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Abstract We carry out a comprehensive analysis of the
full set of B̄q → D(∗)

q form factors for spectator quarks
q = u, d, s within the framework of the Heavy-Quark expan-
sion (HQE) to order O (

αs, 1/mb, 1/m2
c

)
. In addition to the

available lattice QCD calculations we make use of two new
sets of theoretical constraints: we produce for the first time
numerical predictions for the full set of B̄s → D(∗)

s form
factors using Light-Cone sum rules with Bs-meson distribu-
tion amplitudes. Furthermore, we reassess the QCD three-
point sum rule results for the Isgur-Wise functions entering
all our form factors for both q = u, d and q = s spectator
quarks. These additional constraints allow us to go beyond
the commonly used assumption of SU (3)F symmetry for
the B̄s → D(∗)

s form factors, especially in the unitarity con-
straints which we impose throughout our analysis. We find
the coefficients of the IW functions emerging at O (

1/m2
c

)
to

be consistent with the naive O (1) expectation, indicating a
good convergence of the HQE. While we do not find signifi-
cant SU (3) breaking, the explicit treatment of q = s as com-
pared to a simple symmetry assumption renders the unitarity
constraints more effective. We find that the (pseudo)scalar
bounds are saturated to a large degree, which affects our
theory predictions. We analyze the phenomenological con-
sequences of our improved form factors by extracting |Vcb|
from B̄ → D(∗)�ν decays and producing theoretical predic-
tions for the lepton-flavour universality ratios R(D), R(D∗),
R(Ds) and R(D∗

s ), as well as the τ - and D∗
q polarization

fractions for the B̄q → D(∗)
q τν modes.
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1 Introduction

Semileptonic b → c transitions are of great phenomeno-
logical interest, both within the Standard Model (SM) and
beyond. The foreseeable improved precision for the cor-
responding measurements [1–3] requires a corresponding
improvement in their theoretical description. Additional
interest is created by the long-standing tensions in semi-
tauonic decays and neutral-current b → s�+�− transitions,
as well as the difference between inclusive and exclusive
determinations of the CKM matrix element |Vcb| [4]. These
tensions motivate potential new physics (NP) contributions to
b → c�ν transitions with light leptons, which in turn require
a determination of the corresponding form factors indepen-
dent of the experimental input. This situation, together with
the recent appearance of several experimental analysis allow-
ing for a model-independent interpretation of their results on
B̄ → D(∗)�ν decays [5–7] sparked renewed interest in the
relevant hadronic matrix elements [8–18]. A recent theory
analysis of the form factors parametrizing the B̄ → D(∗)

matrix element by three of us [19] uses the heavy-quark
expansion to determine the full set of relevant parameters up
to order 1/m2

c for the first time, building and improving on the
work presented in Refs. [8,15,20] in particular. This analysis
also uses unitarity bounds to restrict the parameter space of
the so-called Isgur-Wise (IW) functions [21,22]. Specifically,
it was observed that for J P = 0+ and 0− currents the present
results saturate the bounds to a large degree. This observa-
tion triggers our interest, since SU (3)F symmetry breaking
at the level of 20% is assumed for the form factors in these
bounds, with the effect of lowering the values of the form fac-
tors and therefore lowering the contributions to the unitarity
bounds by 40%. For a precision analysis of the form factors
this assumption should be removed, and instead a simultane-
ous analysis of the form factors for both light (q = u, d) and
strange (q = s) spectator quarks is warranted. The purpose
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of this article is to carry out such a simultaneous analysis.
For this work we take the following steps:

• We estimate the normalization and the slope of the sub-
leading IW functions η, χ2, and χ3, as well as η(s), χ

(s)
2 ,

and χ
(s)
3 in the point of zero hadronic recoil, based on

existing analytical formulas in the literature [23–25]. The
necessary numerical inputs and our numerical results are
compiled in appendix A.

• We estimate the full set of B̄s → D(∗)
s form factors

needed for the basis of dimension-six effective oper-
ators b → c�ν using light-cone sum rules with B-
meson LCDAs. The relevant analytical results have been
recently published in Ref. [26], and their numerical
implementation as part of the EOS software [27] facil-
itates this step. The necessary numerical inputs and our
numerical results including correlation information are
compiled in appendix B. Our numerical results for the
B̄s → D∗

s transitions allow to carry out our analysis at
the complete O (

1/m2
c

)
level.

• With the theoretical constraints at hand, we simultane-
ously infer the parameters of the various form factors
within the HQE, in three different fit models. In all of our
analyses, we impose the strong unitarity bounds for all
B̄(∗)
q → D(∗)

q transitions.

Note that some of the results from ref. [19] are superseded
by our new results.

The structure of this article is as follows. We briefly intro-
duce the necessary notation and set up our analysis in Sect. 2.
We discuss the results in Sect. 3, and summarize in Sect. 4.
In appendix A we provide the numerical inputs and results
of the updated QCDSR analysis. In appendix B we provide
the numerical inputs and results of our LCSR analysis.

2 Notation and setup

We analyse the full set of hadronic matrix elements for the
basis of local dimension-three currents c̄�b in B̄q → D(∗)

q

transitions. For this purpose, we use the heavy-quark expan-
sion (HQE) as reviewed in Ref. [8], and as applied recently in
Refs. [15,19]. Within the expansion of a generic form factor
h(w),

h(w) = ξ(w)ĥ(w)

= ξ(w)
(
a + α̂sb + εb c

(i)
b

[
L̂i (w)

]
+ εc c

(i)
c

[
L̂i (w)

]

+ε2
c d

(i)
[
�̂i (w)

