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Abstract We propose a new compact stellar object model
existing in a space filled with a distribution of anisotropic
fluid matter for stellar configuration exposed to the hydro-
static equilibrium. An analytical solution was obtained using
dark-energy (DE), which is characterized by a equation of
state (EoS) of the type p = γρ − ρ corresponding to the
external Schwarzschild vacuum solution through a thin enve-
lope. We have imposed a collective function based on an
adjustable coefficient to solve the Einstein field equations
(EFEs). We investigate the general physical characteristics
of high-density astrophysical objects based on the required
solutions, with the inside structure of the stellar objects, such
as the energy conditions, stability analysis, mass function,
surface redshift function, velocity of sound and compactness
of stellar objects through theoretical expression as well as
graphic plots. In terms of our results, the physical behavior
of this model can be used to model ultra-compact objects.

1 Introduction

The investigation of DE objects has turned into an interesting
subject due to the phenomenon that the expansion of the
Universe is accelerating. This phenomenon was proposed by
the High-z supernova Search Team in 1998 by observing type
Ia supernovae [1–9], which was subsequently confirmed by
checking of the Cosmic Microwave Background Radiation
[10,11] and Large-scale structure [12–17]. DE is the most
agreeable hypothesis to clarify this accelerating expansion
of the Universe.

In Einstein’s general relativity, to explain the rate of accel-
erating expansion of the Universe, it is necessary to define a
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dark component with the matter distribution obeying a strong
negative pressure. This dark component normally refers to
DE. Cosmic perceptions show that the Universe is flat and
currently contains about 1/3 DM (dark matter) and 2/3
DE. The dark sector concept (DE and DM) is obscure, and
many very diverse models have been suggested, for instance,
DGP branes, a small positive cosmological constant [18,19],
quintessence [20–22], the non-linear F(R) models [23–25],
and DE in brane Universes [26,29].

Then again, another essential problem in the physics of
gravity concerns black holes (BHs) and their development
in our world. In spite of the fact that it is, for the most
part, trusted believed to considerably littler than the horizon
extent, the DE variances itself are insignificant [30], their
consequences for developing the complications of the matter
might be huge [31,32]. At that point, a characteristic inquiry
is the manner by which DE influences the procedure of the
star attraction’s gravity.

It is understood that DE applies an offensive force on its
encompassing, and this later can restrain the object from
collapsing. In reality, there are theories demonstrate that a
gigantic object doesn’t just fall to shape a BH, rather for the
development of objects that comprise DE. Mazur and Mot-
tola [33–35] proposed a model unraveled keeping in mind the
ultimate goal of having an answer with the last object without
any scenario of singularity or horizons, which they so-called
gravastar (GRAvitational VAcuum STAR). In this circum-
stance, the object (gravastar) is a framework represented by
the presence of a thin layer yet not microscopic made of a
solid matter, which isolates the interior region through the
Schwarzschild outside of outer space. Disposal of the clear
horizon is achieved by using an appropriate choice from the
inside and outside the radius of the thin envelope, so that the
internal radius is shorter than the horizontal range of the de-
Sitter and the outer range is longer than the Schwarzschild
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horizon. In a past action, Visser and Wiltshire [36] estimated
that the gravastar was gradually stabilized. The presence
of elements such as gravastar brings both exchanges to the
inevitable way that gravity collapse always forms a BH.

The configuration and gravitational collapse of BHs in the
existence of DE and DM was first addressed by various works
[37–40]. Chan et al. [41], motivated by the gravastars picture,
have recently shown that these kinds of gases with anisotropic
pressure, are possessed to a spherically symmetric objects
typical script and gravity collapse, imposes a careful anal-
ysis of the anisotropy which is a very important parameter
in this case. In the same context, they suggested generaliz-
ing the limits of the situation of the anisotropic fluids. This
generalization comes directly from the strong state of energy.

In view of the talks about the gravastar picture a few the-
orists have proposed elective models [42–46]. Among them,
we can discover a gravastar with anisotropic and continuous
pressure [47], the gravastar supporting by nonlinear electrical
dynamics [48], and a Chaplygin dark star [49]. Next to them,
Lobo [50] has examined two DE models. One depicts a homo-
geneous energy density and another uses a particularly low
diminishing energy density, both of them with the anisotropic
pressure. With a specific end goal to coordinate an outside
Schwarzschild space-time he has presented a thin layer in the
space separating the inside and the outside space-times.

