ((x − x ′)2)

where (x−x ′)2 is the Minkowski distance. Hence, the leading
term (for a large time) is Lorentz invariant.

After an insertion of the solution of Eq. (38) in Eq. (39)
the stochastic equation (7) for φ in the configuration space
reads

(∂2
τ φ − �φ − 2τ−1∂τ )φ + (τH)−2V ′

= κ2(Hτ)−2τU ′
∫ ∞

τ

G(τ, τ ′)τ ′−1(τ ′H)−2Udτ ′

+U ′(τH)−2η (52)

For |x − y| � |τ − τ ′| and large τ and τ ′ we get the
stochastic equation

∂2
τ φ − �φ − 2τ−1∂τφ + (τH)−2V ′

+8π2κ2U ′(Hτ)−4
∫

dy∂τU

+24π2κ2τ−5H−4U ′
∫

dyU = U ′(Hτ)−2η (53)

by an expansion of the kernel (51) in |x − y| and integration
by parts over τ ′ in Eq. (52) (as in an analogous derivation of
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Eq. (30)). The limit of small |x−y| of the noise follows from
Eq. (48)

〈η(τ, x)η(τ ′, y)〉 = 2(Hτ)−2π2κ2β−1δ(τ − τ ′)
= 2π2κ2 exp(−3Ht)β−1δ(t − t ′) (54)

In the cosmic time Eq. (53) reads

∂2
t φ − exp(−2Ht)�φ + 3H∂tφ + V ′

+8π2κ2 exp(3Ht)U ′
∫

dy∂tU

+24κ2π2H exp(3Ht)U ′
∫

dyU = U ′η

With the neglect of ∂2
t φ (slow-roll) and �φ ( which disap-

pears after a space average in Eq. (53)) we obtain

exp(−3Ht)(3H∂tφ + V ′) + 8π2κ2U ′
∫

dy∂tU

+24κ2π2HU ′
∫

dyU = U ′ exp(−3Ht)η (55)

In the limit of the strong friction (only κ2 terms on the lhs)

∂t

∫
dyU + 3H

∫
dyU = 1

8π2κ2 exp(−3Ht)η

The solution is an Ornstein–Uhlenbeck process
∫

dyUt = exp(−3Ht)
∫

dyU0

+ 1

8π2κ2 exp(−3Ht)
∫ t

0
η(s)ds

such that

〈(∫
dyUt −

〈∫
dyUt

〉) (∫
dy′Ut ′ −

〈∫
dy′Ut ′

〉)〉

= 1

32π2κ2
1

3Hβ
exp(−3Ht − 3Ht ′)

(
1 − exp(−3Hmin(t, t ′))

)

We can see that the classical field in a thermal environ-
ment tends to a diffusion process. We could prove the same
behaviour for the quantum field in a thermal state. It seems
that in both cases the appearance of fluctuations and friction
is crucial for the diffusive behaviour. This phenomenon is
similar to the diffusive behaviour of zero temperature quan-
tum fields in de Sitter space which also results from “friction”
H∂tφ and from quantum fluctuations [15,18,29].

5 Environment in an almost exponential expansion

We consider a flat expanding metric which is close to de
Sitter. For k � aH we may repeat the calculations of Sect. 4

and Ref. [14] leading to an analog of the stochastic equation
(34) (in the cosmic time)

g− 1
2 ∂μg

1
2 gμν∂νφ + V ′ + γ 2U ′∂tU + 3

2
γ 2HU ′U

= U ′g− 1
4 η (56)

with the noise (19). It can be shown that without the friction
terms Eq. (56) is invariant with respect to the general change
of coordinates. With the friction terms even the Lorentz
invariance is violated because in the derivation of Eq. (56)
from Eqs. (2)–(3) we have neglected the spatial derivatives
of χ fields.

Next, we explore χ fields with large k � aH in a confor-
mal time (we follow to some extent our earlier paper [31])

ds2 = a2(dτ 2 − dx2),

where the conformal time τ is

τ =
∫

dta−1.

