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Abstract In the present work we perform a systematic
analysis of a new dark energy parametrization and its var-
ious corrections at first and higher orders around the pres-
ence epoch z = 0, where the first order correction of this
dark energy parametrization recovers the known Chevallier–
Polarski–Linder model. We have considered up to the third
order corrections of this parametrization and investigate the
models at the level of background and perturbations. The
models have been constrained using the latest astronomical
datasets from a series of potential astronomical data, such
as the cosmic microwave background observations, baryon
acoustic oscillations measurements, recent Pantheon sample
of the supernova type Ia and the Hubble parameter measure-
ments. From the analyses we found that all parametrization
favor the quintessential character of the dark energy equation
of state where the phantom crossing is marginally allowed
(within 68% CL). Finally, we perform the Bayesian analysis
using MCEvidence to quantify the statistical deviations of
the parametrizations compared to the standard �CDM cos-
mology. The Bayesian analysis reports that �CDM is favored
over all the DE parametrizations.

1 Introduction

According to the theory of general relativity, one possible
way to describe the recent observational evidences is to intro-
duce the dark energy, a hypothetical fluid with large negative
pressure [1]. However, apart from this negativity condition on
the pressure of dark energy, no one knows what exactly this
particular fluid is. The simplest explanation to the dark energy
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theory comes through the introduction of positive cosmolog-
ical constant, �, which does not evolve with the time. But, the
cosmological constant already suffers from two major prob-
lems, one which is recognized as the cosmological constant
problem and the other is the cosmic coincidence problem.
Thus, although as stated by a series of observational data,
the �-cosmology is an elegant version to model the recent
observational features of the universe, the problems asso-
ciated with the above motivate us to think of the scenarios
beyond the standard �-cosmology paradigm.

The simplest extension to �-cosmology is the wx -
cosmology in which wx is the dark energy equation-of-state
quantified as the ratio of pressure to its density, mathemati-
cally which is wx = px/ρx . One can identify that px and ρx

are respectively the pressure and energy density of the dark
energy fluid. The equation-of-state wx being −1 recovers the
�-cosmology. In general one can assume wx ( �= −1) to be
either time independent or dependent while the latter scenario
is the most general one. Thus, in the present work we shall
focus on the alternative cosmologies to the �-cosmology in
which the dark energy equation-of-state is evolving with the
expansion of the universe.

The parametrization of wx could be any function of the
redshift z or the scale factora(t) of the Friedmann–Lemaître–
Robertson–Walker universe; note that, 1 + z = a0/a(t),
where a0 is the present value of the scale factor in this uni-
verse. Thus, since wx ≡ wx (z) ≡ wx (a) could be any arbi-
trary function of the redshift or the scale factor, therefore,
in principle this gives us a complete freedom to pick up any
particular model of interest and test it with the observational
data in order to see whether that model is able to correctly
describe the evolution of the universe. In fact one can realize
that the introduction of the dark energy equation-of-state is
a reverse mechanism to probe the expansion history of the
universe. Going back to literature, one can find that this par-
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ticular area of cosmology has been investigated well both
at the level of background and perturbations where various
parametrizations for wx were introduced earlier [2–12] and
later [13–42]. Precisely, the dark energy parametrization with
only a single free parameter, with two free parameters, with
three free parameters and finally with more than three param-
eters have been rigorously studied by various investigators.

The aim of the present work is slightly different. Here, we
are considering an exponential dark energy parametrization
that in its first order approximation around z = 0 recov-
ers the CPL parametrization, and further we allow its higher
order corrections in order to investigate how such extended
corrections affect the evolution of the universe both at the
level of background and perturbations. More specifically, we
consider upto the third order expansion of the exponential
dark energy model. We remark that in general every ana-
lytic function for the equation-of-state parameter around the
z = 0 describes the CPL parametrization in the first cor-
rection; however, while we want to assume a general Taylor
expansion of an analytic function f (a) around a = 1, i.e.
f (a) = ∑∞

i=0 wi (a − 1)i , every new term which is intro-
duced in the correction provides a new degree of freedom, a
free parameter, in the model. Consequently, the models will
have different degrees of freedom and they will not be in
comparison. Hence, special relations amount the constants
wi should be considered, and for our analysis we assume
that w0 is free while w j = w1

j ! , which j �= 0, in which f (a)

is now the exponential function. However, by this approach
we will get a remarkable information on how the nonlinear
terms in the parametrizations of the equation-of-state affect
the viability of the model in higher-redshifts.

The work has been organized in the following way. In
Sect. 2 we introduce the models for wx (z) and describe the
general equations at the level of background and perturba-
tions. After that in Sect. 3 we provide an equivalence of the
present dark energy parametrizations with the scalar field the-
ory. Then in Sect. 4 we describe the observational data and
the statistical analysis that are used to constrain the mod-
els. After that in Sect. 5 we describe the observational con-
straints extracted from the models using the astronomical
data described in Sect. 4. Then in Sect. 6 we compute the
evidences of the dark energy parametrizations through the
MCEvidence. Finally, we close the work in Sect. 7 with a
brief summary of everything.

2 Basic equations and the models

Considering a spatially flat Friedmann–Lemaître–Robertson–
Walker line element ds2 = −dt2 + a2(t)

∑3
i=1 dx

2
i (where

a(t) is the expansion scale factor of the universe), in the con-
text of the Einstein gravity, we assume that (i) matter is min-
imally coupled to gravity, (ii) there is no interaction between

any two fluids under consideration and (iii) all the fluids sat-
isfy barotropic equation of state, i.e., pi = wiρi in which wi

being the barotropic state parameter for the i-th fluid having
(ρi , pi ) as its the energy density and pressure, respectively.
Precisely, we consider that the total energy density of the
universe is, ρtot = ρr + ρb + ρc + ρx and the total pressure
thus becomes ptot = pr + pb+ pc+ px . Here, the subscripts
r , b , c and x respectively stands for radiation, baryons, cold
dark matter and dark energy. Thus, the barotropic indices are,
wr = 1/3, wb = wc = 0 and we assume wx to be dynamical.
The Einstein’s field equations for the above FLRW universe
can be written down as