])
(1)

one encounters three expansion parameters: α̂s ≡ αs/π ,
εb ≡ �̄/(2mb), and εc ≡ �̄/(2mc). The coefficients a,

b, c(i)
b , c(i)

c , and d(i) in this expansion are linear combina-

tions of Wilson coefficients from the matching of HQET onto
QCD and kinematic functions. The objects ξ(w), Li (w), and
�i (w) are matrix elements of the effective operator in HQET,
the IW functions. To differentiate between matrix elements
with a light or a strange spectator quark, we will add the
label “(s)” where appropriate. This includes the IW func-
tions entering B̄(∗)

s → D(∗)
s , as well as �̄(s), the energy of

the light degrees of freedom within the heavy meson in the
heavy-quark limit. For the analysis at hand we use the same
power counting of the HQE as introduced in Ref. [19] (i.e.,
α̂s ∼ εb ∼ ε2

c ∼ ε2). We also use the same nominal fit model,
i.e., the 3/2/1 model, where the digits refer to the power in
the z expansion to which the IW functions are expanded at
different orders in 1/mq . In case of the 3/2/1 model we use z3

for the leading IW function, z2 for subleading IW functions,
and z1 for the subsubleading IW functions. These orders are
chosen hierarchically since the contributions to the form fac-
tors by the corresponding IW functions decrease in size, i.e.,
are suppressed by higher orders in 1/m. At each level in
this expansion the order in z is chosen larger than necessary
to achieve a good fit, in order to account for higher-order
corrections.

A key point of our analysis is the treatment of the SU (3)F
symmetry breaking in all IW functions. For a large part of
the analysis we do not make any assumption about the size of
this breaking, but simply parametrize the q = s IW functions
with independent parameters. Only in one of our scenarios,
to be discussed below, we assume that the subsubleading IW
functions behave schematically as

�
(s)
i (w) = �i (w) + εFδ�i (w) , (2)

with εF ∼ εc (and δ�i ∼ �i ). This assumption is subsequently
confronted with the available data.

In addition to the theoretical constraints for the B̄ → D(∗)

form factors with spectators q = u, d as used in Ref. [19], we
include further theory information on the form factors with
q = s spectators. The individual changed or new pieces of
theory information entering the likelihood are:

Lattice: For B̄s → Ds the HPQCD collaboration [28] has
determined both the vector form factor f (s)

+ and

the scalar form factor f (s)
0 at non-zero hadronic

recoil w ≥ 1. Accounting for the fact that at
w = wmax,D the two form factors fulfill an
equation of motion, we can produce 5 correlated
pseudo data points from the correlated param-
eters provided in Ref. [28]. In addition, lattice
QCD data by the ETM collaboration has been
used in Ref. [29] to determine f (s)

+ and the ratios

f (s)
T / f (s)

+ and f (s)
0 / f (s)

+ close to the zero recoil
point at q2 = 11.5 GeV2. We do not use the the
result for f (s)

+ nor for the ratio f (s)
0 / f (s)

+ due to
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their large uncertainties, which are not competi-
tive with the HPQCD result. We do use, however,
the ratio f (s)

T / f (s)
+ , thereby including one further

data point in the fit.
In addition to theq = s constraints, Ref. [29] also
provides results for B̄ → D form factors, which
did not enter the previous analysis. Following the
same argument as before, we only use the con-
straint on fT / f+, thereby including one further
data point.
For theory predictions of observables in non-
leptonic B̄ → Dπ decays in the context of
QCD factorization, the FNAL/MILC collabora-
tions have calculated, amongst other quantities,
the ratio f (s)

0 (q2 = M2
π )/ f0(q2 = M2

π ) [30].
The results of Ref. [30] for q = u, d form factors
are superseded by those of Ref. [31], which fea-
ture much smaller statistical uncertainties. This is
due to the use of a larger number of gauge ensem-
bles (14 vs 4), which in turn reduces the statistical
correlation between the results of Refs. [30] and
[31]. We use this q = s vs q = u, d ratio as part
of our fit whenever both q = u, d and q = s
information is included.
For B̄s → D∗

s the HPQCD collaboration has

determined the form factor h(s)
A1

at zero recoil or
equivalently w = 1 [32], which is used in all fits.

QCDSR: The QCD three-point sum rules used to estimate
the normalization and slopes for the subleading-
power IW functions at w = 1 and for q = u, d
can be adapted for the q = s case. In order to
ensure a consistent treatment of both parametric
and systematic uncertainties, we update the q =
u, d analysis and carry out a new q = s analysis.
The relevant inputs, the procedure to determine
the uncertainties, and our numerical results are
discussed in appendix A.

LCSR: At w ≥ 1.5 the B̄s → D(∗)
s form factor are acces-

sible in LCSRs with Bs-meson Light-Cone Dis-
tribution Amplitudes (LCDAs). Following the
recent analytic results for the light-cone OPE of
the correlation functions underlying these sum
rules in Ref. [26], we produce the first numer-
ical estimates of the B̄s → D(∗)

s form factors
in this approach. Our numerical results for the
B̄s → D∗

s form factors, including their correla-
tions, are provided as machine-readable ancillary
files with the arXiv preprint version of this paper.
As in Ref. [26], we are unable to produce reliable
results for the B̄s → Ds form factor fT , which
is therefore not used in our analysis. The new
constraints contribute a total of 33 data points

to all fits. The relevant inputs and the procedure
to determine the uncertainties are discussed in
appendix B.

For the fits to the available theory constraints we consider
the following scenarios:

A: We fit to only B̄s → D(∗)
s information in the 3/2/1

model. In order to use the unitarity bounds, we multi-
ply the contributions to the bound by a factor ns = 2.2.
This factor accounts for the strange-spectator contribu-
tions, and uses SU (3)F -symmetry to approximate the
q = u, d spectator contributions. In this way, we allow
for symmetry breaking of −20% on the amplitude level,
analogously to the choice widely adopted in B → D(∗)

form factors and corresponding to a weakening of the
unitarity bounds. This scenario encompasses 23 param-
eters.

B: We fit simultaneously to B̄u,d,s → D(∗)
u,d,s information in

the 3/2/1 model. We treat all IW functions for the light
and the strange spectator quarks as fully independent.
In this way, we introduce the least possible amount of
correlation between the form factors, which only arises
from the contributions to the strong unitarity bounds.
As a consequence, our fit has twice the number of free
parameters as in the fit in Ref. [19], corresponding to 46
parameters.

