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Abstract In this paper, we use the “complexity equals
action” (CA) conjecture to explore the switchback effect in
the strongly-coupled quantum field theories with finite N
and finite coupling effects. In the perspective of hologra-
phy, this is equivalent to evaluating the CA complexity in
a Vaidya geometry equipped with a light shockwave for a
higher curvature gravitational theory. Based on the Noether
charge formalism of Iyer and Wald, we obtain the slope of the
complexity of formation in the small- and large-time approx-
imations. By circuit analogy, we show that our results con-
cur with the switchback effect of the quantum system. These
results show that the switchback effect is a general feature of
the CA complexity in stationary black holes and its existence
is independent of the explicit gravitational theory as well as
spacetime background. From the viewpoint of AdS/CFT, this
also implies that the switchback effect is a general feature of
the thermofield double state in the strongly-coupled quantum
field systems with finite N and finite coupling effects. More-
over, we also illustrate that unlike the late-time complexity
growth rate, the counterterm plays an important role in the
study of the switchback effect.

1 Introduction

In recent years, quantum information perspectives have pro-
vided many useful techniques for studying the AdS/CFT cor-
respondence. This idea has aroused more and more attention
to the concept of “quantum circuit complexity”, which is
defined as the number of the elementary gates in the optimal
circuit from a given state to a target state [1–5]. From the
perspective of holography, two complementary conjectures
for the bulk description of the complexity of boundary states
have been proposed: the “complexity equals volume” (CV)
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[5,6] and the “complexity equals action” (CA) [7,8] conjec-
tures. The CV conjecture states that the circuit complexity
of a quantum state |ψ(tL, tR)〉 in boundary strongly-coupled
system is dual to the volume V of the Einstein–Rosen bridge
anchored at the time slices tL and tR on the boundary, i.e.,

CV (|ψ(tL, tR)〉) = V

G�AdS
. (1)

On the other hand, the CA conjecture states that the com-
plexity of boundary state is given by evaluating the full on-
shell action of the bulk gravitational theory on the Wheeler–
DeWitt (WDW) patch, which is the causal development of
a spacelike bulk surface (Cauchy surface) connected the
boundary timeslices tL and tR, i.e.,

CA (|ψ(tL, tR)〉) ≡ IWDW

π h̄
. (2)

These conjectures have led researchers to study the com-
plexity of the strongly-coupled quantum system from the
perspective of the holographic principle [9–73].

The concepts of the local and global quantum quenches
have been widely used to study the holographic complexity.
The local quench is the process when the system evolves after
a local perturbation. It was argued that the holographic dual
of this process is given by the black hole geometry perturbed
by the particle falling on the horizon [74–78]. Based on this
setup, Lloyd’s bound [79] of the complexity in the bound-
ary system has been tested under the local quench by using
the holographic conjectures [42,80,81]. If the perturbation is
global, the process is called a global quench. The holographic
dual of this process is given by the Vaidya geometry, which is
equipped with a thin shell of null fluid collapse (shockwave)
[82–89]. Based on this duality, the time dependence of the
complexity in the boundary quantum field system has been
studied by using different holographic complexities [40,65–
71].

It has been argued in [6,13] that in general the quantum
complexity in chaos system should exhibit the switchback
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effect when this system is perturbed by a quantum quench,
which can be described by a precursor O(t) = U †(t)OU (t)
of a simple perturbation operator O. Since O is a very sim-
ple operator, at a very early time, it can be regarded as a unit
operator and then the complexity does not grow. However,
for a chaotic system, at a very large time compared to the
scrambling time t�scr, the operator O will disrupt the time-
reversed evolution and the complexity will become twice the
complexity of the evolution operator U (t) [6]. This prop-
erty of the quantum complexity under the quantum quench
is known as the switchback effect [6]. This feature plays an
important role when it comes to examining the definitions
the complexity.