With a slowly varying H we have approximately

aH = −(1 − ε)−1 1

τ
, (57)

where

ε = −H−2∂t H (58)

(t is the cosmic time).
If the expansion is close to exponential then with the rela-

tion (57) Eq. (3) is
(

∂2
τ − 2

1 − ε

1

τ
∂τ + k2 + 3ηn

(1 − ε)2 τ−2
)

χn

= −λn(Hτ)−2(1 − ε)−2U, (59)

where

3ηn = m2
nH

−2

Let

χn = τα�n (60)

with

α = 1

1 − ε
. (61)

Then
(

∂2
τ + k2 + −2 + 3ηn + ε

(1 − ε)2 τ−2
)

�n

= −λnτ
−α(Hτ)−2(1 − ε)−2U. (62)

We obtain another form of Eq. (3) if we write

χn = τμ�̃n (63)
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with

μ = (1 − ε)−1
(

3

2
− ε

2

)
. (64)

Then

(∂2
τ + τ−1∂τ + k2 − ν2

nτ
−2)�̃n

= −τ−μλn(Hτ)−2(1 − ε)−2U (65)

where

ν2
n = (1 − ε)−2

((
3

2
− ε

2

)2

− 3ηn

)
. (66)

With λn = 0 the solution of Eq. (65) is the Hankel function
[28] �̃n = H (1)

νn (kτ). For a general expanding metric the
solution of a homogeneous Eq. (59) (λn = 0) is

un = τμH (1)
νn

(kτ).

In general, we have a superposition of classical solutions with
different k

χcl
n = An(k)un(k) + A∗

n(k)u
∗
n(k). (67)

The noise is

η = −(Hτ(1 − ε))−2
∑

n

χcl
n (68)

The solution of Eq. (62) with λn = 0 on the rhs is ψν =
τ−α+μHν . Then, the solution of the wave equation (62) for
�n with U (φ) on the rhs is

�n(τ ) = −λn

∫ ∞

τ

G(τ, τ ′)τ ′−α(Hτ ′(1 − ε))−2U (τ ′)dτ ′

(69)

where G is the Green function of the operator on the lhs of
Eq. (62). The Green function can be constructed from the two
independent solutions of the homogeneous equation (62)

ψ1(kτ) = (kτ)−α+μ Jν(kτ), (70)

ψ2(kτ) = (kτ)−α+μYν(kτ), (71)

where from Eqs. (61) and (64)

μ − α = 1

2
. (72)

The Bessel functions J and Y [28] are defined by the Hankel
function H (1)

ν = Jν + iYν . The Green function for τ < τ ′ is

G(τ, τ ′) = w(k)−1(ψ1(kτ)ψ2(kτ
′) − ψ2(kτ)ψ1(kτ

′)),
(73)

where w(k) is the wronskian. If a is close to exponential then
w(k) = 2k

π
. The Green function could also be expressed as

(k2ττ ′)
1
2

π

4ik
(H (1)∗

ν (kτ)H (1)
ν (kτ ′) − H (1)∗

ν (kτ ′)H (1)
ν (kτ))

(74)

We insert the Green function (74) in Eq. (69) in order to
calculate δφ of Eq. (7) for a large time (we use the asymptotic
expansion of Hν [28]). Then

δφτ (x) = κ2(Hτ(1 − ε))−2ταU ′
∫ ∞

τ

G(τ, τ ′)τ ′−α(Hτ ′(1−ε))−2U (τ ′,k)dτ ′ exp(ikx)dk

� κ2(Hτ(1 − ε))−2ταU ′
∫ ∞

τ

k−1 sin(k(τ − τ ′))τ ′−α

(Hτ ′(1 − ε))−2U (τ ′,k)dτ ′ exp(ikx)dk

≡ κ2U ′
∫

K̃ (τ, τ ′;k)U (τ ′,k)dτ ′ exp(ikx)dk (75)

where

K̃ (τ, τ ′; x − y) = κ2(Hτ(1 − ε))−2ταG(τ, τ ′; x − y)