C: As scenario B, but additionally we consider the impact
of finite SU (3)F symmetry breaking in the form factors
by amending our previous power counting: we count the
expansion parameter εF for the symmetry breaking as
εF ∼ ε ∼ εc. With this power-counting, a generic form
factor h(s) receives contributions from the subsubleading
IW functions that can be expressed schematically as:

h(s)(w) ⊇ ε2
c�

(s)
i (w) = ε2

c�i (w) + ε2
c εFδ�i (w)

∼ ε2�i (w) + ε3δ�i (w) .
(3)

Since we discard terms at order ε3, we suppress the
symmetry-breaking terms δ�i of the subsubleading IW

functions and identify �
(s)
i (w) = �i (w) in this scenario

only. In this way, we reduce the number of free param-
eters to 34.

3 Results

In the following we describe the fits that are part of our anal-
ysis, in terms of the combination of likelihoods and param-
eter scenarios, focusing in particular on the impact of the
improved unitarity constraints and quantifying the amount
of SU (3)F breaking. A summary of their goodness of fit,
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Table 1 Summary of the
goodness of fit in terms of the
χ2 values at the best-fit point for
all combinations of fit scenarios
and datasets

Likelihood #Data pts Fit model and #Par

A B C C
23 46 34 34

Lattice (Ds ) 6 0.26 0.49 1.10 1.25

Lattice (D∗
s ) 1 0.00 0.00 0.47 0.45

QCDSR B̄s → D(∗)
s 5 0.15 0.11 0.29 0.23

LCSR B̄s → D(∗)
s 33 1.26 1.11 1.43 1.58

Lattice (D) (13) – 7.16 8.02 8.19

Lattice (D∗) (1) – 0.01 0.59 0.61

QCDSR B̄ → D(∗) (5) – 0.08 0.24 0.25

LCSR B̄ → D(∗) (33) – 3.11 2.86 2.78

Lattice ratio (Ds/D) (1) – 0.58 0.77 1.00

B̄ → D{e−, μ−}ν̄ (9) – – – 6.87

B̄ → D∗{e−, μ−}ν̄ 2017 (9) – – – 7.73

B̄ → D∗{e−, μ−}ν̄ 2018 (9) – – – 5.34

Total 45 1.68 – – –

(98) – 12.67 15.75 –

(125) – – – 36.27

expressed through the χ2 values at the best-fit point, is given
in Table 1.

We begin with fitting the restricted theory likelihood,
which includes exclusively the 45 q = s data points. For
this likelihood, only fit scenario A with its 23 parameters
is applicable. We obtain a very good fit with a minimal
χ2/d.o.f. ∼ 2/22. The very small χ2 value is not very sur-
prising, given the large systematic uncertainties assigned to
the QCDSR and LCSR data points. A first step to test the
assumption of exact SU (3)F symmetry is taken by evaluating
our nominal likelihood at the best-fit point obtained in Ref.
[19] from the combination of the theoretical and experimental
likelihoods. We find excellent compatibility of the total like-
lihood, with an increase of χ2 at the q = u, d best-fit point by
approximately 15. Inspecting the individual constraints, we
find the largest single increase of ∼ 11 is caused by the very
precise lattice constraints on the B̄s → Ds form factors by
the HPQCD collaboration. Nevertheless, even this shift still
indicates reasonable compatibility of the lattice QCD con-
straint with the central value from Ref. [19], with an indi-
vidual p value of ∼ 10%. The remaining constraints are
perfectly compatible with the assumption of exact SU (3)F
symmetry in this simple comparison.

We continue with fitting the nominal theory likelihood,
which includes all q = u, d and q = s data points as well as
the single q = s/q = u, d lattice ratio. For this likelihood,
only scenarios B and C are applicable with their 46 and 34
parameters, respectively. For scenario B we find an excellent
fit with χ2/d.o.f. ∼ 13/52. Relative to this result, scenario C
increases the d.o.f. by 12 while only increasing the χ2 by ∼ 3.

For both scenarios, the best-fit values of q = u, d parameters
are contained within the 68% probability intervals obtained
in Ref. [19]. We continue with a model comparison between
the fits to the nominal likelihood in scenarios B and C. Using
posterior samples we compute the model evidence for both
scenarios, and hence their Bayes factor:

log10
P(nominal likelihood | scenario B)

P(nominal likelihood | scenario C)

= log10
9.80 · 1048

2.71 · 1057
∼ −8 . (4)

Using Jeffrey’s scale for the interpretation of the Bayes
factor [33], this result indicates that the nominal likelihood
favours scenario C over scenario B decisively, leading to the
conclusion that scenario C is – on average – much more
efficient than scenario B in describing the data. Hence, we
will not use scenario B from this point on.

We furthermore tested the compatibility of the theory data
with exact SU (3)F symmetry for all parameters in the IW
functions. This fit shows a further increase of χ2 by ∼ 3.5, to
be compared to an increase of the d.o.f. by 11. The data there-
fore show no indication of SU (3)F breaking at the present
level of precision. We nevertheless refrain from using this
limit beyond the subsubleading IW functions, in order to
allow for the possibility of a sizable breaking and to include
the resulting uncertainty for the form factors and observables.

We finally fit the combined likelihood comprised of the
nominal theory likelihood and the experimental likelihood
containing the Belle results of the kinematical PDFs in the
recoil variable w. Following the model comparison above,
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we only fit this likelihood with scenario C. The χ2/d.o.f. ∼
36/91 indicates an excellent fit, with an increase of χ2 by ∼
20 for 27 additional d.o.f. Compared to the fits of the nominal
theory likelihood in scenario C, the increase in the minimal
χ2 can be attributed in full to the experimental likelihood,
indicating that either likelihood is well described by scenario
C. We provide the best-fit point as well as the individual one-
dimensional 68% probability intervals for each fit parameters
in Table 2.

FormfactorpredictionsWith the posterior samples obtained
from the fit to the nominal theory likelihood in scenario C, we
produce posterior predictive distributions for all B̄ → D(∗)

form factors. In Fig. 1, the median curves and envelopes at
68% probability are juxtaposed with those obtained using the
3/2/1 model results in Ref. [19]. We find very good agree-
ment between the respective predictions, and obtain slightly
smaller uncertainties than in Ref. [19]. The largest change
appears in the form factor A0 close to zero recoil, with sce-
nario C preferring slightly larger values for this form factor
than the previous analysis. The main reason for this is a strong
saturation of the unitarity bound in the 0− channel due to our
removing of the implicit assumption of 20% SU (3)F break-
ing at the amplitude level.

