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Abstract In this paper, the Hawking–Page phase transi-
tions between the black holes and thermal anti-de Sitter
(AdS) space are studied with the Gauss–Bonnet term in the
extended phase space, in which the varying cosmological
constant plays the role of an effective thermodynamic pres-
sure. The Gauss–Bonnet term exhibits its effects via intro-
ducing the corrections to the black hole entropy and Gibbs
free energy. The global phase structures, especially the phase
transition temperature THP and the Gibbs free energy G, are
systematically investigated, first for the Schwarzschild–AdS
black holes and then for the charged and rotating AdS black
holes in the grand canonical ensembles, with both analytical
and numerical methods. It is found that there are terminal
points in the coexistence lines, and THP decreases at large
electric potentials and angular velocities and also decreases
with the Gauss–Bonnet coupling constant α.

1 Introduction

Black hole thermodynamics is one of the most profound
branches in modern physics, which indicates that a black
hole is not simply a mathematical singularity, but should be
regarded as a complicated physical system with temperature
and entropy [1]. It shows deep relationship among thermody-
namics, classical gravity, and quantum mechanics, and thus
paves the way to our final understanding of quantum gravity
[2].

However, in the first law of black hole thermodynamics,
the lack of the p–V term makes it still somehow different
from traditional thermodynamics. Introducing an effective
pressure is equivalent to adding a new dimension in the ther-
modynamic phase space, so such a theory is usually named
as “black hole thermodynamics in the extended phase space”
[3–9]. In this framework, black hole thermodynamics is stud-
ied in the asymptotic anti-de Sitter (AdS) space with a neg-
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ative cosmological constant Λ. If Λ is allowed to change, it
plays the role of a positive varying thermodynamic pressure
instead of a fixed background,

p = − Λ

8π
= 3

8πl2
, (1)

where l is the curvature radius of the AdS space, and the
conjugate variable of p can be effectively defined as the black
hole thermodynamic volume V . By this means, the missing
p–V term appears in black hole thermodynamics, but turns
out to be V dp, not the usual work term −p dV . Therefore,
the black hole mass should be identified as its enthalpy rather
than internal energy.

In the extended phase space, many remarkable similari-
ties between black holes and non-ideal fluids were discov-
ered, e.g., phase transitions, critical exponents, and equations
of corresponding states [8,9]. These interesting observations
aroused a large number of successive works, and almost all
aspects of black hole physics were reinspected, such as the
van der Waals black hole [10], super-entropic black hole [11],
superfluid black hole [12], reentrant phase transition [13],
heat engine [14], throttling process [15], reverse isoperimet-
ric inequality [16], microscopic structure [17], holographic
entanglement entropy [18], and phase transitions with non-
trivial asymptotic symmetries [19] (see Ref. [20] for reviews
of recent progresses and the references therein). Currently,
the research topics are mainly focusing on the black hole
thermodynamics in various modified gravity theories [21–
29].

One of the most promising modified gravity theories is the
Gauss–Bonnet (GB) gravity (also referred to as the Einstein–
GB gravity), which offers the leading order correction to the
Einstein gravity. The GB term G is exactly the second order
term in the Lagrangian of the most general Lovelock gravity.
Therefore, although G itself is quadratic in curvature ten-
sors, the equations of gravitational fields are still of second
order and naturally avoid ghosts. The GB gravity possesses
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many important physical properties and has been heavily
studied in gravitation [30–38] and cosmology [39–43], also
with emphasis in the extended phase space [44–50].

In a four-dimensional manifold without boundary, the GB
term is reduced to a topological invariant,

∫
d4x

√−g G = χ ,
with χ denoting the Euler characteristic of the manifold. At
this point, the GB term cannot have any dynamic effect in
four dimensions, so it does not influence space-time struc-
ture, horizon area, global charges, and their conjugate poten-
tials. Therefore, the GB term is usually studied in higher-
dimensional physics. However, there is an exception. Albeit
the GB term is irrelevant to dynamics, it does affect the ther-
modynamics of gravitational fields in four dimensions. The
basic reason lies in the fact that, beyond the Bekenstein–
Hawking formula [1], black hole entropy receives a contri-
bution from the GB term [51]. In this sense, the first law
of black hole thermodynamics, the Smarr relation, and all
the issues related to entropy will be modified. Consequently,
black holes can exhibit much richer thermodynamic phenom-
ena, especially in their phase transitions.

Among various black hole phase transitions, one of the
most significant is the Hawking–Page (HP) phase transition
originally studied between a Schwarzschild–AdS black hole
and the thermal AdS space [52]. The black hole thermody-
namics in the AdS space is quite different from that in the
asymptotic Minkowski or de Sitter space. In the AdS space,
large black holes have positive heat capacities and are thus
thermodynamically stable, so they can be in equilibrium with
the thermal background. Below a certain temperature, there
is no black hole solution anymore, and the HP phase tran-
sition happens in the black hole-thermal AdS system. This
phase transition was later widely investigated [53–61], for
example, in the charged AdS [i.e., Reissner–Nordström–AdS
(RN–AdS)] black holes [62,63]. The relevant studies in the
extended phase space can also be found in Refs. [64–67].

The aim of this paper is to study the HP phase transitions in
the GB gravity of the four-dimensional charged and rotating
AdS [i.e., Kerr–Newman–AdS (KN–AdS)] black holes in the
extended phase space (the Schwarzschild–AdS and RN–AdS
black holes will also be carefully considered first). To our
knowledge, this issue has not yet been available in the litera-
ture, and the major reasons are twofold. First, in physics, the
GB gravity is seldom taken seriously in four dimensions; sec-
ond, in mathematics, people always concentrate their atten-
tion to the black holes with simple spherical horizons. In the
present work, we will explain how the GB term influences the
HP phase transitions and show how to overcome the math-
ematical obstacle with the complicated non-spherical hori-
zons. In short, we wish to present a thorough understanding
of the HP phase transitions in the extended phase space in
the GB gravity.