τ ′−α(Hτ ′(1 − ε))−2. (76)

From Eq. (75) there follows the stochastic equation (7)

(∂2
τ φ − �φ − 2τ−1∂τ )φ + V ′(τ (1 − ε)H)−2

= U ′κ2(Hτ(1 − ε))−2τα

×
∫ ∞

τ

G(τ, τ ′)τ ′−α(τ ′H(1 − ε))−2Udτ ′ +U ′η. (77)

In Eq. (77) we have a non-Markovian and non-local fric-
tion term. For a large time G can be approximated by the
first term of Eq. (51). If we assume that only small |x − y|
contribute and expand in this variable then

−U ′(Hτ(1−ε))−2
∫

dτ ′τατ ′−α(Hτ ′(1−ε))−2|x−y|−1

(
δ(τ − τ ′ − |x − y|) − δ(τ − τ ′ + |x − y|)

)
U (τ ′, y)dy

� 2(2 + α)τ−5(H(1 − ε))−4
∫

dyU (τ, y)

+ 2(Hτ(1 − ε))−4U ′
∫

dy∂τU (τ, y). (78)

As a result for a small |x−y| we obtain a stochastic equation
generalizing Eq. (53)

∂2
τ φ − �φ − 2τ−1∂τφ + (τ (1 − ε)H)−2V ′

+8π2κ2U ′(H(1 − ε)τ )−4
∫

dy∂τU

+8(3 + ε)π2κ2τ−5((1 − ε)H)−4U ′
∫

dyU

= U ′η (79)
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The covariance of the noise is equal to an expectation value
with respect to the measure (9)

〈η(x)η(x ′)〉 = (H(1 − ε)τ )−2(H(1 − ε)τ ′)−2κ2
∫

dkdk′ exp(ikx − ik′x′)〈A∗
m(k)An(k′)

τμ− 1
2 τ ′μ− 1

2

(
H (1)∗

ν (kτ)H (1)
ν (kτ ′)

+H (1)∗
ν (kτ ′)H (1)

ν (kτ)
)
〉. (80)

where (as mn = 0)

ν = μ =
3
2 − ε

2

1 − ε
(81)

The asymptotic behaviour of the product of Hankel functions
in Eq. (80) (the leading term) does not depend on ν. Hence,the
approximation (45) still holds true. As a consequence for a
large time we obtain

〈η(τ, x)η(τ ′, y)〉 = (H(1 − ε)τ )−2(H(1 − ε)τ ′)−2

H2π2κ2τμ− 1
2 τ ′μ− 1

2 |x − y|−1

(
sign(|x − y| + τ − τ ′) + sign(|x − y| − τ + τ ′)

)
(82)

In an expanding universe we cannot expect a stationary evo-
lution of the inflaton if H is almost a constant. However, if
in the stochastic equations derived in this paper we insert the
formula for H in terms of the potentials which result from the
slow-roll approximation then we can consider again the time
evolution close to the slow-roll as discussed in [30] but now
with the modified stochastic equation as briefly discussed in
the next section.

6 Einstein–Klein–Gordon system

In this section we are going to determine the Hubble vari-
able H and the expansion scale a as solutions of Einstein
equations. We consider the Lagrangian (1) as a source of the
energy momentum for Einstein equations

Gμν = 8πGTμν (83)

where Gμν is the Einstein tensor.
We consider first the superhorizon case (56) (we gener-

alize the results of [26] from U = φ to general U ). We
eliminate the environmental fields χn . Then, the energy-
momentum

T φ
μν = ∂μφ∂νφ − gμν

(
1

2
∂αφ∂αφ − V

)
(84)

is not conserved. We have

(Tμν
φ );ν = ∂μφ

(
−γ 2U ′∂tU − 3

2
γ 2HU ′U + a− 3

2U ′η
)

(85)

The extra terms on the rhs of Eq. (85) come from the replace-
ment of the χ fields by noise. We can supplement the energy-
momentum (84) by the dark energy-momentum. So that the
total energy density ρφ + ρde is conserved. The energy den-
sity compensating the non-conservation law (85) is defined
by