We use the posterior samples from scenario A and sce-
nario C to produce posterior predictive distributions for all
B̄s → D(∗)

s form factors. Their respective median curves and
68% probability envelopes are juxtaposed in Fig. 2. The fit
using scenario C significantly reduces the uncertainty of the
B̄s → D(∗)

s form factors when compared to scenario A. This
is an expected result, since in scenario C the subsublead-
ing IW are shared between q = u, d and q = s spectators,
and the SU (3)F breaking is taken into account explicitly in
the unitarity bounds instead of weakening them by a rough
estimate for the breaking.

BGL coefficients The type of form factor parametrization
put forward in Ref. [38] allows for a straight-forward appli-
cation of the unitarity constraints and allows to put a strict
upper limit on higher-order contributions. We produce pos-
terior predictive distributions for the coefficients of this
parametrization, and find their joint distribution to be accu-
rately represented by a multivariate Gaussian distribution.
Within ancillary files attached to this preprint we provide the
17 independent coefficients up to order z2 separately for the
B̄ and B̄s decays. We exclude aA5

0 , which can be obtained as

aA5
0

aA1
0

= 2
√

2
1 − √

r

1 + √
r

, (5)

where r = mD∗
q
/mB̄q . Both sets of coefficients are provided

exclusively within scenario C, for the two fits to either the

nominal theory likelihood, or to the combined theory and
experimental likelihood.1

Effects on the unitarity bounds The question that started
this analysis is regarding the saturation of the unitarity
bounds when forgoing the assumption of SU (3)F symme-
try. We find the best-fit points of Ref. [19] to fully saturate
the bounds of that analysis, as does the best-fit point of our
scenario C in this analysis. This can be understood, since the
bounds represent a non-linear prior on the HQE parameter
space, and the likelihoods exhibit their global minimum out-
side of the support of this prior. The bounds can therefore
be saturated to 100%, which poses another question: How
likely is any given level of saturation of the bounds? This
question can best be answered by computing the posterior
predictive distributions of the contributions to the unitarity
bounds. These distributions yield the probability density of
each bound within the model description, given the avail-
able data. In Fig. 3, we juxtapose the results obtained for
the 3/2/1 model in Ref. [19] with our results in scenario C.
We find that the mode, i.e., the most likely level of satura-
tion, in both the 0+ and the 0− bounds increases from ∼ 0.4
to ∼ 0.6. At the amplitude level this represents a relative
increase of 22%. Including the results for q = s spectators
in the bounds therefore increases the average saturation of the
bounds, and yields further and significant restrictions on the
HQE parameter space. The prevailing assumption of reduc-
ing the q = s contributions to the unitarity bounds by 20%
should therefore be abandoned for future analyses. We obtain
the following median values and central 68% intervals are for
the four channels:

(J P = 0+) median = 0.62, 68% interval : [0.37, 0.85],
(J P = 0−) median = 0.65, 68% interval : [0.43, 0.88],
(J P = 1+) median = 0.08, 68% interval : [0.05, 0.11],
(J P = 1−) median = 0.09, 68% interval : [0.05, 0.11].

(6)

With this result, we illustrate that the unitarity bounds
for the scalar and pseudoscalar currents have now become
an indispensable ingredient in fitting any data on the form
factors within the HQE. We note in passing that we find no
significant shifts in the saturation of the bounds when using
the combined theoretical and experimental likelihood.

Predictions for the lepton-flavour universality (LFU)
ratios With the posterior samples of the various fits in hand,

1 Note that these values do not obey the equation of motion f0(q2 =
0) = f+(q2 = 0) exactly. If desired, one of the BGL coefficients in
this relation can be replaced by the remaining ones in order to enforce
this identity. The correlation matrix for the joined set of B̄q → D(∗)

q
form factors becomes non-trivial due to additional relations between the
BGL coefficient to the order in 1/mc,b we are working in. This matrix
can be obtained on request.
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Table 2 Best-fit point for the parameters of scenario C in a simul-
taneous fit to theory constraints and all available experimental mea-
surements. Uncertainty ranges presented here are meant for illustrative

purpose only, and should not be interpreted as standard deviations due
to non-Gaussianity of the joint posterior

Order Function f f (1) f ′(1) f ′′(1) f ′′′(1)

1/m0
Q ξ +1.00 – −1.15 [−1.30,−0.98] +2.02 [+1.64,+2.43] −3.90 [−4.90,−3.04]

ξ (s) +1.00 – −1.13 [−1.38,−0.86] +2.01 [+1.46,+2.68] −3.97 [−5.54,−2.64]
1/m1

Q χ̂2 −0.07 [−0.10,−0.03] −0.02 [−0.05,+0.02] −0.01 [−0.16,+0.18] – –

χ̂3 +0.00 – +0.04 [+0.01,+0.07] −0.11 [−0.17,−0.06] – –

η̂ +0.64 [+0.50,+0.79] +0.06 [−0.16,+0.27] −0.52 [−1.08,+0.01] – –

χ̂
(s)
2 −0.07 [−0.10,−0.03] −0.00 [−0.03,+0.04] +0.15 [−0.22,+0.57] – –

χ̂
(s)
3 +0.00 – +0.03 [+0.01,+0.07] −0.13 [−0.23,−0.03] – –

η̂(s) +0.68 [+0.53,+0.83] −0.12 [−0.37,+0.15] −0.73 [−1.75,+0.25] – –

1/m2
Q �̂1 +0.17 [−0.02,+0.37] −5.80 [−11.6,−0.59] – – – –

�̂2 −1.60 [−1.82,−1.37] −3.73 [−8.43,+0.76] – – – –

�̂3 −3.52 [−9.41,+2.49] +5.12 [−0.04,+10.4] – – – –

�̂4 −2.33 [−3.54,−1.14] −0.72 [−2.55,+1.05] – – – –

�̂5 +3.04 [+1.00,+5.10] +0.18 [−2.01,+2.46] – – – –

�̂6 +2.33 [−0.64,+5.40] +0.70 [−2.45,+3.96] – – – –

we can proceed to produce posterior predictive distributions
for the LFU ratios.