H2 = 8πG

3
ρtot , (1)

Ḣ = −4πG(ptot + ρtot ), (2)

in which an overhead dot represents the cosmic time differen-
tiation and H ≡ ȧ/a is the Hubble rate of this universe. Now,
using (1) and (1) (or alternatively the Bianchi’s identity), one
can find the balance equation

ρ̇tot + 3H(ptot + ρtot ) = 0. (3)

Now, since as we assumed that we don’t have any interaction
between any two fluids of the universe, thus, they should
satisfy their own conservation equation leading to

ρ̇i + 3H(pi + ρi ) = 0, (4)

from which using the relation between pressure and energy
density for the radiation, baryons, and cold (pressureless-)
dark matter, one can find that ρr = ρr0a−4, ρm = ρb +ρc =
(ρb0 + ρc0)a−3. Here, ρi0 is the present value of ρi . And
finally, the evolution of the dark energy fluid can be given
by,

ρx = ρx0

(
a

a0

)−3

exp

(

−3
∫ a

a0

wx
(
a′)

a′ da′
)

, (5)

where ρx0 being the current value of ρx and a0 is the present
value of the scale factor that we set to be unity (a0 = 1)
without any loss of generality. We further note that the scale
factor is related to the redshift that we shall frequently use
hereafter via 1 + z = a0/a = 1/a. Thus, once the dark
energy equation of state is prescribed, the evolution of the
dark energy density can be found.

As we discussed above, we consider that the dark energy
fluid follows a general parametrization in the following way:

wx (z) = (w0 − wa) + wa exp

(
z

1 + z

)

(6)

where w0 is the present value of the dark energy equa-
tion of state, that means, wx (z = 0) = w0 and wa is
another free parameter. The model (6) is very interesting
by its construction since one can easily recognize that it
could return a number of interesting parametrization that
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includes the classic Chevallier–Polarski–Linder parametriza-
tion wx (z) = w0 + waz/(1 + z) if we take the first approxi-
mation of the exponential function in (6).

We expand the exponential function of (6) upto its first,
second and third order corrections leading to the following
class of dark energy parametrization:

wx (a) = w0 + wa
z

1 + z
, (7)

wx (a) = w0 + wa

[
z

1 + z
+ 1

2!
(

z

1 + z

)2
]

, (8)

wx (a) = w0 + wa

[
z

1 + z
+ 1

2!
(

z

1 + z

)2

+ 1

3!
(

z

1 + z

)3
]

,

(9)

and for convenience we call the dark energy parametrization
of Eqs. (7), (8) and (9) as “Extension 1” (Ext1 in short), “Ex-
tension 2” (Ext2 in short) and “Extension 3” (Ext3 in short),
respectively. Let us note that in the above cases we have
not considered the pivot redshift [39]. However, the consid-
eration of pivoting redshift might be an interesting issue for
investigations because as already commented in [39], one can
find a specific value of the pivot redshift where the parameters
w0 and wa are uncorrelated.

At the end of this section, we would like to present the
qualitative features of the present dark energy parametriza-
tions in terms of the evolution of their equations of state and
the deceleration parameters. In order to do so, we assumed
three different values of w0, namely, w0 = −0.95, w0 = −1
and w0 = −1.1 and in each case we consider various values
of wa to understand how the curves behave with the increas-
ing of the wa parameter. In Fig. 1 we show the evolution of
the dark energy parameterizations (6), (7), (8) and (9) set-

ting the present value of the dark energy equation of state
at w0 = 0.95 where we allow different values of wa such
as wa = −0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3. The curve with
wa = 0 simply returns w = w0 and this has been kept to
compare with other curves having wa �= 0. From Fig. 1, we
notice that for wa < 0, the dark energy equation of state
allows its phantom character which is much pronounced at
high redshifts, while for wa > 0, the reverse scenario is
found. In a similar fashion, we investigated the other cases
with w0 = −1 and w0 = −1.1, however, we did not observe
any significant changes in the qualitative evolution of wx (z),
so we did not include the other figures.

We then plot the evolution of the deceleration parameter
for all the DE parametrizations, namely, (6), (7), (8) and (9).
Here we again assumed three fixed values of w0, namely,
w0 = −0.95, −1, −1.1 and in each case we assume differ-
ent values of wa similar to what we have shown in Fig. 1.
Finally, we analyzed the evolution of the deceleration param-
eter for all the cases and found that all three cases return
almost similar dynamics. That is why choose the case with
for w0 = −0.95 and exclude the others. The Fig. 2 corre-
sponds to the case w0 = −0.95. From this figure one can see
that irrespective of the values of w0, a fine transition from
the past decelerating phase to the current accelerating one is
observed. The interesting and important point in Fig. 2 is that,
for negative values of wa the transition redshifts are shifting
towards higher redshifts (although mild) while for positive
values of wa , we see the reverse, that means the transition
redshifts are shifting towards lower values of the redshift.

Overall, we find that the models at the level of background
do not exhibit any deviations from one another. This is not
surprising because the deviations between the cosmological
models are usually reflected from their analysis at the level

Fig. 1 We show the evolution
of the dark energy
parametrizations for different
values of wa with a fixed value
of w0 = −0.95
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Fig. 2 The evolution of the
deceleration parameter
depicting a clear transition from
the past decelerating phase to
the current accelerating phase
for all the dark energy models
has been presented for different
values of wa and with a fixed
value of w0 = −0.95. One can
easily notice that as long as wa
increase from its negative to
positive values, the transition
redshift shifts more closer to the
present epoch

of perturbations. In what follows we shall consider the per-
turbation equations for all the DE parametrizations in this
work.