∂tρde = γ 2(∂tU )2 + 3

4
γ 2H∂tU

2 − a− 3
2 ∂tUη (86)

Now, if we differentiate the Friedmann equation

3

8πG
H2 = ρφ + ρde (87)

then we obtain the same formula as if there were no χ fields
(and no noise)

∂t H = −4πG(∂tφ)2 (88)

Multiplying Eq. (56) by ∂tφ (neglecting the spatial deriva-
tives) and using Eq. (88) we obtain the conservation law

∂t

(
− 3

8πG
H2+ 1

2
(∂tφ)2+V − 3

4
γ 2HU 2− γ 2H

4πG
(U ′)2

)

= −γ 2H

4πG
∂t (U

′)2 + 3Hγ 2

2
∂tU

2+a− 3
2 ∂tUη (89)

If we neglect the rhs of Eq. (89) then this equation determines
H as a function of fields. Equation (89) gives an alternative
formula to the Friedmann equation (87) for expressing H as
a function of φ (we can include U (φ) in the definition of H ;
the neglect of (∂tφ)2 in Eq. (89), which allows to determine
H(φ) can be formulated as an additional requirement for
slow roll besides the one discussed below Eq. (36)). Assume
that the slow roll conditions as formulated in Sect. 4 below
Eq. (36) are satisfied and Eq. (89) defines H(φ) then we can
determine a as a function of φ

a(φ) = exp
∫ t

H = exp(

∫ φ

dφH(φ)(
dφ

dt
)−1)

= exp

(
−

∫
dφH(φ)

(
(3H + γ 2U ′)−1

(
V ′+ 3

2
γ 2HUU ′

))−1
)

(90)

With the explicit functions a(φ) and H(φ) we have now a
complete probabilistic diffusion model (the noise is deter-
mined by Eq. (35)) which allows to determine the Fokker–
Planck equation and calculate the probability distribution of
φ ( forU = φ this problem has been investigated in [26,30]).

Next we consider a modification of the Einstein–Klein–
Gordon system in the subhorizon case. The formalism of
Sect. 5 is not useful for an estimate of the dependence of the
stochastic inflaton equation on the varying H because the
approximation (57) is applicable only for a slowly varying
H . For estimates of the subhorizon k we return to Eqs. (11)–
(13). The solution of the wave equation for a time dependent
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ω is exp(i
∫ t

ω). Then an approximate Green function in
Eqs. (11)–(13) is

sin

(∫ t

s
ω

)
ω−1 (91)

which for a large k is approximated by

sin

(
k

∫ t

s
a−1

)
k−1 (92)

Inserting in Eqs. (2)–(3) the Green function (92) and the wave
functions exp(ik

∫ t a−1) we obtain in the limit |τ − τ ′| �
|x − x′| the stochastic equation

∂2
t φ − a−2�φ + 3H∂tφ + V ′(φ)

+ 2π2κ2aU ′∂t
∫

dyU (t, y)

= H−1
(∫ t

0
a−1

)−1

U ′a−1η (93)

where the noise η has the covariance

〈η(x)η(x ′)〉 = β−1κ2π2δ(t − t ′) (94)

With Eq. (93) we can repeat the argument, which has been
based on Eqs. (56), (83)–(89), in order to express H and a in
terms of φ. The study of the Einstein–Klein–Gordon system
without the assumption |τ − τ ′| � |x− x′| is more involved
and requires a separate investigation because in this case H ,a
and the noise depend on φ in a non-local way.