Within the fit of scenario A to the likelihood comprised
only of theory predictions of B̄s → D(∗)

s matrix elements,
we obtain for the median values and central 68% probability
intervals:

R(Ds) = 0.2979 ± 0.0044, R(D∗
s ) = 0.246 ± 0.010 , (7)

with negligible correlation between both results.
Within the fit of scenario C to the nominal theory-only

likelihood, we obtain the following as the median values and
central 68% probability intervals of all four LFU ratios:

R(D) = 0.2989 ± 0.0032 , R(Ds) = 0.2970 ± 0.0034 ,

R(D∗) = 0.2472 ± 0.0050 , R(D∗
s ) = 0.2450 ± 0.0082 .

(8)

In this way, we obtain central values of the theory predic-
tion of R(Ds) and R(D∗

s ) which are lower than the results in
scenario A by 0.7%. At the same time, we reduce the uncer-
tainty of these predictions by 25–30%. The predictions for
R(D) and R(D∗) stay virtually the same when compared to
the theory-only results of Ref. [19], with shifts smaller than
0.4% and only a small reduction in the uncertainty of R(D∗).
The correlation matrix for our theory predictions is:
⎛

⎜⎜
⎝

1.0000 0.1257 0.1294 −0.0205
0.1257 1.0000 0.0031 0.3826
0.1294 0.0031 1.0000 0.0016

−0.0205 0.3826 0.0016 1.0000

⎞

⎟⎟
⎠ , (9)

in the order R(D), R(D∗), R(Ds), and R(D∗
s ). Generally,

the strongest correlations arise between the states with equal

spin, since identical combinations of IW functions enter.
However, since potential correlations in the lattice QCD data
for B̄ → D and B̄s → Ds are unknown, the resulting cor-
relations are smaller between these modes. The correlation
between R(D) and R(D∗) results mainly from the LCSR
results; the corresponding one for B̄s decays is much smaller
and therefore so is the final correlation between R(Ds) and
R(D∗

s ).
When using the combined theoretical and experimental

likelihood, we obtain in the same way as above:

R(D) = 0.2981 ± 0.0029 , R(Ds) = 0.2971 ± 0.0034 ,

R(D∗) = 0.2504 ± 0.0026 , R(D∗
s ) = 0.2472 ± 0.0077 .

(10)

The correlation matrix now reads:
⎛

⎜⎜
⎝

1.0000 0.0855 0.1293 −0.0504
0.0855 1.0000 −0.0132 0.1768
0.1293 −0.0132 1.0000 0.0036

−0.0504 0.1768 0.0036 1.0000

⎞

⎟⎟
⎠ . (11)

Polarizations in B̄q → D(∗)
q τ−ν̄ We produce posterior pre-

dictive distributions for the τ polarization P
D(∗)
q

τ in B̄q →
D(∗)
q τ−ν̄ decays and the longitudinal polarization fraction

FL in B̄q → D∗
qτ

−ν̄ decays. In scenario C, using only the-
ory constraints, we obtain

PD
τ = 0.3212 ± 0.0029, −PD∗

τ = 0.484 ± 0.017,

FL = 0.473 ± 0.011,

PDs
τ = 0.3226 ± 0.0096, −P

D∗
s

τ = 0.477 ± 0.025,

Fs
L = 0.478 ± 0.018.

(12)
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Fig. 1 The full set of B̄ → D(∗) form factors as a function of q2 are
used to showcase the agreement between the nominal results of Ref.
[19] (orange lines and areas) and the results when fully accounting for
B̄(∗)
s → D(∗)

s in the unitarity bounds (light blue lines and areas). For

both sets of results we show the central values and 68% probability
envelopes from posterior-predictive distributions of the respective fits.
The LCSR results taken from Ref. [26] (purple points) and lattice con-
straints (red points) used in the fits are also shown in the plots

Once we include the experimental PDFs in scenario C, we
obtain

PD
τ = 0.3209 ± 0.0029, −PD∗

τ = 0.492 ± 0.013,

FL = 0.467 ± 0.009,

PDs
τ = 0.3233 ± 0.0095, −P

D∗
s

τ = 0.486 ± 0.023,

Fs
L = 0.471 ± 0.016.

(13)

Angular observables Using the theory only fit within sce-
nario C we predict the angular observables Ji that arise in
the four-fold differential decay rate of B̄q → D∗

q{μ−, τ−}ν̄
decays, see e.g. Ref. [39]. Our results are presented using
the same convention as in Ref. [40]. The central values with
uncertainties are listed in Table 4 while the correlation matri-
ces are given as ancillary files attached to the arXiv preprint
of this article. While there are presently no measurements
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Fig. 2 Comparison between scenario A (green lines and areas)
and scenario C (light blue lines and areas) of B̄s → D(∗)

s form
factors as a function of q2. For both sets of results we show
the central values and 68% probability envelopes from posterior-

predictive distributions of the respective fits. The LCSR (pur-
ple points, see appendix B) and lattice QCD constraints used in
the fits (red points, see Refs. [34,34–37]) are also shown in the
plots

of the full set of these observables, an analysis strategy was
recently suggested that allows to extract them without model
bias at the Belle II and LHCb experiments [41].

Impact on |Vcb| We find reasonable agreement between the
values of |Vcb| extracted in Ref. [19] and in our analysis, see
Table 3. When extracting from B̄ → D�−ν̄, |Vcb| remains
entirely stable. When extracting |Vcb| from B̄ → D∗�−ν̄.
we observe a small downward shift in the simultaneous anal-

ysis to the theory-only likelihood, which is almost entirely
compensated when fitting to the combined likelihood. We
find that the compatibility with the inclusive determination
worsens slightly to 1.8σ from the previous result of 1.2σ .
We average the exclusive and inclusive determinations [42],
and obtain

|Vcb| = (41.1 ± 0.5) · 10−3 ,
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Fig. 3 Posterior predictive distributions for the unitarity bounds in the
channels J P = 0+, 0−, 1+, and 1−. We compare the results from this
work (blue lines and shaded areas) with the results obtained in Ref.