We start with the following metric which is the perturbed
form of the FLRW line element:

ds2 = a2(η)
[
−dη2 + (δi j + hi j )dx

idx j
]
,

Here, η denotes the conformal time; δi j , hi j are the unper-
turbed and the perturbative metric tensors, respectively. Now,
considering the perturbed Einstein’s field equations, for a
mode with wave-number k one can write down [43–45]:

δ′
i = −(1 + wi )

(

θi + h′

2

)

− 3H
(

δpi
δρi

− wi

)

δi

−9H2
(

δpi
δρi

− c2
a,i

)

(1 + wi )
θi

k2 , (10)

θ ′
i = −H

(

1 − 3
δpi
δρi

)

θi + δpi/δρi
1 + wi

k2 δi − k2σi , (11)

where δi = δρi/ρi is the density perturbation for the i-th
fluid; the prime associated to any quantity denotes the deriva-
tives with respect to conformal time; H = a′/a is the confor-
mal Hubble parameter; θi ≡ ik jv j is the divergence of the

i-th fluid velocity; h = h j
j , is the trace of the metric perturba-

tions hi j ; σi denotes the anisotropic stress related to the i-th
fluid. Let us also note that c2

a,i = ṗi/ρ̇i , is the adiabatic speed
of sound of the i-th fluid which can also be written in terms
of other physical quantities as c2

a,i = wi − w′
i

3H(1+wi )
, where

we fix the sound speed c2
s = δpi/δρi to be unity. Finally, we

also note that we have neglected the anisotropic stress from
the system for simplicity.

3 Scalar-field description

This section is devoted to provide with an equivalent field
theoretic description for the dark energy parametrizations. A
method to construct the scalar field potential which describe
a given equation of state parameter was presented in [46].
Specifically, for a spatially flat FLRW as in the case of con-
sideration, with a line element

ds2 = −eF(ω)dω2 + eω/3
[

dr2

1 − Kr2 + r2dθ2

+r2 sin2 θdφ2
]

, (12)

where eF(ω) plays the role of a lapse function, the scale factor
a (ω) = eω/3 and K is the curvature scalar of the universe.
The exact solution of the scalar field and the scalar field
potential in case of vacuum are

φ(ω) = ±
√

6

6

∫ √
F ′(ω)dω, (13)

V (ω) = 1

12
e−F(ω)

(
1 − F ′(ω)

)
(14)

or, equivalently, for the physical parameters, such as energy
density and pressure

ρφ(ω) = 1

12
e−F(ω) , Pφ(ω) = 1

12
e−F(ω)

(
2F ′(ω) − 1

)
.

(15)

Consequently, for the latter definitions it follows

wφ (ω) = Pφ(ω)

ρφ(ω)
= (

2F ′(ω) − 1
)
. (16)

Hence, for a specific equation of state parameter wφ (ω) the
latter first-order equation can be solved and we can deter-
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mine the function F (ω). Subsequently, by replacing F (ω) in
Eqs. (13), (14) one can find the functional form of V (φ). For
the general functional form of the equation of state, namely,
Eq. (6), wx (ω) = w0 −wa +wa exp

(
1 − eω/3

)
, we find that

F(ω) = 1

2
(1 + w0 − wa)ω

+ 1

2
wa

∫

exp
(

1 − eω/3
)
dω + F0, (17)

where F0 is the constant of integration. Now, using the value
of F(ω), one can find that

φ(ω) = 1√
2

∫ √
1 + w0 − wa + wa exp

(
1 − eω/3

)
dω,

(18)

and V (ω) can be solved as

V (ω) = 1

24

(
−ee

ω/3
(w0 + wa − 1) − e wa

)

× exp

(

−3e

2
wa Ei

(
−eω/3

)

−ω

2
(w0 + wa + 1) − eω/3

)
, (19)

where the symbol ‘Ei’ represents the exponential integral.
For the CPL potential wx (ω) = w0 +wa

(
1 − eω/3

)
we find

F (ω) = 1

2
(1 + w0 + wa) ω − 3

2
wae

ω/3 + F0,

where F0 is the integration constant and consequently we
find that

φ (ω)√
3

=
√

wa
(
ew/3 − 1

) − (1 + w0) − √
1 + w0 + wa

× arctan

√
wa

(
ew/3 − 1

) − (1 + w0)

1 + w0 + wa
, (20)

V (ω) = 1

24
eF0 exp

(
3

2
wae

ω/3 − 1

2
(1 + w0 + wa)

)

×
(

1 − w0 + wa

(
eω/3 − 1

))
. (21)

For the Ext2 and Ext3 models the corresponding functions
F (ω) are derived to be

F2
Ext (ω) = F0 + 1

4

(
(2 + 2w0 + 3wa) ω

−12wae
ω/3 + 3

2
wae

2ω/3
)
, (22)

F3
Ext (ω) = F0 + 1

12

(
(6ω + 6w0 + 10wa) ω

−wa

(
eω + 45eω/3 − 9e2ω/3

))
. (23)

In Figs. 3, 4 and 5 the qualitative evolution of the scalar
field equivalent φ (ω), the scalar field potential V (ω) and the
parametric plot V (ω) are presented respectively for the CPL
parametrization (Ext1) and the other two extensions, namely,
Ext2, and Ext3.

4 Observational data

For the convenience of the reader and for our presentation
we provide the details of the observational data used to con-
strain the dynamical dark energy parametrization and also
the methodology.

• Cosmic microwave background observations: the cosmic
microwave background (CMB) observations are one of
the powerful data to probe the nature of dark energy. Here
we use the CMB from Planck 2015 [47,48]. The high-
� temperature and polarization data as well as the low-
� temperature and polarization data from Planck 2015

Fig. 3 Qualitative evolution of the scalar field φ (ω) , the scalar field potential V (ω) as also the parametric plot φ − V (φ) is given for the CPL
(Ext1) model
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Fig. 4 Qualitative evolution of the scalar field φ (ω) , the scalar field potential V (ω) as also the parametric plot φ − V (φ) is given for the Ext2
model

Fig. 5 Qualitative evolution of the scalar field φ (ω) , the scalar field potential V (ω) as also the parametric plot φ − V (φ) is given for the Ext3
model

(precisely the dataset: Planck TT, TE, EE + lowTEB)
[47,48] have been considered.

• Baryon acoustic oscillations: The baryon acoustic oscil-
lations (BAO) data from different superovulation mis-
sions are used [50–52].