This paper is organized as follows. In Sect. 2, we briefly list
the thermodynamic properties of the KN–AdS black holes

in the extended phase space and generally discuss the HP
phase transition and the GB term. In Sect. 3, the HP phase
transitions of the Schwarzschild–AdS, RN–AdS, and KN–
AdS black holes without and with the GB term are system-
atically investigated in order. For the charged and rotating
black holes, we work in the grand canonical ensemble with
fixed electric potential and angular velocity. We conclude in
Sect. 4. In this paper, we work in the natural system of units
and set c = GN = h̄ = kB = 1.

2 Black hole thermodynamics in the extended phase
space

In this section, we outline the thermodynamic properties of
the KN–AdS black holes in the extended phase space and
discuss the HP phase transition and the GB term in more
detail.

2.1 Thermodynamics of the KN–AdS black holes

The KN–AdS black hole is the most general black hole solu-
tion in four-dimensional AdS space, with the action being

1

16π

∫
d4x

√−g

(

R + 6

l2
− FμνF

μν

)

,

where R is Ricci scalar and Fμν is the electromagnetic tensor.
In the Boyer–Lindquist-like coordinates, the KN–AdS black
hole metric reads

ds2 = −Δr

ρ2

(

dt − a sin2 θ

Ξ
dφ

)2

+ ρ2

Δr
dr2

+ ρ2

Δθ

dθ2 + sin2 θΔθ

ρ2

(

a dt − r2 + a2

Ξ
dφ

)2

, (2)

where

ρ2 = r2 + a2 cos2 θ, Ξ = 1 − a2

l2
, Δθ = 1 − a2

l2
cos2 θ,

Δr = (r2 + a2)

(

1 + r2

l2

)

− 2mr + q2,

and m, q, and a character the mass M , charge Q, and angular
momentum J of the KN–AdS black hole,

M = m

Ξ2 , Q = q

Ξ
, J = aM = am

Ξ2 . (3)

The electromagnetic potential corresponding to the KN–AdS
black hole metric is A = −qr(dt − a sin2 θ dφ)/ρ2. More-
over, Eq. (2) is only valid for a2 < l2. In the limit a2 = l2,
the metric in Eq. (2) will become singular.
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The event horizon radius r+ can be determined as the
largest root of Δr = 0, by which the black hole mass is
expressed as M = [(r2++a2)(r2++l2)+q2l2]/(2r+l2Ξ2). To
avoid naked singularity, r+ must be positive. This condition
sets the lower bound of the KN–AdS black hole mass as
2M2 >

√
4J 2 + Q4 + Q2.

Furthermore, the KN–AdS black hole entropy is obtained
by the Bekenstein–Hawking formula as one quarter of the
event horizon area A,

S = A

4
= π(r2+ + a2)

Ξ
. (4)

Solving r+ from S and using Eqs. (1) and (3), we can reex-
press the KN–AdS black hole mass as a function of the ther-
modynamic quantities, S, p, J , and Q,

M =
√√
√
√ S

4π

[(

1 + πQ2

S
+ 8pS

3

)2

+ 4π2 J 2

S2

(

1 + 8pS

3

)]

.

(5)

Differentiating Eq. (5) yields the first law of black hole
thermodynamics in the extended phase space,

dM = T dS + V dp + Φ dQ + Ω dJ, (6)

where T , V , Φ, and Ω are the Hawking temperature, ther-
modynamic volume, electric potential, and angular velocity
of the KN–AdS black holes respectively,

T =
(

∂M

∂S

)

p,J,Q
= 1

8πM

[(

1 + πQ2

S
+ 8pS

3

)

(

1 − πQ2

S
+ 8pS

)

− 4π2 J 2

S2

]

, (7)

V =
(

∂M

∂p

)

S,J,Q
= 2S2

3πM

(

1 + πQ2

S
+ 8pS

3
+ 2π2 J 2

S2

)

,

(8)

Φ =
(

∂M

∂Q

)

S,p,J
= Q

2M

(

1 + πQ2

S
+ 8pS

3

)

, (9)

Ω =
(

∂M

∂ J

)

S,p,Q
= π J

MS

(

1 + 8pS

3

)

. (10)

Moreover, in Eq. (6), the p–V term has the form of V dp
but not −p dV , so the KN–AdS black hole mass M should
be essentially identified as its enthalpy instead of internal
energy. Furthermore, the Smarr relation, as the integral form
of Eq. (6), can be obtained by a scaling argument, M =
2T S − 2pV + ΦQ + 2Ω J .

2.2 HP phase transition

With quantum effects taken into account, a black hole not
only absorbs but also emits energy to external environment
via the Hawking radiation mechanism [68]. The exchange
of energy will establish the thermal equilibrium at a fixed
temperature between a stable black hole (with positive heat
capacity) and the thermal AdS space.

On the one hand, as we have seen in Sect. 2.1, the black
hole mass should be regarded as enthalpy in the extended
phase space, so the thermodynamic potential of interest turns
out to be the Gibbs free energy. Due to the conservations of
charge and angular momentum, it is not possible for a charged
or rotating black hole to undergo the HP phase transition to
the thermal AdS space, which carries no charge or angular
momentum. As a result, any discussion of the HP phase tran-
sitions of the KN–AdS black holes must be carried out in a
grand canonical ensemble, in which the electric potential Φ

or angular velocity Ω is fixed and the charge Q or angular
momentum J is allowed to vary. Therefore, the Gibbs free
energy should be constructed as

G(T, p, Φ,Ω) = M − T S − ΦQ − Ω J. (11)

On the other hand, since the gravitational potential of the AdS
space increases at large distances, acting as a box of finite
volume, the total energy of thermal AdS space is finite, and its
Gibbs free energy is zero. Because the thermal equilibrium
condition corresponds to the global minimum of the Gibbs
free energy, the criterion of the HP phase transition is that
the Gibbs free energy of the black hole vanishes,

G = 0. (12)

The condition in Eq. (12) fixes the HP phase transition
temperature THP. It will be shown in Sect. 3 that the Gibbs
free energies of black holes decrease with temperature. Con-
sequently, above THP, the configuration of the black hole with
negative Gibbs free energy is thermodynamically preferred;
below THP, the thermal AdS phase with vanishing Gibbs free
energy is preferred and is thus stable against collapse to a
black hole. This counterintuitive observation indicates that
the thermal AdS space behaves more like a solid rather than
an ordinary gas.