Although lots of researchers focused on the calculation
of the circuit complexity in quantum field theory [90–103],
there is still a lack of a valid method to evaluate the circuit
complexity in the strongly-coupled system. Therefore, some
researchers used the holographic complexity in the Vaidya
black holes for Einstein gravity to study the switchback effect
in the boundary strongly-coupled system [6,13,65,67]. How-
ever, in the context of AdS/CFT, the Einstein gravity in bulk
is dual to the strongly-coupled quantum field with infinite
N or infinite coupling effects. A natural question is to ask
whether the switchback effect is a general feature of the
strongly-coupled quantum system and independent on the
explicit of the quantum state as well as the quantum the-
ory. As is well known, the boundary quantum field theory
with finite N and finite coupling effects are corresponding
to a gravitational theory with higher curvature corrections.
Therefore, in this paper, we would like to use the CA con-
jecture to show whether the switchback effect also exists in
the strongly-coupled quantum system with finite N and finite
coupling effect under a global quantum quench.

Recently, some authors found that once the higher curva-
ture corrections are taken into account, the neutral (single-
horizon) black holes will have a divergent complexity growth
rate since the WDW patch will go arbitrarily near the singu-
larity [39,64]. However, this does not happen for multiple-
horizon black holes due to the different causal structure
including at least two horizons. Moreover, most of the previ-
ous research implies that the CA complexity for the neutral
black hole can be obtained by taking the limit of its corre-
sponding multiple-horizon counterpart [56–60]. Therefore,
in order to reflect some universal features of the CA com-
plexity and avoid the divergent result of the neutral case, in
this paper, we would like to focus on the black holes which
have at least two Killing horizons. Generally, these black
holes carry some extra conserved charges, such as the angu-
lar momentum and electric charge. From the viewpoint of
the holography, they are dual to the boundary quantum state
which also contains some extra conserved charges. There-
fore, our investigations can also reflect the influence of the

extra conserved charges on the complexity in the boundary
quantum system.

The above statements show that the main task of this paper
should be to evaluate the CA complexity in the Vaidya geom-
etry equipped with a light shockwave. By analyzing this
geometry in Sect. 2, we can see that at the large-time limit, the
dynamical points will approach the Killing horizons. Then
the actions that we need to evaluate are in the regions which
are connected to the Killing horizons and can be generated by
the corresponding Killing vectors. This property allows us to
express this action as some boundary integrals based on the
Iyer–Wald formalism [104]. Therefore, in the following, we
would like to utilize the Iyer–Wald formula to derive some
general expressions of the CA complexity at large times.

The remainder of our paper is organized as follows: in
Sect. 2, we first study the geometry of the stationary black
hole with a thin shell of null fluid collapse. In Sect. 3, we
briefly review the Iyer–Wald formalism with an invariant
theory in mind. In Sect. 4, we investigate the switchback
effect of the CA complexity in a multiple-horizon black hole
for a general higher curvature gravitational theory coupled
with arbitrary matter fields. In Sect. 5, we compare our holo-
graphic results with the circuit behaviors.

2 Geometry with a large-time light shockwave

As mentioned above, the stationary multiple horizons of the
black holes are caused by the extra conserved charges of the
spacetime. In the context of AdS/CFT, these black holes are
dual to the thermofield double (TFD) states

|TFD〉 = Z−1/2
∑

α

e−β(Eα+μQα)/2|Eα, Qα〉L|Eα,−Qα〉R

(3)

on the boundary of strongly-coupled quantum field theory
[105], where we have denoted by the subscripts L and R
the left and right boundaries of the multiple-horizon black
hole geometry individually. Here Eα and Qα correspond to
the eigenvalues of the energy and extra conserved charges
separately. The time evolution of the TFD state is obtained
by

|TFD(tL, tR)〉 = UL(tL)UR(tR)|TFD〉, (4)

where

UL(tL) = e−i(HL+μQL)tL , UR(tR) = e−i(HR−μQR)tR (5)

are the time-evolution operators corresponding to the left and
right quantum system. We can see that this state is invariant
under the shift transformation,

tL → tL + �t, tR → tR − �t. (6)
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In this paper, we would like to investigate the switchback
effect of the complexity. Following the setup in Refs. [6,13,
66], we consider the perturbation of the TFD state,

|TFD〉pert = OR(−tw)|TFD〉
= UR(tw)ORU

†
R(tw)|TFD〉 (7)

where the precusorOR(−tw) = UR(tw)ORU
†
R(tw) is the per-

turbation operator inserted into the right side quantum sys-
tem at time −tw, and OR is a localized simple operator. In
the chaos quantum system, UR(tw) and U †