• Supernovae Type Ia: We also use latest released Pantheon
sample [53] from the Supernovae Type Ia.

• Hubble parameter measurements: Finally, we use the
Hubble parameter measurements from the Cosmic
Chronometers (CC) [54].

Now we come to the technical part of the statistical anal-
ysis. Thus, we have performed the fitting analysis using the
modified version of cosmomc [55,56], an efficient Markov
chain monte carlo package equipped with a convergence
diagnostic given by the Gelman and Rubin statistics [57].
This package includes the support for the Planck 2015 like-
lihood code [48] (see http://cosmologist.info/cosmomc/). In
Table 1 we have shown the flat priors on the model param-

Table 1 The table shows the
flat priors on the model
parameters used during the
statistical analysis

Parameter Prior

�bh2 [0.005, 0.1]
�ch2 [0.01, 0.99]
τ [0.01, 0.8]
ns [0.5, 1.5]
log[1010As ] [2.4, 4]
100θMC [0.5, 10]
w0 [−2, 0]
wa [−3, 3]

eters that have been used during the observational analysis.
Perhaps it might be important to mention here that in the
present analysis we have used Planck 2015 likelihood [48]
instead of Planck 2018 likelihood (although the cosmologi-
cal parameters from Planck 2018 are already available [58])
because Planck 2018 likelihood code is not public yet. How-
ever, it will be worth to run the same codes that we use for
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Table 2 Observational
constraints on various free
parameters at 68% and 95% CL
for the dynamical dark energy
state parameter wx (z) =
(w0 − wa) + wa exp

(
z

1+z

)

(Gen) using different
astronomical datasets have been
presented. Let us note that �m0
is the present value of
�m = �c + �b and H0 is in the
units of km/sec/Mpc

Parameters CMB+BAO CMB+BAO+Pantheon CMB+BAO+Pantheon+CC

�ch2 0.1194+0.0013+0.0027
−0.0014−0.0026 0.1193+0.0013+0.0024

−0.0013−0.0025 0.1195+0.0013+0.0026
−0.0013−0.0026

�bh2 0.02222+0.00015+0.00029
−0.00016−0.00030 0.02223+0.00015+0.00029

−0.00015−0.00029 0.02222+0.00014+0.00030
−0.00015−0.00030

100θMC 1.04049+0.00032+0.00063
−0.00032−0.00066 1.04051+0.00030+0.00063

−0.00031−0.00062 1.04049+0.00032+0.00066
−0.00032−0.00063

τ 0.079+0.018+0.033
−0.018−0.035 0.080+0.018+0.034

−0.017−0.034 0.079+0.018+0.034
−0.018−0.034

ns 0.9738+0.0044+0.0086
−0.0044−0.0085 0.9740+0.0041+0.0083

−0.0041−0.0082 0.9735+0.0042+0.0080
−0.0042−0.0078

ln(1010As) 3.100+0.035+0.064
−0.034−0.068 3.103+0.034+0.066

−0.034−0.067 3.101+0.034+0.066
−0.035−0.066

w0 −0.537+0.442+0.532
−0.441−0.526 −0.963+0.060+0.158

−0.082−0.127 −0.933+0.071+0.140
−0.070−0.135

wa −1.154+0.894+1.340
−0.807−1.298 −0.231+0.291+0.416

−0.143−0.499 −0.337+0.288+0.431
−0.204−0.493

�m0 0.348+0.034+0.055
−0.035−0.056 0.306+0.007+0.015

−0.007−0.014 0.306+0.008+0.015
−0.008−0.015

σ8 0.804+0.026+0.056
−0.033−0.050 0.839+0.018+0.031

−0.016−0.032 0.840+0.016+0.033
−0.017−0.032

H0 64.14+2.51+5.60
−3.80−5.12 68.24+0.78+1.56

−0.80−1.51 68.23+0.84+1.67
−0.83−1.62

the present models but with the new Planck 2018 likelihood
which will enable us to understand any effective changes in
the cosmological parameters and consequently more strin-
gent constraints on them as well.

5 Observational constraints and the analysis

In this section we describe the observational constraints
on all the dark energy parametrization, namely the gen-
eral parametrization of Eq. (6), Extension 1 or the CPL

Fig. 6 68% and 95% CL
contour plots for various
combinations of the model
parameters of the general
parametrization of (6) (Gen)
have been shown for different
observational combinations. The
figure also contains the one
dimensional marginalized
posterior distributions for the
parameters shown in the two
dimensional contour plots
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parametrization of Eq. (7), Extension 2 of Eq. (8) and exten-
sion 3 of Eq. (9) using various astronomical datasets sum-
marized in Sect. 4. In particular, we focus on the two key
parameters of the dark energy parametrization, namely, w0

and wa in order to investigate the qualitative changes in the
parametrization as long as nonlinear terms are considered.
In what follows we describe the observational constraints
extracted from each dark energy scenario.

Let us first focus on the general dark energy parametriza-
tion given in Eq. (6). We have constrained this dark
energy scenario using different cosmological datasets such
as CMB+BAO, CMB+BAO+Pantheon and CMB+BAO+
Pantheon+CC, the results of which are summarized in Table
2. From Table 2, a general conclusion that one might quickly
observe is that, the inclusion of Pantheon to CMB+BAO
significantly improves the error bars on all the parame-
ters, and not only that, some of the parameters are signifi-
cantly improved concerning their mean values. In fact, the
best constraints on the model parameters are achieved for
the combination CMB+BAO+Pantheon. The inclusion of
CC to CMB+BAO+Pantheon although does not add much
significant insight on the cosmological constraints, how-
ever, the effects on wa are pronounced when CC data
are added to CMB+BAO+Pantheon. Let us now focus on
the constraints on individual model parameters. As one
can see from Table 2 that the mean value of the dark
energy equation of state at present, i.e., w0 is always in
the quintessential regime: w0 = −0.963+0.060