2.3 GB term

The action of the KN–AdS black hole in the GB gravity reads

1

16π

∫
d4x

√−g

(

R + 6

l2
− FμνF

μν + αG
)

,
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with

G := RμνλρR
μνλρ − 4RμνR

μν + R2

being the GB term, where Rμνλρ is the Riemann tensor, Rμν

is the Ricci tensor, and α is the GB coupling constant.
With the GB term, the KN–AdS black hole entropy can

be attained via an integral over the event horizon of the Ricci
scalar R̃ of the two-dimensional induced metric [51],

S = 1

4

∫
dθdφ

√
h̃
(
1 + 2α R̃

)
, (13)

where h̃ = (r2+ + a2) sin θ/Ξ is the determinant of the
induced metric. A straightforward integral shows that the
correction to the black hole entropy in Eq. (13) is neatly
4πα, independent of the horizon radius and shape. This is
not surprising, as it is a natural result of the Gauss–Bonnet
theorem applied to the two-dimensional horizon, so the inte-
gral of R̃ simply corresponds to its Euler characteristic. As a
result,

S = A

4
+ 4πα = π(r2+ + a2)

Ξ
+ 4πα. (14)

Furthermore, from Eq. (11), the Gibbs free energy of the
KN–AdS black hole should also receive a correction with
the GB term,

G(T, p, Φ,Ω, α) = G(T, p, Φ,Ω) − 4παT . (15)

Equations (14) and (15) reflect two fundamental effects of
the GB term on black hole thermodynamics.

In extra-dimensional physics without compactification,
the GB coupling constant α is proportional to the inverse
string tension with positive coefficient [69], so it is always
positive. However, in four dimensions, as the GB term is a
topological invariant and does not affect space-time, α is

free to be chosen both positive and negative. Actually, it
was pointed out that, only if α is allowed to be negative,
can there be a reentrant phase transition [67]. Furthermore,
the positivity of entropy in Eq. (14) sets a lower bound of
α, α > −(r2+ + a2)/(4Ξ). Whereas, for positive α, if it is
below an upper bound, the HP phase transition can happen;
if not, no HP phase transition, all to be carefully explained
in Sect. 3.

Last, since α possesses a dimension of [length]2, it can be
regarded as a thermodynamic variable. From Eqs. (5), (7),
and (14), the conjugate potential of α is

X =
(

∂M

∂α

)

S,p,J,Q
= (∂M/∂S)r+,p,J,Q

(∂α/∂S)r+,p,J,Q
= −4πT . (16)

Hence, the first law of black hole thermodynamics and the
Smarr relation are extended to dM = T dS+V dp+Φ dQ+
Ω dJ + X dα and M = 2T S − 2pV + ΦQ + 2Ω J + 2Xα.
Attention, this does not mean that M depends on α. The GB
term has no dynamic effect in four dimensions, so the black
hole mass remains invariant. In fact, the terms X dα in dM
and 2Xα in M exactly compensate the corrections in S in Eq.
(14). Therefore, we can directly obtain the relevant formulae
in the GB gravity with α, simply by replacing S to S − 4πα

in Eqs. (5), (7), (9), and (10),

M =
√√
√
√ S − 4πα

4π

{[

1 + πQ2

S − 4πα
+ 8p

3
(S − 4πα)

]2

+ 4π2 J 2

(S − 4πα)2

[

1 + 8p

3
(S − 4πα)

]}

, (17)

T = 1

8πM

{[

1 + πQ2

S − 4πα
+ 8p

3
(S − 4πα)

] [

1 − πQ2

S − 4πα
+ 8p(S − 4πα)

]

− 4π2 J 2

(S − 4πα)2

}

, (18)

Φ = Q

2M

[

1 + πQ2

S − 4πα
+ 8p

3
(S − 4πα)

]

, (19)

Ω = π J

M(S − 4πα)

[

1 + 8p

3
(S − 4πα)

]

. (20)

3 HP phase transitions in the GB gravity

In this section, we study the HP phase transitions of the
Schwarzschild–AdS, RN–AdS, and KN–AdS black holes in
the GB gravity in order. In each case, we discuss the rel-
evant issues first without and then with the GB term. For
the simple Schwarzschild–AdS and RN–AdS black holes,
analytical solutions are given, so as to present clear mathe-
matical description. However, for the complicated KN–AdS
black, only numerical results are shown diagrammatically for
intuitive physical comprehension.

The basic strategy of our calculations consists of two steps.
First, at the HP phase transition point, we substitute Eqs.
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(17)–(20) into the criterion in Eq. (12) to obtain the black
hole entropy S in terms of p, Φ, Ω , and α. By this means,
the HP phase transition temperature THP can be determined.
Second, we solve S from Eq. (18) as a function of T and
substitute it into Eq. (11) to obtain the black hole Gibbs free
energy at arbitrary temperature and pressure. Compared with
the vanishing Gibbs free energy of the thermal AdS space,
the global phase structures of the HP phase transitions can
finally be achieved. In brief, we utilize the black hole entropy
S as the intermediate variable in all calculations.