[19] (orange lines and shaded areas). Values above unity for the uni-
tarity bounds are allowed within the uncertainties of the corresponding
correlators, see Appendix A in Ref. [19]

which has smaller uncertainties than any of the previous
determinations.

4 Summary and outlook

We present the first simultaneous analysis of the form fac-
tors in B̄q → D(∗)

q �−ν̄ decays with q = u, d, s beyond
the SU (3)F symmetry limit. In addition to all available
lattice QCD data our analysis makes use of two new sets
of results, which have been produced for this work. First,
we include new light-cone sum rule (LCSR) results for all
B̄s → D(∗)

s �−ν̄ form factors except f (s)
T , which are obtained

close to and beyond the point of maximum recoil. Second, we
revisit the existing QCD sum rules for the subleading Isgur-
Wise (IW) functions. We obtain a consistent set of predictions
for both light and strange spectator quarks. Our results for the
light spectator are consistent with previous numerical results
in the literature [8]. A clear benefit of our simultaneous anal-
ysis is that we are no longer forced to make assumption about
the q = s form factors in the unitarity bounds.

We consider three different fit scenarios, all of which fit
our various datasets well. Scenario A is used only when fit-
ting exclusively the form factors for q = s spectator quarks,
and shows compatibility with SU (3)F symmetry in a first
test. Scenarios B and C are used in simultaneous fits to
both q = u, d and q = s data. Scenario C is more con-
strained, since it assumes a combined power counting in
which 1/mc power corrections in the HQE are of similar
size as the SU (3)F breaking. Through a Bayesian model
comparison, we find that scenario C is the most efficient
in describing the available data, and we therefore only use
this scenario to obtain all nominal results of our analysis.
Using 34 parameters, scenario C can predict a total of 20
form factors in the entire semileptonic phase space. We make
this information available through ancillary files, both for
the parametrization in terms of parameters of the IW func-
tions as well as those in the BGL parametrization. Our results
include furthermore precise SM predictions for the branching
ratios, lepton-flavour universality ratios, the complete non-
redundant and non-vanishing set of angular observables in
B̄q → D∗

q{μ−, τ−}ν̄ decays, and the tau polarizations. We
find good agreement between our results and the results of
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Table 3 Branching ratios and |Vcb| predictions from [19] and scenario C in this work, with and without experimental data

Scenarios

Model 3/2/1 3/2/1 Scenario C Scenario C
Exp. likelihood – All exp. – All exp.

B(B̄0 → D+{e−, μ−}ν̄)/|Vcb|2 13.48 ± 0.37 13.56 ± 0.35 13.48 ± 0.34 13.54 ± 0.32

B(B̄0 → D∗+{e−, μ−}ν̄)/|Vcb|2 33.16 ± 2.15 32.00 ± 1.03 33.87 ± 1.82 32.69 ± 0.76

Correlation 0.14 0.10 0.13 0.09

|Vcb| × 103 from B̄ → D{e−, μ−}ν̄ 40.7 ± 1.2 40.6 ± 1.1 40.7 ± 1.1 40.7 ± 1.1

|Vcb| × 103 from B̄ → D∗{e−, μ−}ν̄ 39.3 ± 1.7 40.0 ± 1.1 38.8 ± 1.4 39.5 ± 0.9

|Vcb| × 103 combined incl. corr. 40.2 ± 1.0 40.3 ± 0.8 40.0 ± 0.9 40.0 ± 0.7

B(B̄0
s → D+

s {e−, μ−}ν̄)/|Vcb|2 – – 14.00 ± 0.40 13.99 ± 0.40

B(B̄0
s → D∗+

s {e−, μ−}ν̄)/|Vcb|2 – – 33.04 ± 2.88 32.06 ± 2.54

Correlation – – −0.07 −0.10

Table 4 Central values and
uncertainties for the
non-redundant and
non-vanishing angular
observables in
B̄q → D∗

q {μ−, τ−}ν̄ in the
Standard model

Observable Transition

B̄ → D∗μ−ν̄ B̄ → D∗τ−ν̄ B̄s → D∗
s μ

−ν̄ B̄s → D∗
s τ

−ν̄

J s1 0.257 ± 0.007 0.279 ± 0.006 0.255 ± 0.012 0.277 ± 0.009

J c2 −0.399 ± 0.008 −0.128 ± 0.001 −0.402 ± 0.015 −0.127 ± 0.002

J s2 0.085 ± 0.002 0.047 ± 0.001 0.085 ± 0.004 0.047 ± 0.002

J3 −0.133 ± 0.004 −0.082 ± 0.002 −0.135 ± 0.006 −0.082 ± 0.003

J4 −0.230 ± 0.001 −0.105 ± 0.001 −0.231 ± 0.003 −0.105 ± 0.002

J5 0.167 ± 0.008 0.207 ± 0.005 0.161 ± 0.012 0.204 ± 0.007

J c6 0.011 ± 0.001 0.277 ± 0.015 0.011 ± 0.001 0.282 ± 0.023

J s6 −0.203 ± 0.012 −0.163 ± 0.012 −0.194 ± 0.016 −0.155 ± 0.015

Ref. [19], indicated by sub-percent shifts in the predictions of
q2 integrated observables. The precision of our predictions
for observables in semileptonic B̄s → D(∗)

s decays has now
reached a similar level as the prediction for observables in
semileptonic B̄u,d → D(∗)

u,d decays.
To obtain a better understanding of the structure of the uni-

tarity bounds, we analyze posterior predictive distributions
of the saturation of the bounds. We find that our simultane-
ous analysis increases the median saturation compared to the
previous analysis by ∼ 22% at the amplitude level, which
is of the same order as the naive reduction based on sim-
ple dimensional estimates of the SU (3)F breaking used in
previous applications of the unitarity bounds. This reflects
the observation that the form factors are perfectly compati-
ble with SU (3)F symmetry at the present level of precision.
Combining the q = u, d and q = s likelihoods in a simul-
taneous fit shows clear benefits: first, the unitarity bounds
yield stronger constraints on the parameters space due to the
larger degree of saturation. Second, the parametric uncertain-
ties for all the IW functions decrease, with the largest effects
in the parameters of the subsubleading IW functions. The
consequence of both effects is a significant increase in the
precision of the theory predictions of all observables con-

sidered in this work. Moreover, our analysis will be able to
serve as an important cross check of the upcoming lattice
QCD results for B̄q → D∗

q form factors, which can subse-
quently be included in order to be used in the analysis of
future measurements in these decays.