−0.082 at 68% CL

for CMB+BAO+Pantheon and w0 = −0.933+0.071
−0.070 at 68%

CL for CMB+BAO+Pantheon+CC. Although from statistical
point of view, one can argue that the constraints on w0 mildly
suggest for a crossing of the phantom divide line w0 = −1,
however, w0 = −1 is the most consistent scenario. Con-
cerning the remaining key parameter, wa , we find that it may
assume non null values, however, wa = 0 is allowed within
68% CL of course. In Fig. 6, we have shown the one dimen-

sional posterior distributions for some selected parameters of
this model as well as the two dimensional contour plots con-
sidering various combinations of the model parameters. From
Fig. 6, one can see that the parameters shown in this figure
are correlated with each other. Specifically, we find a strong
correlation between w0, wa and H0. Finally, we focus on the
estimation of the Hubble constant H0 for all three datasets.
One can strikingly see that for CMB+BAO, H0 assumes a
very lower value (H0 = 64.14+2.51

−3.80 at 68% CL, CMB+BAO)
compared to the �CDM based Planck’s estimation [59] and
this naturally increases the tension with the local measure-
ments [60]. However, for the remaining datasets, we find that
H0 takes higher values with slightly higher error bars com-
pared to the �CDM based Planck’s estimation [59], thus, it
slightly decreases the tension on it.

We now consider the first extension of the general
parametrization (6) that leads to the well known CPL
parametrization of (7). The cosmic scenario driven by this
parametrization has been constrained using the same obser-
vational datasets applied to the general DE parametrization
and the numerical results are summarized in Table 3. One
can clearly see that the Hubble constant takes similar val-
ues compared to the previous scenario (see Table 2). In
fact, concerning the key parameters, namely, w0 and w0,
our conclusion remains same, that means the constraints on
w0 and wa are almost similar to what we have found with
the general parametrization (6). So, effectively we see that
the first approximation (7) of the original parametrization (6)
returns similar fit to the original parametrization (6). Finally,
in Fig. 7 we have shown the graphical behaviour of various
model parameters containing the one dimensional marginal-
ized posterior distributions as well as the two dimensional
contour plots at 68% and 95% CL.

Then we move to the observational constraints of the
next parametrization given in Eq. 8. The results for this
parametrization are shown in Table 4 and Fig. 8. We do not

Table 3 Observational
constraints on the dark energy
parametrization, namely, the
Ext1 of (7) using various
observational datasets. We note
that H0 is in the units of
km/Mpc/sec and �m0 is the
present value of �m = �b + �c

Parameters CMB+BAO CMB+BAO+Pantheon CMB+BAO+Pantheon+CC

�ch2 0.1191+0.0014+0.0026
−0.0013−0.0027 0.1191+0.0013+0.0025

−0.0013−0.0026 0.1191+0.0013+0.0026
−0.0013−0.0026

�bh2 0.02226+0.00015+0.00029
−0.00015−0.00029 0.02227+0.00015+0.00030

−0.00015−0.00030 0.02227+0.00015+0.00030
−0.00015−0.00030

100θMC 1.04078+0.00033+0.00063
−0.00032−0.00064 1.04080+0.00032+0.00064

−0.00031−0.00062 1.04080+0.00031+0.00062
−0.00032−0.00062

τ 0.078+0.017+0.034
−0.017−0.034 0.080+0.017+0.035

−0.017−0.035 0.080+0.018+0.034
−0.018−0.034

ns 0.9665+0.0044+0.0091
−0.0044−0.0084 0.9667+0.0044+0.0089

−0.0044−0.0086 0.9666+0.0045+0.0087
−0.0044−0.0087

ln(1010As) 3.090+0.034+0.066
−0.033−0.066 3.092+0.034+0.066

−0.033−0.068 3.092+0.034+0.066
−0.034−0.066

w0 −0.524+0.374+0.524
−0.236−0.514 −0.947+0.076+0.165

−0.088−0.156 −0.950+0.075+0.152
−0.084−0.152

wa −1.403+0.731+1.570
−1.021−1.466 −0.308+0.367+0.619

−0.273−0.677 −0.291+0.338+0.555
−0.256−0.588

�m0 0.344+0.032+0.051
−0.026−0.054 0.304+0.008+0.016

−0.007−0.015 0.304+0.008+0.015
−0.008−0.015

σ8 0.803+0.024+0.053
−0.030−0.051 0.838+0.018+0.032

−0.016−0.033 0.837+0.016+0.032
−0.016−0.032

H0 64.36+2.05+5.26
−3.23−4.67 68.34+0.81+1.70

−0.82−1.63 68.31+0.84+1.64
−0.83−1.66
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//

Fig. 7 68% and 95% CL contour plots for various combinations of
the model parameters of Ext1 of (7) [the CPL parametrization] have
been shown for different observational combinations. The figure also

contains the one dimensional marginalized posterior distributions for
the parameters shown in the two dimensional contour plots

Table 4 Observational
constraints on the dark energy
parametrization, namely, the
Ext2 of (8) using various
observational datasets. We note
that H0 is in the units of
km/Mpc/sec and �m0 is the
present value of �m = �b + �c