We should stress that this method is different from the
frequently-used ones in the literature (i.e., express every-
thing as a function of the horizon radius r+). The dif-
ference between these two methods is not evident for the
Schwarzschild–AdS and RN–AdS black holes with simple
spherical horizons, but is essential for the KN–AdS black
holes without spherical horizons. In this circumstance, the
calculations via r+ are usually rather tedious and even prob-
lematic, and the method via S will prove systematic and effi-
cient.

3.1 HP phase transitions of the Schwarzschild–AdS black
holes

The HP phase transitions of the Schwarzschild–AdS black
holes in the GB gravity have been explored in the literature.
However, there still remains some subtlety to be clarified, so
we discuss them both for completeness and as a demonstra-
tion of our calculational method. The same procedure will
be applied to the more complicated black hole solutions, and
the results below will be taken for comparison in Sects. 3.2
and 3.3.

First, we begin our discussions without the GB term. For
the Schwarzschild–AdS black holes, Eqs. (17) and (18) are
reduced to

M =
√

S

4π

(

1 + 8pS

3

)

, (21)

T = 1√
16π S

(1 + 8pS), (22)

so the Gibbs free energy is

G = M − T S =
√

S

16π

(

1 − 8pS

3

)

. (23)

Hence, at the HP phase transition point, from the criterion
in Eq. (12), we obtain S = 3/(8p). Substituting it into Eq.
(22), the HP phase transition temperature is

THP =
√

8p

3π
. (24)

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.0

0.1

0.2

0.3

0.4

THP

p

 = 0

Schwarzschild-AdS
black hole

thermal AdS

Fig. 1 The HP phase transition temperature of the Schwarzschild–AdS
black holes as a function of pressure. There is no terminal point in the
coexistence line, and the HP phase transition can happen at all pressures.
The thermal AdS phase lies below the coexistence line, acting as a solid
in the HP phase transition

Naturally, this is just the equation of coexistence line in the
T –p phase diagram, as shown in Fig. 1. Since p has no bound
in Eq. (24), there is no terminal point in the coexistence line,
and the HP phase transition can happen at all pressures, with-
out a critical point. Therefore, it is more like a solid–liquid
phase transition, rather than a liquid–gas phase transition.
Interestingly, the thermal AdS phase even plays the role of a
solid, as it lies below the coexistence line [20].

Next, from Eq. (22), we can solve S in terms of T and p,

S(T, p) = 1

8p2

(

πT 2 − p ± T
√

π2T 2 − 2πp

)

, (25)

where ± correspond to large and small black holes respec-
tively (with large and small entropies and horizon radii). The
S–T curves are plotted in Fig. 2. As the heat capacity at con-
stant pressure is Cp = T (∂S/∂T )p, from the slopes of the
S–T curves, we see that large black holes are thermodynam-
ically stable with positive Cp, but small ones are unstable
with negative Cp and thus cannot establish the equilibrium
with the thermal AdS space. Moreover, from Eq. (25), the
Schwarzschild–AdS black hole temperature must have a pos-
itive minimum,

T0 =
√

2p

π
.

Actually, (T0, S(T0)) = (
√

2p/π, 1/(8p)) is just the meet-
ing point of the S–T curves for large and small black holes
in Fig. 2.

Substituting Eq. (25) into (23), the Gibbs free energies of
large and small Schwarzschild–AdS black holes at arbitrary
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S

T

p = 1/(96π)  LBH
p = 1/(96π)  SBH
p = 1/(48π)  LBH
p = 1/(48π)  SBH
p = 1/(24π)  LBH
p = 1/(24π)  SBH

 = 0

T0 = 1/(4√3π)

T0 = 1/(2√6π)

T0 = 1/(2√3π)

Fig. 2 The entropies of the Schwarzschild–AdS black holes as a func-
tion of temperature (LBH and SBH stand for large and small black
holes). The large black holes have positive heat capacities and are
thermodynamically stable, and small ones are on the contrary. At a
given pressure p, the black hole temperature has a positive minimum,
T0 = √

2p/π

temperature and pressure are obtained as

G(T, p) =
√

πT 2 − p ± T
√

π2T 2 − 2πp

24
√

2π p2

×
(

4p − πT 2 ∓ T
√

π2T 2 − 2πp

)

. (26)

The G–T curves are shown in Fig. 3. The two branches of
the curves correspond to large and small black holes, meeting
with a cusp at (T0,G(T0)) = (

√
2p/π, 1/(12

√
2πp)). We

observe that both Gibbs free energies of large and small black
holes decrease with temperature. For the unstable small black
holes, the G–T curves are concave and will never reach the
T -axis (G only tends to 0 when T → ∞), so there is no HP
phase transition. On the contrary, for the stable large black
holes, their G–T curves are convex and will cross the T -axis
at the HP phase transition temperatures THP. With p increas-
ing, THP moves rightward, indicating that THP increases at
high pressures, consistent with Fig. 1. Setting G = 0 in Eq.
(26), we recover the result of THP in Eq. (24). Below THP,
the vanishing Gibbs free energy of the thermal AdS space is
lower than that of the large black hole; above THP, the Gibbs
free energy of the large black hole becomes negative and is
thus lower than that of the thermal AdS space. As a result,
there is a discontinuity in the first order derivatives of the
Gibbs free energies of the black hole-thermal AdS system,
corresponding to a first order phase transition at THP.

Since the unstable small black holes have no HP phase
transition and more importantly cannot be in equilibrium
with the thermal AdS space at all, we will omit the related
discussions on them in the GB gravity below.