R(tw) will approxi-
mately cancel until times of the order of the scrambling time
t�scr [6] and the state would keep unchanged, i.e., the complex-
ity growth rate is vanishing. For tw � t�scr, the complexity
growth rate of O(tw) is just twice the rate of the evolution
operator UR(tw). This nontrivial feature is connected to the
switchback effect [6,13]. Evolving the perturbed state in the
right and left time gives

|TFD(tL, tR)〉pert = UL(tL)UR(tR)|TFD〉pert

= UR(tR + tw)ORUR(tL − tw)|TFD〉. (8)

In the holographic context, the dual geometry in the bulk
to above perturbed system is AdS-Vaidya spacetime with
multiple horizons source by a thin shell of null fluid collapses.
It can be described by the metric ansatz

ds2 = ds2
2H(v + tw) + ds2

1 [1 + H(v + tw)] , (9)

where H(v) is the Heaviside step function, and

ds2
i = αi (r, y)

[
− fi (r)dv2 + 2dvdr

]

+γ
(i)
AB(r, y)

[
dyA − 


(A)
i (r, y)dv + 


(A)
i (r, y)

fi (r)
dr

]

×
[

dy(B) − 

(B)
i (r, y)dv + 


(B)
i (r, y)

fi (r)
dr

]
, (10)

where i = 1, 2 describes a multiple-horizon stationary
black hole, the indices A, B denote the coordinates of the
codimension-two surface, 
(A) is some component of the
metric which becomes the angular velocity of the black holes
when it evaluates on the Killing horizon. The metric in (10)
is a generalization from most stationary axisymmetric black
holes in general relativity or other theories of gravity, such as:
Kerr-AdS(dS) black holes, Myers–Perry black holes [106],
rotating Bardeen black holes [107], rotating Hyward black
holes [107], rotating charged cylindrical black holes [108],
Kerr-MOG black holes [109], Kerr–Sen black holes[110],
Kerr–Newman–Taub-NUT-AdS black holes [111], Gauss–
Bonnet black holes [112], rotating black holes in a Randall–
Sundrum brane [113], and charged accelerating AdS black
holes [114].

By virtue of the second law of thermodynamics for black
holes, we will set r+,2 > r+,1 with horizon radius r±,i

determined by fi (r±,i ) = 0. This line element describes
an infinitely thin shell collapse which generates a shape tran-
sition from a black hole with the metric ds2

1 to another one
with ds2

2 . For convenience of later calculations, we introduce
the tortoise coordinates:

vR < −tw: r∗
1 (r) =

∫
dr

f1(r)
,

vR > −tw: r∗
2 (r) =

∫
dr

f2(r)
.

(11)

When the position considered is near the horizon, i.e., r �
r±,i , we have

r∗
i (r) � 1

2κ±,i
ln

∣∣∣∣
r − r±,i

r + r±,i

∣∣∣∣ , (12)

where

κ±,i = | f ′
i (r±)|

2
(13)

is the surface gravity corresponding to the Killing horizons.
Using these coordinates, one can also define an “outgoing”
null coordinate u and auxiliary time coordinate t ,

ui ≡ v − 2r∗
i (r), ti ≡ v − r∗

i (r). (14)

According to the CA conjecture (2), computing the quan-
tum complexity of the boundary state is equivalent to eval-
uating the full action within the WDW patch. As is shown
in Fig. 1, the geometry of the WDW patch is characterized
by some dynamical points: r1 and r2, the points where the
past/future null boundaries of the WDW patch meet inside the
horizon; rs and rb, the positions where the right past and left
future boundaries meet the shockwave. Moreover, in order
to regulate the divergence caused by the asymptotic infinity,
a cut-off surface r = r� is also introduced.

Performing the tortoise coordinates, one can find that these
dynamical positions rs, rb, r1 and r2 yield

tw + 2r∗
2 (rs) = −tR,

tw + 2r∗
1 (rb) = tL,

tw + 2r∗
1 (rs) = tL + 2r∗

1 (r1),

tw + 2r∗
2 (rb) = −tR + 2r∗

2 (r2).