Parameters CMB+BAO CMB+BAO+Pantheon CMB+BAO+Pantheon+CC

�ch2 0.1192+0.0014+0.0026
−0.0013−0.0027 0.1194+0.0013+0.0026

−0.0013−0.0025 0.1195+0.0013+0.0027
−0.0014−0.0027

�bh2 0.02223+0.00015+0.00030
−0.00015−0.00030 0.02223+0.00015+0.00028

−0.00015−0.00028 0.02222+0.00015+0.00028
−0.00015−0.00029

100θMC 1.04051+0.00032+0.00064
−0.00034−0.00063 1.04051+0.00031+0.00061

−0.00033−0.00059 1.04050+0.00033+0.00062
−0.00033−0.00065

τ 0.079+0.018+0.034
−0.018−0.035 0.079+0.017+0.033

−0.017−0.035 0.081+0.017+0.036
−0.018−0.035

ns 0.9744+0.0043+0.0083
−0.0043−0.0088 0.9740+0.0042+0.0086

−0.0045−0.0082 0.9740+0.0045+0.0085
−0.0043−0.0086

ln(1010As) 3.100+0.035+0.067
−0.035−0.068 3.100+0.036+0.064

−0.033−0.067 3.104+0.034+0.069
−0.034−0.070

w0 −0.616+0.326+0.560
−0.428−0.501 −0.949+0.074+0.149

−0.076−0.139 −0.946+0.072+0.155
−0.088−0.150

wa −1.000+1.039+1.262
−0.609−1.427 −0.290+0.277+0.460

−0.217−0.534 −0.302+0.310+0.500
−0.219−0.533

�m0 0.339+0.031+0.058
−0.037−0.054 0.305+0.008+0.015

−0.008−0.015 0.306+0.008+0.015
−0.007−0.015

σ8 0.810+0.030+0.055
−0.032−0.053 0.839+0.016+0.031

−0.016−0.031 0.841+0.016+0.033
−0.016−0.033

H0 64.98+3.11+5.55
−3.35−5.47 68.29+0.81+1.65

−0.82−1.59 68.24+0.79+1.56
−0.78−1.50
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Fig. 8 68% and 95% CL
contour plots for various
combinations of the model
parameters of the Ext2 of (8)
have been shown for different
observational combinations. The
figure also contains the one
dimensional marginalized
posterior distributions for the
parameters shown in the two
dimensional contour plots

Table 5 Observational
constraints on the dark energy
parametrization, namely, the
Ext3 of (9) using various
observational datasets. We note
that H0 is in the units of
km/Mpc/sec and �m0 is the
present value of �m = �b + �c

Parameters CMB+BAO CMB+BAO+Pantheon CMB+BAO+Pantheon+CC

�ch2 0.1195+0.0013+0.0027
−0.0013−0.0027 0.1194+0.0013+0.0026

−0.0013−0.0027 0.1195+0.0013+0.0027
−0.0013−0.0025

�bh2 0.02222+0.00014+0.00029
−0.00014−0.00029 0.02222+0.00015+0.00030

−0.00014−0.00029 0.02221+0.00015+0.00029
−0.00015−0.00029

100θMC 1.04049+0.00031+0.00065
−0.00032−0.00065 1.04050+0.00033+0.00062

−0.00032−0.00065 1.04047+0.00032+0.00061
−0.00032−0.00063

τ 0.078+0.018+0.035
−0.018−0.036 0.080+0.018+0.034

−0.017−0.035 0.079+0.018+0.033
−0.017−0.034

ns 0.9737+0.0043+0.0089
−0.0048−0.0083 0.9738+0.0043+0.0086

−0.0043−0.0086 0.9737+0.0043+0.0084
−0.0043−0.0084

ln(1010As) 3.099+0.035+0.067
−0.036−0.069 3.104+0.034+0.066

−0.033−0.067 3.101+0.034+0.065
−0.034−0.067

w0 −0.582+0.490+0.581
−0.501−0.564 −0.946+0.070+0.147

−0.080−0.137 −0.936+0.072+0.138
−0.071−0.141

wa −1.077+1.176+1.422
−1.010−1.450 −0.295+0.284+0.483

−0.215−0.508 −0.335+0.264+0.471
−0.222−0.472

�m0 0.343+0.042+0.058
−0.045−0.059 0.306+0.0075+0.015

−0.0075−0.015 0.306+0.0076+0.016
−0.0083−0.015

σ8 0.808+0.028+0.059
−0.036−0.052 0.840+0.016+0.031

−0.016−0.031 0.841+0.016+0.032
−0.017−0.034

H0 64.67+3.73+6.18
−4.37−5.42 68.26+0.80+1.57

−0.82−1.58 68.27+0.83+1.73
−0.85−1.62

find any notable changes due to the extension of one more
term in the DE parametrization. That means, the parametriza-
tion behaves similarly to the previous two parametrizations.

Finally, we focus on the last parametrization of this series,
namely Ext3 shown in Eq. (9). We have summarized the
results in Table 5 and Fig. 9, using the same combinations of

the cosmological datasets that have been used for the previ-
ous parametrizations. It is interesting to note that even if we
successively increase the terms in the Taylor expansion of the
generalized parametrization (6), but that does not attribute to
any change in the constraints on the key parameters as well as
on the derived parameters, for instance the Hubble constant.
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Fig. 9 68% and 95% CL
contour plots for various
combinations of the model
parameters of the Ext3 of (9)
have been shown for different
observational combinations. The
figure also contains the one
dimensional marginalized
posterior distributions for the
parameters shown in the two
dimensional contour plots

For a better understanding on the key parameters (w0, wa)

obtained from various combined datasets, in Table 6, we
have presented their 68% CL constraints and in Fig. 10, we
have shown their two dimensional contour plots. The Table 6
and Fig. 10 clearly emphasize that at the background level,
none of the extensions can be distinguished from the general
parametrization. However, as we will show below that, at
the level of perturbations, the inclusion of higher order terms
certainly exhibits some changes.

Thus, we investigate how the present dark energy parame-
breaktrization, namely, the new dark energy parametrization
in Eq. (6), and its extensions in Eqs. (7), (8) and (9) affect var-
ious observables, such as the temperature anisotropy in the
cosmic microwave background spectra as well as the matter
power spectra. Such an investigation is important since this
enables one to understand how the higher order extensions of
the original dark energy parametrization ( 6) affect the struc-
ture formation of the universe. Thus, in Fig. 11 we show the
temperature anisotropy in the CMB spectra and the residual
plots for different dark energy parametrizations for various
values of wa parameter with a fixed value of w0 = −0.95 .
We have actually fixed w0 = −0.95 since from the obser-