0.04 0.06 0.08 0.10 0.12

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

SBH
G

T

p = 1/(96π)  LBH
p = 1/(96π)  SBH
p = 1/(48π)  LBH
p = 1/(48π)  SBH
p = 1/(24π)  LBH
p = 1/(24π)  SBH

 = 0

thermal
   AdS

LBH

THP

T0

Fig. 3 The Gibbs free energies of large and small Schwarzschild–AdS
black holes at arbitrary temperature and pressure. The G–T curves of
the thermal AdS space and the stable large black holes intersect at the
HP phase transition temperature THP, which increases at large pressures.
Below or above THP, the thermal AdS or the large black hole phase is
globally preferred. The G–T curves of the unstable small black holes
are always above the T -axis, so the HP phase transition never happens

Now, we take into account the GB term and discuss
its effects on the HP phase transitions. In the GB gravity,
from Eqs. (17) and (18), the mass and temperature of the
Schwarzschild–AdS black hole should be modified to

M =
√

S − 4πα

4π

[

1 + 8p

3
(S − 4πα)

]

, (27)

T = 1√
16π(S − 4πα)

[1 + 8p(S − 4πα)] , (28)

so the Gibbs free energy becomes

G =
√
S − 4πα

16π

(
S − 8πα

S − 4πα
− 8pS

3
− 64παp

3

)

. (29)

Therefore, at the HP phase transition point, for large black
holes, from Eq. (29), we have

S = 1

16p

(

3 − 32παp +
√

9 − 960παp + 9216π2α2 p2

)

.

Substituting it into Eq. (28), we obtain the HP phase transition
temperature as

THP =
√

p

4π

5 − 96παp + √
9 − 960παp + 9216π2α2 p2

√
3 − 96παp + √

9 − 960παp + 9216π2α2 p2
.

(30)

This result is naturally reduced to Eq. (24) if α vanishes.
Moreover, THP is a decreasing function of α. Thus, if the HP
phase transition can happen, α should have an upper bound,
such that THP > T0, to be explained in more detail below.
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Furthermore, from Eqs. (28) and (25), we can solve S in
terms of T , p, and α,

S(T, p, α) = S(T, p) + 4πα, (31)

so there is only a shift 4πα in entropy, as expected in Eq. (14).
Besides, the minimal black hole temperature, T0 = √

2p/π ,
remains unchanged in the presence of α.

Then, substituting Eq. (31) into (29) and using Eq. (26), the
Gibbs free energy of large Schwarzschild–AdS black holes
with the GB term is

G(T, p, α) = G(T, p) − 4παT . (32)

Therefore, G decreases with α, leading to a lower THP.
Before plotting the coexistence lines and the G–T curves

for the Schwarzschild–AdS black holes with the GB term, a
crucial issue must be carefully elucidated, that is, the lower
and upper bounds of the GB coupling constant α. The bounds
of α come from the two corrections by the GB term to the
black hole entropy and Gibbs free energy: S + 4πα and
G − 4παT . On the one hand, α cannot be too negative,
otherwise the minimum of S would be negative, in contra-
diction to the positivity of entropy; on the other hand, if the
HP phase transition happens, α cannot be too positive either,
otherwise the maximum of G would be negative, even lower
than the Gibbs free energy of the thermal AdS space.1 First,
from Eq. (31), S > S(T0) = 1/(8p) + 4πα > 0, so α

has a lower bound, α > −1/(32πp), consistent with the
condition α > −r2+/4 in Sect. 2.3. Second, because the
Gibbs free energy is a monotonically decreasing function
of temperature, the maximum of G should be evaluated as
G(T0) = 1/(12

√
2πp) − 4

√
2πpα. This value should be

positive if there exists the HP phase transition, so it sets an
upper bound of α, α < 1/(96πp). Altogether, in the pres-
ence of the HP phase transition, α has both lower and upper
bounds simultaneously,

− 1

32πp
< α <

1

96πp
. (33)

Moreover, the bounds in Eq. (33) automatically satisfy the
requirements that the terms inside the square roots must be
positive in Eq. (30).

The bounds of α cause significant difference between
the coexistence lines of the Schwarzschild–AdS black holes
without and with the GB term. From Eq. (33),

1 Of course, we do not state that there is some physical principle that
would guarantee the existence of the HP phase transition. We only mean
that, if the HP phase transition happens, α must have lower and upper
bounds at the same time.
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Fig. 4 The HP phase transition temperature of the Schwarzschild–AdS
black holes with the GB term as a function of pressure. At a fixed
pressure p, THP decreases with α. There is an upper bound of p, p <

1/(96πα) for positive α or p < −1/(32πα) for negative α, resulting
in the terminal points in the coexistence lines

p < pmax = 1

96πα
(for α > 0),

p < pmax = − 1

32πα
(for α < 0). (34)

Therefore, unless α = 0, no matter how positive or negative
it is, there is a corresponding upper bound of pressure. As
a result, there must be terminal points in the coexistence
lines, and the HP phase transitions can happen only below
the critical pressures pmax. From Eq. (30), the coexistence
lines of the Schwarzschild–AdS black holes with the GB term
are plotted in Fig. 4, with different values of α. Moreover,
we find that THP decreases with α at a fixed pressure.

Last, the G–T curves of large Schwarzschild–AdS black
holes with the GB term are shown in Fig. 5, with different
values of α. According to Eq. (32), all these curves set off
from the same minimal temperature T0 = √

2p/π , and the
effect of the GB term is just to proportionally translate the
G–T curves downward when α increases, inducing a lower
THP, consistent with Fig. 4.

3.2 HP phase transitions of the RN–AdS black holes

We continue to study the HP phase transitions of the RN–AdS
black holes in the GB gravity. This issue was mentioned in
Ref. [67], but the corresponding discussions were actually
absent, so we reconsider this problem in more detail. In prin-
ciple, the procedure is in parallel to that in Sect. 3.1, but this
does not mean that the whole process is merely a repetition.
There is an intrinsic difference in between. Due to the conser-
vation of charge, the RN–AdS black hole with fixed charge
cannot undergo the HP phase transition to the thermal AdS
space without charge. Consequently, the discussion of the
HP phase transition of the RN–AdS black holes should per-
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Fig. 5 The Gibbs free energy of large Schwarzschild–AdS black holes
as a function of temperature, with a fixed pressure p = 1/(48π) and
different values of α. All the G–T curves start from the same minimal
temperature T0 = 1/(2

√
6π) and move downward with α increasing,

so THP decreases with α

formed in the grand canonical ensemble, in which the electric
potential Φ is fixed and the charge Q is allowed to change.