In the current procedure, we suggest a model for an
anisotropic gravastar of DE or simply a DE object in agree-
ment with Chaplin’s definition [51] based on the EoS, p =
γρ −ρ with γ < 2/3, where we suppose that the radial pres-
sure applied to the framework due to the nearness of DE is
immediately proportional to the matter density for the perfect
isotropic fluid. In our model, the energy density, as well as
pressure, diminishes with radial coordinates, as anticipated
for well-known star models and the mass function is a phys-
ical result of the EFEs. In order to remove the current central
uniqueness, we have taken into consideration a center with an
energy density of homogeneous, to find the central solution
for modeling a DE object with a repulsive gravitational force.
In this respect, we assume that the fluid governed by the EoS
in the following form pr = λρc with λ < 0. The junction
along the space separating the interior and Schwarzschild
has forced out of space-time a thin envelope. We are going to
investigate diverse configurations, with impressive specific
choices for the mass function in order to resolve the EFEs.
The behavior of this mass function in the star interior rep-
resents an increase of the energy density interestingly with
usual models. The primary electromagnetic mass model of
Tiwari et al. [52] complying with an EoS p = −ρ, infers
which the gravitational mass goes as a high intensity of their
radius interior the star. For the model of a star of anisotropic
fluid in the DE scenario, where a repulsive gravitational is
necessary, it is interesting to suggest a model with this anony-
mous dependence. In this respect, the fluid encloses inside

a shell is considered so as to assess the behavior of stability
and the physical properties. In the line of thought such as the
dependence formalities of Lobo and Crawford [53], we find
the stability profile.

The paper is organized as follows: In Sect. 2 we discuss the
interior space-time and EFEs of stellar models of astrophysi-
cal objects. In Sect. 3 we demonstrate the junction conditions
for the shell between the inside and the outside space-time,
and then the energy conditions have been analyzed in Sec 4. In
Sect. 5 we explored the equilibrium condition below various
forces of compact object for a physically reasonable model.
In Sect. 6 we discuss some characteristic comments about
mass function, mass-radius relationship, and surface redshift
function. A stability analysis is given in Sect. 7. Concluding
remarks close this paper.

2 Interior space-time and EFEs of anisotropic fluid
distributions

We are going to consider a static spherically symmetric
anisotropic matter distribution, reported in the following met-
ric, in curvature parameters [54]:

ds2 = −exp

{
−2

∫ ∞

r
g (r̃) dr̃

}
dt2

+{1 − 2m(r)/r}−1dr2 + r2d�2, (1)

where d�2 = dϑ2 + sin2ϑdϕ2 is the metric on the unit
2-sphere, g(r) and m(r) are two random expressions of the
radial parameter r . And having an energy-momentum tensor
represented for an anisotropic matter distribution by

Tμν = (ρ + pt ) uμuν + pt gμν + (pr − pt ) vμvν, (2)

where ρ is the energy density, pr is the radial pressure mea-
sured in the direction of vμ, pt is the transverse pressure
measured in the orthogonal direction of vμ, uμ is the vector
4-velocity, vμ is the space-like vector in the radial direction,
i.e., vμ = √

1 − 2m(r)/r × g(r). The element g(r) is called
the gravity profile, which symbolizes the locally weighted
gravity acceleration. For g(r) is strictly positive, gravitational
attraction is inward, and for g(r) is strictly negative, we find
a gravitational repulsion outward.

The EFEs is given by

Gμν = 8πTμν, (3)

where Gμν is the Einstein tensor, we get the following rela-
tionship

m′ = 4πr2ρ, (4)

g =
(
m + 4πr3 pr

)
(r (r − 2m))−1, (5)
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p′
r = − (ρ + pr )

(
m + 4πr3 pr

)

×(r (r − 2Gm))−1 + 2

r
(pt − pr ) , (6)

where primes represent differentiation with respect to the
parameter, r . In generating the above field equations, we
used geometric units where the coupling constant and the
speed of light are considered as units (G = c = 1). Equa-
tion (6) matching Bianchi’s identity means that 
μTμν , has
also been found by using the Tolman–Oppenheimer–Volkoff
(TOV) equation for the relativistic anisotropic pressure. It is
clear that in the isotropic situation i.e. (pt = pr ) the Eq. (6)
correspond to the usual TOV equation, which restricts the
structure of the internal equilibrium of general relativistic,
isotropic, static ideal gas objects and it is constituted in basis
textbooks of gravity [55,56].

At this stage, we have a system of equations constituted
by three equations, specifically, the field Eqs. (4)–(6), and 5
nameless variables of radial coordinate, r , i.e., ρ(r), pr (r),
pt (r), g(r) and m(r). Along these lines, it is greatly hard
to do to get a specific solution of EFEs. However as in pre-
viously mentioned discussion, we are concerned in closely
realistic case where the mass expression is uniform and field
distributions are basically acquired for deciding the physical
highlights of a compact star. With this objective into account,
let us suppose that a EoS p = p(ρ) and the mass density
which is increment from the core to the surface of the star.

It is helpful now to present the mass and gas with the EoS
in the specific shape

m (r) = α1

2
r + α2

2
r3, (7)

pr = γρ − ρ. (8)
For the choice of relation of the mass gives a behavior of
monotonic increasing in kind and regular at the focal point
of the star. At a similar time it supplies a matter density
which gives a profile of monotonic diminishing in kind and
gives a limited an incentive at the focal point of the star. So
our chosen mass function is physically acceptable. Presently,
considering the Eqs. (4) and (5) and utilizing the EoS of DE
(8), we acquire

g(r) =
(
α1γ + α2 (3γ − 2) r2

)
/
(

2r
(

1 − α1 − α2r
2
))

.