vational analyses of the models presented in various tables
of this article, w0 assumes values close to −0.95. For com-
pleteness, we have considered both the possibilities namely
wa > 0 and wa < 0. The plots in the first row of Fig. 11
depict the temperature anisotropy in the CMB spectra for
wa > 0 and the plots in the second row of Fig. 11 describe
the corresponding residual plots. Let us note that the plots
from left to right in both the first and second rows of Fig. 11
respectively stand for wa = 0.1, 0.2, and 0.3. In a similar
fashion, the plots in the third row of Fig. 11 stands for the
CMB spectra assuming wa < 0 and the plots in the last row
of Fig. 11 represent the corresponding residual plots. And the
plots from left to right in both the third and last rows of Fig. 11
respectively stand for wa = −0.1, − 0.2 and −0.3. From
the first row of Fig. 11 one can clearly notice that the DE
parametrizations cannot be distinguished from one another,
even if we increase the magnitude of wa , however, when we
look at the corresponding residual plots shown in the second
row of Fig. 11, we realize the differences. It is clear that Ext3
is more close to the original parametrization (6) compared to
Ext1 and Ext2. The same conclusion can be drawn from the
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Fig. 10 We show the (w0, wa) plane for the present dynamical dark energy parametrizations using different observational datasets. The left
graph for the dataset CMB+BAO, the middle graph for the dataset CMB+BAO+Pantheon and the right graph stands for the observational dataset
CMB+BAO+Pantheon+CC

Table 6 For a clear understanding and comparison of the dark energy key parameters (w0, wa) extracted from all the parametrizations, we show
their estimations at 68% CL. Here, CB = CMB+BAO, CBP = CMB+BAO+Pantheon, CBPC = CMB+BAO+Pantheon+CC

Datasets Parameters Gen Ext1 (CPL) Ext2 Ext3

CB (w0, wa) (−0.537+0.442
−0.441, −1.154+0.894

−0.807) (−0.524+0.374
−0.236, −1.403+0.731

−1.021) (−0.616+0.326
−0.428, −1.000+1.039

−0.609) (−0.582+0.490
−0.501,−1.077+1.176

−1.010)

CBP (w0, wa) (−0.963+0.060
−0.082, −0.231+0.291

−0.143) (−0.947+0.076
−0.088, −0.308+0.367

−0.273) (−0.949+0.074
−0.076, −0.290+0.277

−0.217) (−0.946+0.070
−0.080,−0.295+0.284

−0.215)

CMPC (w0, wa) (−0.933+0.071
−0.070, −0.337+0.288

−0.204) (−0.950+0.075
−0.084, −0.291+0.338

−0.256) ( −0.946+0.072
−0.088, −0.302+0.310

−0.219) (−0.936+0.072
−0.071,−0.335+0.264

−0.222)

last row of Fig. 11. So, effectively, independently of the sign
of wa , the conclusion remains same.

Following a similar graphical strategy applied to matter
power spectra plots as shown in Fig. 12, we arrive at the
same conclusion that the models are only distinguished from
one another if we look at the residual plots, that means the
plots summarized in the second and last rows of Fig. 12.

6 Bayesian evidence

A general and natural question that we will be looking
for in this section is that, how the models are efficient
compared to the standard �CDM cosmology. Thus, we
need a statistical comparison between all four dynamical
DE parametrizations where the base model will be fixed
as �CDM. This statistical comparison comes through the
Bayesian evidence. Here we apply publicly available code
MCEvidence [61,62]1 to compute the evidences of the
models. The use of MCEvidence is very easy since the
code only needs the MCMC chains used to extract the free
parameters of the DE parametrizations.

While dealing with Bayesian analysis we need the pos-
terior probability of the model parameters (denoted by θ ),
given a specific observational data (x) with any prior infor-
mation for a model (M). Following Bayes theorem, one can

1 See github.com/yabebalFantaye/MCEvidence.

write,

p(θ |x, M) = p(x |θ, M) π(θ |M)

p(x |M)
, (24)

where p(x |θ, M) is the likelihood as a function of θ and
π(θ |M) refers to the prior information. Here, the quantity
p(x |M) appearing in the denominator of (24) is the Bayesian
evidence that we actually need for the model comparison.
Now, for two cosmological models Mi , Mj where Mj is
acting as the reference model, 2 the posterior probability is,

p(Mi |x)
p(Mj |x) = π(Mi )

π(Mj )

p(x |Mi )

p(x |Mj )
= π(Mi )

π(Mj )
Bi j , (25)

in which Bi j = p(x |Mi )
p(x |Mj )

, is the Bayes factor of the model Mi

relative to Mj . And based on the values of Bi j (alternatively,
ln Bi j ) we quantify the observational support of the under-
lying model Mi relative to Mj . The quantification is done
through the widely accepted Jeffreys scales [63] (see Table
7). We also note that the negative values of ln Bi j indicate
that the reference model (Mj ) is preferred over the underly-
ing model (Mi ).

2 The reference model should be the most well motivated cosmological
model that must be highly sound to the observational data; and without
any doubt, �CDM is the best choice for such a model comparison.
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Fig. 11 We show the cosmic microwave background spectra and the
corresponding residual plots for the present dynamical dark energy
parameterizations using various values of the wa parameter with a fixed
w0 = −0.95. The plots in the first row present the cosmic microwave
background spectra and the plots in the second row present the corre-
sponding residual plots. The plots from left to right in the first and second

panels of this figure respectively stand for wa = 0.1, 0.2, and 0.3. Sim-
ilarly, the plots in the third row (showing the cosmic microwave back-
ground spectra) and last row (residual plots of the third row) stand for
wa < 0 in which the plots from left to right for both the above rows (third
and last rows) of this figure respectively stand for wa = −0.1,−0.2,

and −0.3

In Table 8 we have shown the values of ln Bi j computed
for all DE parametrizations considering all the datasets. We
find that the values of ln Bi j are all negative indicating that
�CDM is always preferred and this is true for all the obser-
vational datasets.

7 Concluding remarks

The dark energy, a hypothetical fluid in Einstein gravity is
the main concern of this work. This dark energy, as exam-
ined by many investigators since the year 1998, could be
anything obeying only one condition that the pressure of the
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Fig. 12 We show the matter power spectra and the corresponding
residual plots for the present dynamical dark energy parameterizations
using various values of the wa parameter with a fixed w0 = −0.95.
The plots in the first row present the matter power spectra and the plots
in the second row present the corresponding residual plots. The plots
from left to right in the first and second panels of this figure respectively

stand for wa = 0.1, 0.2, and 0.3. Similarly, the plots in the third row
(showing the matter power spectra) and last row (residual plots of the
third row) stand for wa < 0 in which the plots from left to right for both
the above rows (third and last rows) of this figure respectively stand for
wa = −0.1,−0.2, and −0.3

fluid should be negative. Thereafter, a cluster of dark energy
models have been introduced and confronted with the obser-
vational data, see [1] to get an overview of the models.