From Eq. (2), the metric of the RN–AdS black hole is

ds2 = − f (r) dt2 + dr2

f (r)
+ r2 dθ2 + r2 sin2 θ dφ2,

with f (r) = 1 − 2M/r + Q2/r2 + 8πpr2/3. The hori-
zon radius is determined by f (r+) = 0, and in the limit
of a vanishing cosmological constant (i.e., p → 0), r+ =
M + √

M2 − Q2. Hence, we have Q < M , so the electric
potential at the horizon must satisfy

Φ = Q

r+
= Q

M + √
M2 − Q2

<
Q

M
< 1.

Therefore, we focus on the fixed electric potential ensemble
with Φ < 1 in the following discussions.

First, for the RN–AdS black holes without the GB term,
from Eqs. (17)–(19), we have

M =
√

S

4π

(

1 + Φ2 + 8pS

3

)

, (35)

T = 1√
16π S

(1 − Φ2 + 8pS), (36)

Φ = Q

√
π

S
, (37)
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 = 0

Fig. 6 The HP phase transition temperature of the RN–AdS black
holes as a function of pressure, with different values of Φ. The HP
phase transition can happen at all pressures, and THP decreases with Φ

at a fixed pressure

where the variable Q in M and T has been replaced to Φ by
virtue of Eq. (37). Therefore, the Gibbs free energy of the
RN–AdS black holes in the grand canonical ensemble reads

G = M − T S − ΦQ =
√

S

16π

(

1 − Φ2 − 8pS

3

)

. (38)

At the HP phase transition point, from Eq. (38), we have
S = 3(1−Φ2)/(8p). Substituting it into Eq. (36), we obtain
the HP phase transition temperature of the RN–AdS black
holes as

THP =
√

8p

3π
(1 − Φ2). (39)

This result naturally is reduced to Eq. (24) if Φ or Q vanishes,
and again there is no bound of p, so the HP phase transition
can happen at all pressures. The coexistence lines are shown
in Fig. 6, with different values of Φ, and at a given pressure,
THP is found to decrease with Φ.

Furthermore, from Eq. (36), we can again solve S in terms
of T , p, and Φ,

S(T, p, Φ) = 1

8p2

[
πT 2 − p(1 − Φ2)

± T
√

π2T 2 − 2πp(1 − Φ2)
]
. (40)

Then, at a given pressure p, there is also a minimum of the
RN–AdS black hole temperature,

T0 =
√

2p

π
(1 − Φ2), (41)
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Fig. 7 The entropies of large and small RN–AdS black holes as a func-
tion of temperature, with a fixed pressure p = 1/(48π) and different
values of Φ. Similar to the Schwarzschild–AdS black holes with the
minimal temperatures T0 = √

2p/π , the RN–AdS black hole temper-
ature also has its minimum T0 = √

2p(1 − Φ2)/π , corrected by the
electric potential

and the S–T curves of the RN–AdS black holes are shown
in Fig. 7, which are qualitatively similar to those of the
Schwarzschild–AdS black holes in Fig. 2.

Next, substituting Eq. (40) into (38), the Gibbs free energy
of the RN–AdS black holes at arbitrary temperature and
pressure in the grand canonical ensemble can be obtained
straightforwardly,

G(T, p, Φ)

=
√

πT 2 − p(1 − Φ2) ± T
√

π2T 2 − 2πp(1 − Φ2)

24
√

2π p2
[

4p(1 − Φ2) − πT 2 ∓ T
√

π2T 2 − 2πp(1 − Φ2)

]

,

which is a natural extension of Eq. (26). The G–T curves
are plotted in Fig. 8, with different values of Φ. We clearly
observe two features: first, the HP phase transition tempera-

ture THP decreases with Φ, as expected in Eq. (39); second,
the RN–AdS black hole temperature T also has a minimum
T0, as explained above.

0.04 0.06 0.08 0.10 0.12 0.14
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 = 0  p = 1/(48π)

T0

Fig. 8 The Gibbs free energy of the RN–AdS black holes as a function
of temperature, with a fixed pressure p = 1/(48π) and different values
of Φ. THP decreases with Φ, and the RN–AdS black holes have minimal
temperatures T0

Below, for the HP phase transition of the RN–AdS black
holes with the GB term, we repeat the above calculations,
by replacing S to S − 4πα in Eqs. (35)–(37), and the corre-
sponding results of M , T , and Φ are

M =
√
S − 4πα

4π

[

1 + Φ2 + 8p

3
(S − 4πα)

]

,

T = 1√
16π(S − 4πα)

[1 − Φ2 + 8p(S − 4πα)],

Φ = Q

√
π

S − 4πα
.

Then, the Gibbs free energy reads

G =
√
S − 4πα

16π

[
S − 8πα

S − 4πα
(1 − Φ2) − 8pS

3
− 64παp

3

]

,

Hence, the HP phase transition temperature can be extracted
as before,

THP =
√

p

4π

5(1 − Φ2) − 96παp + √
9(1 − Φ2)2 − 960παp(1 − Φ2) + 9216π2α2 p2

√
3(1 − Φ2) − 96παp + √

9(1 − Φ2)2 − 960παp(1 − Φ2) + 9216π2α2 p2
.