(15)

For the cases with light shockwave, there exists a scrambling
time

t∗scr = 1

2πT+,1
ln

2

δ
, (16)

which divides the evolution into two asymptotic regions.
Here we have denoted

T±,i = 1

4π
f ′
i (r±,i ), δ = r+,2

r+,1
− 1. (17)

For the case with a light shockwave, the scrambling time
becomes very large. According to expressions (15), we can
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Fig. 1 Wheeler–DeWitt patch of a multiple Killing horizon black hole
which is equipped with a thin shell of null fluid collapse, where the
dashed lines denote the cut-off surface at asymptotic infinity, satisfying
the asymptotic symmetries

see that the dynamical point rs approaches the horizon H2,+.
Then, when tw − tL > t∗scr and tw + tR > t∗scr, we have

2r∗
1 (r1) = tw − tL − t∗scr,

2r∗
2 (r2) = tw + tR − t∗scr.

(18)

These expressions imply that the scrambling time t∗scr is a
transition position for ri between r+,i and r−,i . Then, in the
limit of large tw, we have rs → r+,2, rb → r+,1 and ri →
r−,i .

Finally, we consider the behaviors of the null segment
which crosses the shockwave. According to the line element
(10), it is easy to check that

la = la2H(r − rs) + �sl
a
1 [1 − H(r − rs)] ,

l̃a = l̃a1H(r − rb) + �bl̃
a
2 [1 − H(r − rb)] ,

(19)

with

lai = −(dv)a + 2

fi (r)
(dr)a, �s = f1(rs)

f2(rs)
,

l̃ai = −(dv)a + 2

fi (r)
(dr)a, �b = f2(rb)

f1(rb)
,

(20)

are the affine null generator of the past right and future left
null boundaries, individually. We can find thatLζ lai = 0 if ζ a

is a Killing vector field, such as the stationary Killing vector
ta = (∂/∂v)a or the axial Killing vector ϕa

(μ). Then, using
Eq. (15), one can further obtain

d ln �s

dtR
� −2πT+,2,

du2,s

dtR
= �−1

s � 0,

d ln �b

dtL
� 2πT+,1,

du1,b

dtL
= −�−1

b � 0, (21)

in the large-time limit. These results imply that the past right
null segment before shockwave as well as the future right
null segment after shockwave keep almost unchanged when
we vary the left or right boundary times.

3 Iyer–Wald formalism

According to the discussion in the last section, we can see
that all of the dynamical points of WDW patch are located on
the horizons H±,i in the limit of large time tw. The integral
region for calculating the change of the bulk action can be
generated by the diffeomorphism related to the Killing vector
field of the Killing horizon. Using the Stokes theorem, we
can express these action as some boundary integrals related
to the Killing vector fields. On the other hand, Iyer and Wald
[104] employ the differential form to obtain the relationship
between the conserved charges related to some vector fields
and the action integrals. Therefore, it might be possible for us
to derive some general expressions of the CA complexity at
the large-time limit based on the Iyer–Wald formalism. Next,
we give a brief review of the Iyer–Wald formalism for a gen-
eral diffeomorphism invariant theory, which is described by
a Lagrangian L = Lε where the dynamical fields consist of
a Lorentz signature metric gab and other fields ψ . Following
the notation in [104], we use boldface letters to denote differ-
ential forms and collectively refer to (gab, ψ) as φ. Generally,
the action can be divided into the gravity part and matter part,
i.e., L = Lgrav + Lmt. The variation of the gravitational part
with respect to gab is given by

δLgrav = Eab
g (φ)δgab + d�(φ, δg), (22)

where Eab
g (φ) is locally constructed out of φ and its deriva-

tives and � is locally constructed out of φ, δgab and their
derivatives. The equation of motion can be read off as

Eab
g (φ) = 1

2
T abε, (23)

where

T ab = − 2√−g

δ
√−gLmt

δgab
= −gabLmt − 2

δLmt

δgab
(24)
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is the stress-energy tensor of the matter fields. Let ζ a be the
infinitesimal generator of a diffeomorphism. Exploiting the
Bianchi identity ∇aT ab = 0, one can obtain the identically
conserved current for a generic background metric gab as

J[ζ ] = �(φ, ζ ) − ζ · Lgrav + sζ · ε, (25)

where saζ ≡ T abζb and �(φ, ζ ) = �(φ,Lζ gab). Since J
is closed, there exists a Noether charge (n − 2)-form K [ζ ]
such that J[ζ ] = dK [ζ ]. With similar arguments in [104],
this (n − 2)-form can always be expressed as