Note added: In January 2020, the LHCb collaboration made
public a first determination of |Vcb| from B̄s → D(∗)

s μ−ν̄

decays [43]. Unfortunately, this analysis does not include the
required information to repeat this determination within our
framework. However, we can determine the compatibility of
the LHCb results for the quark flavour ratios R and R∗,

R(∗) ≡ B(B̄s → D(∗)
s μ−ν̄)

B(B̄ → D(∗)μ−ν̄)
, (14)

with our theory predictions. We obtain R = 1.038 ± 0.034
and R∗ = 0.975 ± 0.076 with a correlation of −2.58%. Our
results are compatible with the LHCb results at 0.1 σ . Addi-
tionally, LHCb has published the ratio of the D∗

s branching
ratio over the Ds branching ratio in the semimuonic decay.
Our result for this ratio, 0.424 ± 0.040 is compatible with
the LHCb result at 0.7σ .
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Appendix A: QCD three-point sum rule results: inputs
and results

We evaluate the existing three-point QCD sum rule calcula-
tions for the subleading IW functions of Refs. [23–25] for
q = s and, in order to remain consistent within our analy-
sis, also for q = u, d. This generalization is possible since
potential unknown perturbative or power corrections ∼ ms

are suppressed additionally at least by αsεc and included in
our treatment of the uncertainties. The sum rules depend on
perturbative parameters (αs , μ), parameters pertaining only
to the sum rules (Borel parameters, threshold parameters),
and non-perturbative inputs (QCD condensates). The value
for αs is chosen consistent with the rest of our calculation,
and the sum-rule specific parameters are chosen within the
ranges of the original calculations. The values for the con-
densates are listed in Table 5. A couple of comments are in
order:

• We increase the uncertainty for the light-quark con-
densate in order to ensure consistency with the values

obtained in the calculations used for the strange-quark
condensate.

• The gluon condensate remains very difficult to calcu-
late in general, and existing lattice calculations yield also
large ranges. We use the “traditional” value [47,48], but
increase its uncertainty to account for other results in the
literature, for instance [49–52].2

• The parameter m2
0 for the mixed quark-gluon condensate

is defined via 〈0|q̄σGq|0〉 ≡ m2
0〈0|q̄q|0〉; its SU (3)-

breaking seems to be under control [55,56].

The SU (3)-breaking parameters are of the expected order;
the subleading IW functions for B̄(∗)

s → D(∗)
s are conse-

quently compatible with the non-strange ones. We reproduce
the central values previously obtained in Refs. [8,23–25] for
q = u, d when using their input values. In Refs. [8,25] the
uncertainties for η(′)(1) have been approximately doubled
compared to the parametric ones, in order to account for the
uncertainties inherent to the method. We follow the same
recipe for the other parameters as well. We obtain the final
central values and uncertainties the following way: we con-
sider each sum rule separately, varying the sum-rule specific
parameters freely within their ranges (corresponding to the
R-fit treatment [57]), while assuming Gaussian uncertainties
for the condensates. We symmetrize the obtained interval for
�χ2 = 1 and then double the corresponding uncertainty.
We do not include the resulting sizable correlations between
the IW parameters, which we consider to be a conservative
approach. We checked that the value obtained for ξ (s)′(1)

from the sum rule for the leading IW function (which is not
used as a separate theory input) is compatible with the value
obtained in our fits. This is not true for the second derivative,
which, however, does not enter the results for the parame-
ters of the subleading IW functions up to the first derivative;
hence we do not consider the sum-rule results for the second
derivatives. Our results are summarized in Table 6.

Appendix B: light-cone sum rule: inputs and results

To obtain numerical results for the B̄s → D(∗)
s form factors

(FFs) at and above maximum hadronic recoil, we employ the
QCD sum rules on the light cone (LCSRs) with B-meson dis-
tribution amplitudes (LCDAs) [60]. An advantageous feature
of LCSRs is that the analytical form of the results depends
only on the Dirac structure of the correlator used to com-
pute them and on universal hadronic input in form of the
LCDAs, but not on the quark flavour. We can employ the
results derived in Ref. [26] for the B → {P, V } transitions

2 Note that a different definition is also common in the literature, with-
out the factor of π in the denominator.
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Table 5 Central values and
uncertainties used in the
QCDSR analysis

Parameter Value Unit References

〈0|q̄q|0〉(2 GeV) −(0.272 ± 0.010)3 GeV3 [37,44,45]

Rq̄q ≡ 〈0|s̄s|0〉/〈0|q̄q|0〉 1.05 ± 0.20 – [44–46]
〈
0

∣
∣ αs

π
GG

∣
∣ 0

〉
0.012 ± 0.012 GeV4 [47–52]

m2
0 0.8 ± 0.2 GeV2 [53,54]

Rq̄Gq ≡ 〈0|s̄σGs|0〉/〈0|q̄σGq|0〉 0.85 ± 0.10 – [55,56]

Table 6 Numerical results for the subleading IW functions estimated
by QCD sum-rules for both q = u, d and q = s cases

Subleading IW Value

η̂(1) +0.71 [+0.49,+0.93]
η̂′(1) −0.06 [−0.40,+0.28]
χ̂2(1) −0.06 [−0.10,−0.02]
χ̂ ′

2(1) −0.01 [−0.05,+0.03]
χ̂ ′

3(1) +0.04 [+0.00,+0.08]
η̂(s)(1) +0.75 [+0.49,+1.01]
η̂(s)′(1) −0.05 [−0.40,+0.32]
χ̂

(s)
2 (1) −0.07 [−0.11,−0.03]