Furthermore, expressing S in terms of T , p, Φ, and α,

S(T, p, Φ, α) = S(T, p, Φ) + 4πα,
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Fig. 9 The HP phase transition temperature of the RN–AdS black
holes with the GB term as a function of pressure, with Φ = 0.5 and
different values of α. THP decreases with α at a given pressure, and
there are terminal points in the coexistence lines, both as same as the
Schwarzschild–AdS case in Fig. 4

we finally arrive at the Gibbs free energy of the RN–AdS
black holes with the GB term in the grand canonical ensem-
ble,

G(T, p, Φ, α) = G(T, p, Φ) − 4παT .

The explicit expressions of S(T, p, Φ, α) and G(T, p, Φ, α)

are omitted due to their unnecessary formal complexities.
Again, before plotting the coexistence lines and the G–T

curves for the RN–AdS black holes with the GB term, the
bounds of α must be determined with care. Similar to the
case of the Schwarzschild–AdS black holes, if the HP phase
transition happens, there are both lower and upper bounds
of α, which can easily be obtained via the same analysis in
Sect. 3.1,

−1 − Φ2

32πp
< α <

1 − Φ2

96πp
.

The coexistence lines of the RN–AdS black holes are
shown in Fig. 9, with Φ = 0.5 and different values of α.
We see that THP decreases with α at a given pressure, and
this trend is the same as the Schwarzschild–AdS case. Also,
there are terminal points in the coexistence lines, with the
critical pressures, pmax = (1 − Φ2)/(96πα) for α > 0 and
pmax = −(1 − Φ2)/(32πα) for α < 0.

The G–T curves of the RN–AdS black holes are plotted
in Fig. 10, with Φ = 0.5, p = 1/(48π), and different values
of α. We observe that THP decreases with α, consistent with
the analysis of the coexistence lines in Fig. 9. Moreover, all
the G–T curves set out from the same minimal temperature
T0, as indicated in Eq. (41).

Till now, we have investigated in detail the HP phase
transitions of the RN–AdS black holes with the GB term
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Fig. 10 The Gibbs free energy of large RN–AdS black holes as a func-
tion of temperature, with Φ = 0.5, p = 1/(48π), and different values
of α. All the G–T curves start from the same minimal temperature
T0 = 1/(4

√
2π), analogous to the Schwarzschild–AdS case in Fig. 5

in the grand canonical ensemble with fixed electric poten-
tial. In general, there are clear similarities between the
Schwarzschild–AdS and RN–AdS black holes, and these can
be seen in the coexistence lines in Figs. 4 and 9 and the G–T
curves in Figs. 5 and 10.

3.3 HP phase transitions of the KN–AdS black holes

Finally, we present the complete picture of the HP phase
transitions of the most general KN–AdS black holes in the
GB gravity. Because rotation breaks the spherical symme-
try of horizon topology, the calculational difficulties greatly
increase. Therefore, we jump the step for the rotating Kerr–
AdS black holes and proceed directly to the charged and rotat-
ing KN–AdS black holes, as their complexities are almost
the same. In fact, most of the calculations deal with the alge-
braic equations of S of degrees higher than four that cannot
be solved analytically, so all the results below are obtained
numerically, that is, everything will be illustrated diagram-
matically. We work in the grand canonical ensemble with
fixed electric potential and angular velocity and concentrate
on the G–T curves of large KN–AdS black holes for sim-
plicity.

Without the GB term, all the relevant physical variables are
listed in Eqs. (5), (7), (9), and (10). By the same procedure as
before, we obtain the Gibbs free energy of the KN–AdS black
holes, and the G–T curves are plotted in Fig. 11a, b, with
different values of Φ and Ω . We find that THP decreases with
both Φ and Ω at a given pressure. This feature is qualitatively
similar to that of the RN–AdS black holes.

Adding the GB term makes the situation more compli-
cated, and the G–T curves are plotted in Fig. 12, with
Φ = 0.5, Ω = 0.15, and different values of α. We observe
that THP again decreases with α, with Φ and Ω fixed. There is
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Fig. 11 The Gibbs free energy of large KN–AdS black holes as a func-
tion of temperature, with pressure p = 1/(48π). THP decreases with
both Φ and Ω , with the detailed values of Φ and Ω listed in each panel.
The KN–AdS black holes also have the minimal temperatures T0, and
G(T0) decreases with Φ but increases with Ω

still a minimal temperature T0 for the KN–AdS black holes
with the GB term. As a result, there exist both lower and
upper bounds of α, if the HP phase transition happens. Also,
all the G–T curves set off from the same minimal temper-
ature T0. In summary, the characteristics of the KN–AdS
black holes with the GB term are still analogous to those of
the Schwarzschild–AdS and RN–AdS black holes.

Here, we should make an important comment on our
numerical technology. In the calculations, we first express
M , T , Φ, and Ω in terms of S and then utilize S as the
intermediate variable in calculating THP and G, instead of
the horizon radius r+. This difference is not evident for the
Schwarzschild–AdS and RN–AdS black holes with spheri-
cal horizons, but is distinct for the KN–AdS black holes with
non-spherical ones. In the latter case, if we express physical
quantities in terms of r+, we have to use the variables q and
a. Unfortunately, they are again related to Ξ = 1 − a2/ l2

and cannot be regarded as independent variables. Therefore,
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Fig. 12 TheG–T curves of the KN–AdS black holes with the GB term,
with Φ = 0.5, Ω = 0.15, and p = 1/(48π). THP decreases with α,
and all the curves start from the same minimal temperature T0 = 0.049.
These behaviors are very similar with those of the Schwarzschild–AdS
and RN–AdS black holes with the GB term

the calculations by virtue of r+, q, and a in the KN–AdS case
are not only inconvenient, but also very dangerous to lead to
false conclusions (e.g., without the GB term, the HP phase
transition could happen only below a critical pressure, but
actually they can happen at all pressures).