7 Summary and outlook

We considered a system of non-linear wave equations
describing an interaction of the inflaton φ with other scalar
fields χn . In quantum mechanics if the fields χn are not
observable then we average over the states of χn . As a result
the inflaton is described by a density matrix resulting from
the averaging. The natural state for averaging is the Gibbs
(thermal) state of maximal entropy for the χn fields. Then,
further evolution does not depend on the initial time when the
interaction between the inflaton and the χn fields is switched
in. We discussed the model in the classical limit when the
probability distribution is described by the canonical Hamil-
tonian of the χn fields. In an expanding metric the canonical
Hamiltonian depends on time. However, for large confor-
mal time in models with an expansion close to the exponen-
tial the time-dependence disappears. The average over the
environmental fields is reduced to an average over the ini-
tial values of the χn fields in the Gibbs state. There is some
arbitrariness in the choice of the environment; the number of
fields χn , the couplings λn , the masses mn and the interac-
tion λnχnU (φ) (we choose an interaction linear in the envi-
ronmental fields). We discuss evolution of the inflaton field
in an external expanding metric in two regimes. First, we

choose the increasing masses proportional to couplings and
assume negligible (superhorizon) momenta k � aH of an
infinite set of the environmental fields. These assumptions
after an averaging over χn lead directly to a Markovian wave
equation with a friction and white noise. In such a case the
quantum evolution is described by a master equation of the
Lindblad type. Another (subhorizon) limit discussed in this
paper involves large momenta k � aH and k � mn . The
number of fields χn can be finite. After an averaging we
obtain a wave equation for the inflaton which is non-local
and non-Markovian in the friction and noise. If we restrict
ourselves to correlations 〈φ(τ1, x1) · · · φ(τn, xn)〉 such that
|τ j − τk | � |x j − xk | then the stochastic wave equation has
a Markovian limit as a diffusion wave equation with friction.
This equation is different from the wave equation derived for
low momenta of the environmental fields. Both equations
may coincide in a linearized version after a spatial averag-
ing. In the last section we discussed a determination of the
expansion scale factor a from the Einstein–Klein–Gordon
system of equations. In the superhorizon case it is possible
to obtain a stochastic wave equation with a(φ) and H(φ)

dependent on φ and the noise independent of φ. In such a
case we can calculate all expectation values on the basis of
the Fokker–Planck equation. An interesting problem for fur-
ther studies is the dependence of slow roll conditions and
spectral indices on the interaction U (φ). In the subhorizon
case the noise and a(φ) depend in a non-local way on φ. Only
in the limit of small spatial distances (|x j − xk | � |τ j − τk |)
we are able to derive a Markovian stochastic wave equation
with a(φ) and H(φ) determined by Einstein equations.

In this paper we concentrate our attention on the stochas-
tic equations satisfied (in various regimes) by the inflaton
interacting with an environment. The environment consists
of superhorizon or subhorizon modes of the classical thermal
environmental fields. In [15,16] the subhorizon modes of the
quantum field have been treated as the environment. The envi-
ronmental modes are approximated by a noise. If the noise is
approximately Markovian then the quantum states satisfy the
irreversible Lindblad equation. It is well-known that Lind-
blad equation leads to decoherence (meaning a destruction
of interference of quantum states). The interference is a sub-
stantial obstacle to the classical limit. In the standard model
the large scale structure is formed from quantum fluctuations
[4,21] in the early universe. Hence, in the meantime quantum
fluctuations should become classical. In [32,33] it is shown
that if initially the universe starts from the Gaussian state then
with the time evolution determined by a linear perturbation
theory the resulting squeezed state becomes classical. The
measured CMB fluctuations are indistinguishable from clas-
sical fluctuations. At present, all observations [19,20] show
no departure from Gaussian correlations. However, it may be
that prospective CMB measurements can reveal some non-
Gaussian behavior. Such CMB results could show a destruc-
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tion of interference of states in the early universe and the
role of the environment in their decoherence as discussed in
[34]. The noise in Einstein–Klein–Gordon system plays at
least two roles:it leads to decoherence and it determines the
power spectrum (as calculated in [23] with the quantum noise
taking into account quantum gravitational fluctuations). The
detailed analysis of the contribution of the noise from the
environment to the power spectrum and to higher order cor-
relation functions of the inflanton could give important infor-
mation about the quantum state in an early universe and its
classical limit.
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