χ̂
(s)′
2 (1) +0.00 [−0.04,+0.04]

χ̂
(s)′
3 (1) −0.01 [+0.03,+0.07]

Table 7 The central values and prior ranges for the the charm quark
mass, the decay constants and the Borel parameter used to estimate the
LCSRs for the B̄s → D(∗)

s form factors

Parameter Value Unit References

mc(mc) 1.28 ± 0.03 GeV As in [26]

fBs 0.2307 ± 0.0013 GeV [58]

fDs 0.2499 ± 0.0004 GeV [58]

fD∗
s

0.293 ± 0.019 GeV [59]

M2 4.5 ± 1.5 GeV2 [60]

to compute the B̄s → D(∗)
s form factors to twist-four accu-

racy and at leading order in αs .
The parameters that enter the LCSRs are:

• the charm quark mass mc(mc) in the MS scheme;
• the decay constants fBs and f

D(∗)
s

of the respective meson
states;

• the Bs-to-vacuum matrix elements of local s̄Gb currents
λ2
Bs ,E

, λ2
Bs ,E

;
• the inverse moment of the Bs light-cone distribution

amplitude 1/λBs ,+;
• the Borel parameter M2;
• the duality thresholds s(F)

0 , where F enumerate all of the

B̄s → D(∗)
s form factors.

The central values and prior ranges for the charm quark
mass, the decay constants and the Borel parameter are com-
piled in Table 7 together with their respective sources. The
values used for the s̄Gb matrix elements and the inverse
moment of the Bs light-cone distribution amplitude require
some comments: The s̄Gb matrix elements provide the nor-
malization of the three-parton LCDAs. Their contributions to
the form factors is small compared to the numerically lead-
ing two-parton terms [26]. Consequently, potential SU (3)F
symmetry-breaking effects are not relevant here, and we use
the strict SU (3)F limit [61]:

λ2
Bs ,E = λ2

Bd ,E = 0.03 ± 0.02 ,

λ2
Bs ,H = λ2

Bd ,H = 0.06 ± 0.03 . (B1)

On the other hand, the inverse moment 1/λBs ,+ of the
leading-twist Bs LCDA φ+ requires a more detailed discus-
sion, due to its bigger impact on the numerical results. To
leading order in αs and within the exponential model used
here, the following relation holds [62]:

λBq ,+ = 2

3
�̄q . (B2)

However, this relation is known to be subject to UV-
divergent corrections in fixed-order perturbation theory [63].
We therefore suggest to estimate the difference of λBd ,+
and λBs ,+ in which these UV-divergent terms cancel in
the SU (3)F limit. Using SU (3)F symmetry for the power-
suppressed term λ1 = −0.30 GeV2, the forward matrix ele-
ment of the kinetic operator, we obtain �̄d = 0.500 GeV
and �̄s = 0.590 GeV. To be consistent with the previous
LCSR analysis of the B̄ → D(∗) form factors [26] we use
λBd ,+ = 0.460 ± 0.110 GeV [64], and estimate:

λBs ,+ = λBd ,+ + 2

3

(
�̄s − �̄d

) = 0.520 ± 0.110 GeV .

(B3)

For our analysis we adopt the same Borel parameters as
for the B̄ → D(∗) analysis carried out in Ref. [26]. We also
ensure that
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1. Under variation of the Borel parameters M2 in the chosen
intervals the sum rule yields stable results;

2. The contributions due to continuum and excited states
above the respective thresholds s(F)

0 are small compared
to the ground state contribution, i.e., the integral from
s = 0 to s(F)

0 ;
3. Contributions at higher twists remain small.

The variation of our sum rules in the Borel windows given
in Table 7 contributes 9% to the overall systematic uncer-
tainty of our results, which is larger than what was obtained
for the B̄ → D(∗) analysis [26]. We further account for the
absence of 1/m2

b in the correlator by assigning an additional
5% to the systematic uncertainty. Adding the two in quadra-
ture yields an overall systematic uncertainty of ∼ 10%.

The thresholds s(F)
0 are determined using the same proce-

dure as proposed in Ref. [65] and subsequently employed in
Ref. [26]. The basic idea is to take the derivative of the FF
sum rule with respect to −1/M2 and to normalize the deriva-
tive to the FF sum rule itself, obtaining (schematically) the
squared meson mass-estimator

[
M2

D(∗)

]

LCSR
=

∫ s(F)
0

0 e− s
M2 s ρF (s, q2)

∫ s(F)
0

0 e− s
M2 ρF (s, q2)

, (B4)

with ρF standing in for the spectral density from which we
extract the form factor F . Following [26], we impose 5%
uncertainties on the estimator of the squared meson mass,
to account for higher twist correction to the spectral density
ρF (s, q2). We also vary q2 from −15 GeV2 to 0 GeV2, for
which we find that q2 dependence of the estimator [M2]LCSR

is negligible. We use s(F)
0 (q2) ≡ s(F)

0 . The union of the
threshold intervals at 68% probability for each of the FFs3

reads:

s(F)
0 = [6.9, 11.0] GeV2 for B̄s → Ds , (B5)

s(F)
0 = [7.9, 11.8] GeV2 for B̄s → D∗

s . (B6)

Our predictions for the full set of form factors and for the
set excluding fT , both evaluated at q2 = {−15,−10,−5, 0}
GeV2 and including the covariance matrix across form fac-
tors and across q2 points, are published as part of the EOS
software [27] as of version v0.3.1. Both sets of predictions
can be accessed as multivariate Gaussian constraints named

B_s->D_sˆ(*)::FormFactors[f_+,f_0,f_T,
A_0,A_1,A_2,V,T_1,T_2,T_23]@BGJvD2019,

3 Except for f B→D
T , for which the threshold determination has not been

possible for the same reasons illustrated in [26]. We follow the same
procedure as outlined there to estimate the fT threshold parameter using
the f+ threshold parameter.

B_s->D_sˆ(*)::FormFactors[f_+,f_0,A_0,
A_1,A_2,V,T_1,T_2,T_23]@BGJvD2019,

respectively. In addition, we provide these predictions as
machine readable ancillary files attached to this preprint.
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