Among them an interesting construction of the dark
energy models comes through the equation of state of dark
energy, wx = px/ρx which in principle is the function of the

underlying cosmological time parameter, usually the func-
tion of the redshift. Technically, there is no such restric-
tion to pick up any specific functional form for wx , how-
ever, the viability of the model is only tested through the
observational data and its effects on the large scale structure
of the universe indeed. According to the investigations per-
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Table 7 Revised Jeffreys scale quantifying the observational viability
of any cosmological model Mi compared to some reference model Mj
[63]

ln Bi j Evidence for model Mi

0 ≤ ln Bi j < 1 Weak

1 ≤ ln Bi j < 3 Definite/positive

3 ≤ ln Bi j < 5 Strong

ln Bi j ≥ 5 Very strong

formed in the last couple of years, the Chevallier–Polarski–
Linder parametrization is a feasible and well functioning
dark energy parametrization with the observational data. The
present work is motivated in the same direction whilst we
have investigated something different as follows.

We have introduced a new dark energy parametrization (6)
having a novel feature. The model recovers the well known
CPL parametrization in its first order Taylor series expansion
around z = 0. Thus, the model actually presents a general-
ized version of the CPL parametrization. Since the model
is a nonlinear generalized version of the CPL model, thus,
a natural inquiry one may ask for is, how its higher order
corrections are important for the expansion history of the
universe, and moreover, how the higher order corrections
could affect the evolution of the universe at the level of back-
ground and perturbations. In order to investigate these issues,
we have considered the generalized model (6) together with
its first, second and third order Taylor approximations around
the present cosmic epoch z = 0, given in Eqs. (7), (8) and (9).
Since the original model (6) contains only two free parame-
ters w0 (current value of the dark energy equation of state)
and wa (parameter quantifying the dynamical nature of the
DE), thus its extensions contain the same free parameters.
We then constrain all the models using a class of astronom-

ical data, such as CMB, BAO, Pantheon from SNIa and the
Hubble parameter measurements (summarized in Sect. 4).

The observational constraints are summarized in Table 2
(for Eq. (6)), Table 3 (for Eq. (7)), Table 4 (for Eq. (8)), Table 5
(for Eq. (9)) and the graphical variations of the model param-
eters are also shown in Figs. 6, 7, 8 and 9, respectively for
the general, Ext1, Ext2, and Ext3 parametrizations. From the
analyses, it is clear that the cosmological parameters assume
similar constraints and according to the employed observa-
tional data applied to the present models, the dark energy
equation of state at present, w0, is consistent to w0 = −1
scenario. In addition, we find that, for CMB+BAO data, H0

for all parametrizations, assumes very lower values, if we
disregard its error bars, however, for CMB+BAO+Pantheon
and CMB+BAO+Pantheon+CC, H0 increases with slightly
higher error bars compared to the �CDM based Planck’s
estimation [59], and as a result the tension on H0 is slightly
reduced. However, at the level of background, the mod-
els cannot be distinguished from one another while from
the investigations at perturbations stage, one can distinguish
between the models, see the residual plots in Figs. 11 and
12.

We also performed the Bayesian evidence analysis using
the MCEvidence and compared the models with respect
to the standard �CDM reference scenario. Our analysis
reveals that �CDM is favored over all the dynamical DE
parametrizations. This is an expected result because the
parameters space of the leading cosmic scenarios driven
by the present dynamical DE parametrizations are of eight
dimensional while �CDM has only six parameters.

Last but not least, we would like to comment that the
model (6), so far we are aware of the literature, is a new
one in the field of dark energy which naturally recovers CPL
parametrization in its first order approximation and sounds
good with the Bayesian evidence. Therefore, a number of
investigations can be performed in various contexts of cur-

Table 8 The values of ln Bi j
computed for the present dark
energy parametrizations (Mi )
where the reference scenario is
the �CDM model (Mj ). We
note that the negative value of
ln Bi j means that �CDM is
preferred

Dataset Model ln Bi j Evidence for �CDM

CMB+BAO Gen −1.4 Definite

CMB+BAO+Pantheon Gen −3.4 Strong

CMB+BAO+Pantheon+CC Gen −3.6 Strong

CMB+BAO Ext1 −1.1 Definite

CMB+BAO+Pantheon Ext1 −3.3 Strong

CMB+BAO+Pantheon+CC Ext1 −3.4 Strong

CMB+BAO Ext2 −1.7 Definite

CMB+BAO+Pantheon Ext2 −3.2 Strong

CMB+BAO+Pantheon+CC Ext2 −3.3 Strong

CMB+BAO Ext3 −1.6 Definite

CMB+BAO+Pantheon Ext3 −3.9 Strong

CMB+BAO+Pantheon+CC Ext3 −3.5 Strong
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rent interests. A quite straightforward and appealing inves-
tigation would be to measure the mass bounds of neutrinos
in such a generalized framework. Moreover, it will be fur-
ther interesting to consider a number of upcoming cosmo-
logical surveys, such as, Simons Observatory Collaboration
(SOC) [64], Cosmic Microwave Background Stage-4 (CMB-
S4) [65], EUCLID Collaboration [66,67], Dark Energy Spec-
troscopic Instrument (DESI) [68], Large Synoptic Survey
Telescope (LSST) [69–71], in order to forecast the present
dark energy parametrizations. The inclusion of gravitational
waves data from various sources, such as, Laser Interferom-
eter Space Antenna (LISA) [72], Deci-hertz Interferometer
Gravitational wave Observatory (DECIGO) [73,74], Tian-
Qin [75], is also an appealing direction of research in this
direction.
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