4 Conclusion

The GB gravity is the minimal extension of the Einstein grav-
ity, including the latter as the low energy and small curvature
limit. In four-dimensions, the GB term is a topological invari-
ant and is thus trivial to gravitational dynamics. However, it
influences black hole thermodynamics via introducing the
corrections to the black hole entropy and Gibbs free energy
as S + 4πα and G − 4παT . Therefore, the GB term signifi-
cantly affects one of the most important issues in black hole
thermodynamics—the HP phase transition between a stable
black hole and the thermal AdS space.

In this paper, the HP phase transitions of the Schwarz-
schild–AdS, RN–AdS, and KN–AdS black holes in the
extended phase space are systematically investigated in the
GB gravity. In the extended phase space, the cosmological
constant in the AdS space is effectively interpreted as a vary-
ing thermodynamic pressure p. Then, the HP phase transition
temperature THP as a function of p and the Gibbs free energy
G as a function of T are calculated in detail. For the charged
and rotating black holes, we work in the grand ensemble with
fixed electric potential Φ and angular velocity Ω . The basic
conclusions of our work can be drawn as follows.

(1) The HP phase transition temperature THP is an increasing
function of p. Below or above THP, the thermal AdS or
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large black hole phase is thermodynamically preferred,
meaning that the thermal AdS phase is more like a solid
rather than a gas in the extended phase space. For charged
and rotating black holes, both Φ and Ω decrease THP.
When the GB term is taken into account, the GB cou-
pling constant α also decreases THP, because it induces a
correction −4παT in the Gibbs free energy, and the G–
T curves thus move downward and intersect the T -axis
at lower temperatures.

(2) For the black hole temperature, in the Schwarzschild–
AdS case, there is a positive minimum T0 = √

2p/π ,
and in the RN–AdS and KN–AdS cases, the minimal
black hole temperatures still exist and are modified by
Φ and Ω . T0 is determined by the meeting point of the
two branches of the S–T curves of the stable large black
holes and the unstable small ones, and it is unchanged in
the GB gravity.

(3) If the HP phase transition happens, the two corrections
from the GB term, S + 4πα and G − 4παT , give rise to
both lower and upper bounds of α and the corresponding
upper bounds of p. Hence, there are terminal points in the
coexistence lines. If α is beyond these bounds, either the
black hole entropy becomes negative, or there appears
some other phase behavior instead of the HP phase tran-
sition.

In summary, the physical properties of the HP phase tran-
sitions of the Schwarzschild–AdS, RN–AdS, and KN–AdS
black holes in the GB gravity are qualitatively analogous.
Generally speaking, electric potential, angular velocity, and
the GB term reduce the HP phase transition temperature, and
if the HP phase transition happens, the GB coupling constant
α will have both lower and upper bounds. Altogether, we
hope to present a whole picture of the HP phase transitions
in the extended phase space in the GB gravity. As we have
seen, even in the simplest Schwarzschild–AdS case, there is
still some interesting issue to be explored.
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A HP phase transitions of the RN–AdS black holes in the
canonical ensemble with fixed charge

In the previous sections, we discuss the HP phase transitions
in the grand canonical ensembles with fixed electric poten-
tial and angular velocity. If the thermal AdS space can carry
charge and angular momentum, the relevant investigations
can also be performed in the canonical ensembles with fixed
charge and angular momentum. Below, we take the RN–AdS
black holes with fixed charge as an example to briefly show
the details. In other words, we use charge Q in the calcula-
tions instead of electric potential Φ.

First, for the RN–AdS black holes without the GB term,
the THP–p curves and the G–T curves are plotted in Fig.
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Fig. 13 The THP–p and G–T curves of the RN–AdS black holes with-
out the GB term in the canonical ensemble with fixed charge
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Fig. 14 The THP–p and G–T curves of the RN–AdS black holes with
the GB term in the canonical ensemble with fixed charge

13, with different values of Q. We observe that, (1) there
is no bound of p, and the HP phase transitions can happen
at all pressures; (2) at a given pressure, THP increases with
Q; (3) the black hole temperature T can reach zero, without
lower bound (for the Schwarzschild–AdS black hole, there
is a minimal black hole temperature T0).

Next, for the RN–AdS black holes with the GB term, the
THP–p curves and the G–T curves are plotted in Fig. 14, with
fixed charge Q = 1 and different values of α. We find that,
(1) THP decreases with α at a given pressure; (2) there is only
a terminal point in the THP–p curve for negative α but none
for positive α, different from the Schwarzschild–AdS case
with terminal points for any non-vanishing α; (3) all the G–
T curves start out from the same point at zero temperature,
rather than from the different points at (T0,G(T0)) in the
Schwarzschild–AdS case.

All the significant differences between the Schwarz-
schild–AdS and RN–AdS cases stem from the basic fact that,
in the fixed charge ensemble, α has only a lower bound but
no upper one,

α >
1 − √

1 + 32πpQ2

64πp
.

Hence, p has no upper bound for positive α, and the THP–p
curves have no terminal points accordingly. There is only an
upper bound of p for negative α,

p < pmax = Q2 + 4α

128πα2 (α < 0).

Actually, the different bounds of α are the direct con-
sequence from the different minimal temperatures of the
Schwarzschild–AdS and RN–AdS black holes. For the for-
mer, the minimal temperature is T0 = √

2p/π , but for the
latter, T0 = 0. This can be seen from the RN–AdS black hole
temperature as a function of its entropy,

T = 1

4
√

π S

(

1 + 8pS − πQ2

S

)

.

Besides the positive terms 1 + 8pS already present in
the Schwarzschild–AdS case, there is a new negative term
−πQ2/S from the charge. It is this negative term that allows
the RN–AdS black hole temperature T to be zero. Further-
more, since T can reach zero, the correction −4παT from
the GB term in the Gibbs free energy of the RN–AdS black
hole also vanishes at zero temperature, explaining that all the
G–T curves set out from the same point in Fig. 14.
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