K = W cζ
c + Xcd∇[cζd], (26)

where
(
Xcd

)

c3···cn
= −Eabcd

R εabc3···cn (27)

is the Wald entropy density, in which

Eabcd
R = δLgrav

δRabcd
. (28)

Particularly, when ζ a is taken to be a rotational Killing
vector ϕa in an axisymmetric spacetime, by using this (n−2)-
form, we can construct a conserved charge:

J [ϕ] = −
∫

C∞
K [ϕ], (29)

where C∞ denotes a (n − 2)-dimensional surface at asymp-
totic infinity. It can be interpreted as the angular momentum
of the black hole in an arbitrary asymptotic space[115]. For
a general higher curvature gravitational theory, it is given by

J [ϕ] = −
∫

C∞

(
Xcd∇[cϕd] − 2ϕb∇aXab

)
. (30)

Moreover, if we set ζ a to be a Killing vector, by substi-
tuting (24) into (25), one can obtain

ζ · L = d (�[ζ ] − K [ζ ]) , (31)

where �[ζ ] is a (n − 2)-form and constructed by

χζ · ε = d�[ζ ], with χa
ζ = −2

δLmt

δgab
ζb. (32)

4 The slope of complexity of formation

In this section, we start to evaluate the derivative of the com-
plexity of formation with respect to tw (the slope of the com-
plexity of formation). Here the complexity of formation is
defined as the extra complexity required to prepare the two
copies of the quantum field theory in the TFD state compared
to simply preparing each of the copies in the vacuum state,
i.e.,

�C = C (|TFD〉) − C (|0〉L ⊗ |0〉R) . (33)

In the context of AdS/CFT, it is dual to the difference
between the holographic complexity for a black hole and
that for two copies of the vacuum geometry at tR = tL = 0.
Therefore, in the following it is sufficient to restrict our atten-
tion to the case tL = tR = 0. By considering the shift sym-
metry to the antisymmetric time evolution of the complexity,
i.e.,

tR → tR − δt, tL → tL + δt, tw → tw + δt, (34)

we can further obtain

d�C

dtw
=

[
dCA

dtR
− dCA

dtL

]

tL=tR=0
, (35)

where we have used the fact that the complexity in vac-
uum geometry is time-independent. Then, using CA conjec-
ture (2), obtaining the slope of the complexity of formation
amounts to finding the change of the full action I within the
WDW patch, i.e.,

δ IL = I (tL + δtL, tR) − I (tL, tR),

δ IR = I (tL, tR + δtR) − I (tL, tR).
(36)

For a general higher curvature gravity, the full action can be
expressed as [34]

I =
∫

M
L +

∫

C
sη +

∫

N
dλsκ +

∫

N
dλ∂λs ln (lct�) , (37)

where s = Xcdεcd is the Wald entropy density,λ is the param-
eter of the null generator ka on the null segment, κ measures
the failure of λ to be an affine parameter which is derived
from ka∇akb = κkb, � = ∇aka is the expansion scalar, and
lct is an arbitrary length scale.

As mentioned in the last section, there are two asymptotic
regions: tw 
 t∗scr and tw � t∗scr. In the first region with
tw 
 t∗scr, we can simply approximate ds2

1 � ds2
2 in the

limit of a light shockwave, i.e., the complexity of formation
is the same as the unperturbed geometry. Then, by utilizing
the shift symmetry, the slope of the complexity of formation
vanishes, i.e.,

d�C

dtw

∣∣∣∣
tw
t∗scr

= 0. (38)

Then we consider the second region with tw � t∗scr. Under
this limit, the joints Ci and Cs approach the inner horizon
H−,i and the outer horizon H+,2, respectively, and the left
future and right past boundary of the WDW patch become
the segment of the inner horizon.

To calculate the action changes at the large times, we first
focus on δ IR where we fix the left boundary time tL and vary
tR in the right boundary.
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4.1 Bulk contributions

For the bulk contributions, in the limit of the large tw, accord-
ing to (21), we can see that the null segment N1 keeps almost
unchanged when we vary tR. This implies that all of the bulk
contributions only come from the bulk regions M±,2, which
can be generated by the Killing vector

ξ a±,2 = ta + 

(A)
± ϕa

(A) (39)

of the Killing horizon H±,2 through the null boundary N±,2

of the WDW patch. For simplification, we suppress the index
{±, 2} in the following calculation. Then the bulk contribu-
tion from the bulk region M±,2 can be written as

IM =
∫

M
L = δtR

∫

N
ξ · L. (40)

According to (31), one can obtain

∫

N
ξ · L = −

∫

N
dK [ξ ] +

∫

N
d�[ξ ]

= −
∫

∞
K [ξ ] +

∫

C
K [ξ ] +

∫

N
d�[ξ ]

= 
(A) J(A) −
∫

C∞
K [t] +

∫

C
K [ξ ] +

∫

N
d�[ξ ],

(41)

where the (n − 2)-surface C is the boundary of null segment
N near the horizon.

Since the Killing horizon contains a bifurcate surface, the
first term in (26) vanishes. Then

K = Xcd∇[cξd] = κs (42)

on the horizon H, where εab is the binormal of surface �,
and κ is the surface gravity of the horizon which satisfies
ξ a∇aξ

b = κξb. With these in mind, Eq. (41) becomes
∫

N
ξ · L = 
(μ) J(μ) + T S −

∫

∞
K [t] +

∫

N
d�[ξ ] (43)

with the entropy S±,i = 2π
∫
C±,i

s and the temperature
T = κ/2π of the corresponding horizon. Considering these
relations, we have

δ IMR = δtR
[

(A) J(A) + T S + �∞[ξ ] − �C[ξ ]

]−,2

+,2
, (44)

where we denoted δ IMR = IM−,2 − IM+,2 and

�S [ζ ] =
∫

S
�[ζ ] (45)

with any (n − 2)-surface S and C±,i is a codimension-2 sec-
tion on the horizon H±,i . Here the index {±, 2} presents the
quantities evaluated at the “outer” or first “inner” horizons
H±,2.

4.2 Surface contributions

Next, we consider the surface contributions. Without loss of
generality, we shall adopt the affine parameter for the null
generator of the null surface. As a consequence, the surface
term vanishes on all null boundaries. Meanwhile, by virtue
of Lξ±,2l

a
2 = 0, the time derivative of the counterterm con-

tributed by N±,2 vanishes. By considering that the entropy is
a constant on the Killing horizon, i.e., Lξ s = 0, the countert-
erm contributed by the null segment on the horizon also van-
ishes. Therefore, the only nonvanishing contribution comes
from the null segment N1. It can be written as

Ict(N1) =
∫

N1

dτ(∂τ s) ln
[∇al

a]

=
∫

N1

dτ1(∂τ1 s) ln [�s�1]

=
∫

N1

dτ1(∂τ1 s) ln �1 − S−,1

2π
ln �1 + Ss,1

2π
ln �1,

(46)

where we denote �1 = ∇ala1, la = (∂/∂τ)a and la1 =
(∂/∂τ1)

a . Then when we vary the right boundary, we have

δ Ict(N1) =
∫

δN1

dτ1(∂τ1 s) ln �1 + δtRT+,2(S−,1 − Ss,1)

= δtRT+,2(S−,1 − Ss,1)

(47)

where we used the light shockwave limit as well as the feature
that N1 keep unchanged at the large tw.

4.3 Corner contributions

Ultimately, we consider the contributions from the jointsC1,2.
The affinely null generator on the horizon can be constructed
as ka = e−κλξa with ξa = (∂/∂λ)a . Then the transformation
parameter can be written [34]

η(λ) = ln

(
−1

2
k · l

)
= −κλ + ln

(
−1

2
ξ · l

)
. (48)

First, we consider the corner contribution from C2. Here, the
change of this corner can be realized by the transformation
of the Killing vector ξa , Then we have

dIC2

dt
= dIC2

dλ2
= −T−,2S−,2, (49)

where we have used Lξ2,−l2 = 0. For the corner contribution
from C1, we have

IC1 =
∫

C1

s ln

(
−�s

2
l1 · k−,1

)

= S−,1

2π
ln �s +

∫

C1

s ln

(
− l1 · k−,1

2

)
.

(50)

Then the change of this term becomes

δ IC1 = −δtRT+,2S−,1, (51)
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where we considered that C1 also keeps unchanged at the
large time. Finally, according to

δ I = δ IMR − δ Ict(N1) + δ IC2 − δ IC1 (52)

and the CA conjecture (2), we can further obtain

dCA

dtR
= R = 1

π h̄

[

(A) J(A) + �∞[ξ ] − �C[ξ ]

]−
+ , (53)

in the light shockwave case. Here the quantities without
the index i present the counterparts without the shockwave.
This is actually the late-time CA complexity growth rate in
the multiple-horizon black hole for a higher curvature grav-
ity [33]. When the matter fields are composed of a U (1)

gauge field and its corresponding complex scalar field, it will
become [33]

R = 1

π h̄

[

(A) J(A) + �HQC

]−
+ (54)

where �H± and QC± are the chemical potential and the
charge of horizon H±, separately.

With similar calculation, we can also obtain δ IL = −δ IR.
Using Eq. (35), we can further obtain

d�C

dtw

∣∣∣∣
tw�t∗scr

= 2R, (55)

which is essentially twice the late-time growth rate in an
unperturbed geometry. This result is actually in agrement
with the switchback effect of the complexity. Moreover,
according to the above calculation, we can see that the coun-
terterm plays an important role in the slope of the complexity
of formation at the large times. This is totally different from
the calculation of the late-time CA complexity growth rate,
where the counterterm vanishes at the late times.

5 Circuit analogy

In this section, we would like to investigate the connection
between the behaviors of our holographic results and the

(a) (b)

Fig. 2 A representation of the insertion of a perturbed operator OR
at the time −tw for the TFD state at tR = tL = 0, in analogy to the
construction in figure 25 of [66] as well as Figure 6 of [6]

switchback effect of the circuit model. As discussed in Sect.
2, evolving the perturbed state independently in the left and
right times can be expressed as

|TFD(tL, tR)〉pert = UR(tR + tw)ORUR(tL − tw)|TFD〉,
(56)

where the perturbed operator OR is a localized simple opera-
tor. UR(t)ORUR(−t) = I with the identity operator I when
t < t∗scr. This feature is connected to the switchback effect
[6,14] and can provide a deeper explanation of our holo-
graphic results.

We denote the rate of the complexity to R1 before the
operator OR is inserted and R2 after it [66]. In the holo-
graphic context, these rates are dual to the late-time com-
plexity growth rate of the stationary black hole. In the limit
of light shocks, we have R1 ≈ R2 ≈ R.

With similar consideration as last section, here we also
focus on the case tR = tL = 0. Then the complexity only
depends on tw. There are two special regions, which are
divided by the scrambling time t∗scr.

First of all, we consider the region with tw > t∗scr, where
the process can be illustrated by (a) in Fig. 2. In this case,
the two time-evolution operators cancel out only during the
scrambling time. Then the complexity can be written as

Cpert ≈ 2R(tw − t∗scr). (57)

However, for the case tw < t∗scr, as illustrated by (b) in
Fig. 2, the switchback effect produces a cancelation for the
process below the dashed line. Then the rate of the complexity
vanishes.

Summarizing these results, the slope of the complexity of
formation can be written as

d�Cpert

dtw
≈ 2RH(tw − t∗scr). (58)

Again, this formula is also in accord with the our holographic
case as illustrated in Eqs. (38) and (55) of the previous sec-
tion.

6 Conclusion

In this paper, we use the CA conjecture to investigate the
switchback effect of the TFD state following a quantum
quench in the strongly-coupled quantum system with finite
N and finite coupling effects. From the viewpoint of the
AdS/CFT, this quantum system is dual to a bulk gravitational
theory with higher curvature corrections. Then the investiga-
tion is equivalent to studying the switchback effect of the
CA complexity in a Vaidya geometry equipped with a light
shockwave. Based on the Noether charge formalism of Iyer
and Wald, a general expression can be resorting to describing
the slope of the complexity of formation in the small- and
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large-tw approximations. The large-time slope of the com-
plexity of formation is essentially twice the late-time growth
rate in an unperturbed geometry. By the circuit analogy, we
showed this holographic result is essentially in agreement
with the switchback effect of the quantum system. The above
discussions are independent of the explicit gravitational the-
ory as well as spacetime geometry. This also indicates that
the switchback effect is a general feature of the TFD state in
the strongly-coupled system with finite N and finite coupling
effects. Moreover, according to the calculation of the slope
of the complexity, we can see that unlike the late-time com-
plexity growth rate, the countertem will play an important
role in the switchback effect.
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