(9)

To investigate the nature of DE for local stellar manifestation
has attracted a lot of interest and for fantastic surveys on this
subject sees Refs. [57,58]. The existence of DE sphere makes
us expect that it is a generalization of the gravastar picture
with an inside solution governed by the EoS of DE and such
objects have gotten impressive consideration in astrophysics
although some steps have been already taken in this direction.

Solving the above system Eqs. (4)–(6), utilizing the EoS
of DE pr = γρ − ρ, we acquire the physical parameters for
this model are written as:

ρ = α1

8πr2 + 3α2

8π
, (10)

pr = (γ − 1)

(
α1

8πr2 + 3α2

8π

)
, (11)

pt = 1

8π

{
γ

(
α1 + 3α2r

2
) (

α1γ + α2 (3γ − 2) r2
)

×
(
r2

(
1 − α1 − α2r

2
))−1 + 3α2 (γ − 1)

}
, (12)

and using Eqs. (11) and (12) we get


 = 1

8πr2

{
γ

(
α1 + 3α2r

2
) (

α1γ + α2 (3γ − 2) r2
)

×
(
r2

(
1 − α1 − α2r

2
))−1 − α1 (γ − 1)

}
, (13)


 = pt − pr is signified as the anisotropic parameter. It
is a measure of the anisotropic pressure of the gas includ-
ing the star of DE. 
 = 0 matching to the special situa-
tion of a isotropic pressure DE object [50]. Notice that 
/r
symbolizes a force appropriate to the anisotropic kind of the
astrophysical form, which is repulsive, i.e., being outward
directed if 
 > 0, and attractive if 
 < 0.

We will currently analyze the energy density is positive
and limited at all focuses in the inside of the spherical object
and some physical criterion which are important for the inside
solution. In this respect, it is important to impose the restric-
tions on the constants appearing in the metric functions, so
that all criteria for physical availability are fulfilled and well-
behaved at all the inner points of strange compacts objects.
Now we follow closely the Buchdahl limit, 2m (r) − r < 0
and using the Eq. (7) we get 1 − α1 − α2r2 > 0, which
supply a restriction on the variables α1, α2, and radius r , so
according to the last we can write

r <
√

(1 − α1)/α2. (14)

This gives the constraint on α1, α2 of α1 < 1 and α2 > 0.
According to this restriction one can choose values of α1 =
0.45 and α2 = 10−3 which is very close with the choice of
Dev and Gleiser [56]. Now, using the Eq. (9) provided that
g(r) is strictly positive we find

γ > 2α2r
2/

(
α1 + 3α2r

2
)
. (15)

By using the Eq. (14) in (15), and for a big value of r we can
find the expression in the maximum limit in the following
form as

γ > 2 (1 − α1)/(3 − 2α1). (16)

For a little value of r , from the Eq. (15) we get γ > 0, thus

γ > max

(
0, 2

(1 − α1)

3 − 2α1

)
. (17)
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Fig. 1 Variation of the gravity profile, g(r), with the radial coordinate
when γ = +0.9 and γ = −0.2 for spherical object PSR J1614-2230

For our choice, α1 = 0.45, max
(

0, 2 (1−α1)
3−2α1

)
= 0.55 i.e.,

γ = 0.55.
Once more, utilizing the condition (9) gave that g(r) is
entirely negative we obtain

γ < 2α2r
2/

(
α1 + 3α2r

2
)
. (18)

For a little value of r , Eq. (18) gives γ < 0, and for big r
i.e., in the maximum limit leads to

γ < 2 (1 − α1)/(3 − 2α1). (19)

Therefore,

γ < min

(
0, 2

(1 − α1)

3 − 2α1

)
. (20)

For the above choice ofα1, we getmin
(

0, 2 (1−α1)
3−2α1

)
= 0 i.e.,

γ = 0. In this way, we need to decide for γ either γ > 0.55
and γ < 0 for the plots, which satisfies these two cases
corresponding respectively to the normal and ghost phases.

The behaviors of the gravity profile g(r) are shown in
Fig. 1 for γ = +0.9 and γ = −0.2 respectively. From this
figure, we observe that gravity profile g(r) is strictly positive
when γ = +0.9 and strictly negative when γ = −0.2 for
our above choice of α1 and α2.

The behaviors of the matter density ρ, transverse pressure
pt , and radial pressure pr are plotted in Fig. 2 are all mono-
tonically decreasing expressions of the radial parameter r .

In Fig. 3, we show the variation of the force due to the
anisotropic pressure with the radius within the sphere for
different values of γ for fixed values of parameters α1 and
α2. It explains that this force will be attractive in nature i.e.
in the interior direction if pt < pr and repulsive if pt > pr
or on the other hand 
 > 0. For our astrophysical model
configuration (see Fig. 3) 
 > 0 for both the situations when
γ = +0.9 and the ghost phase, i.e. for γ = −0.2.

Energy density

Radial pressure

Transverse pressure

0 2 4 6 8
0.10
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ρ ,
p r
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p t

Fig. 2 Variation of the matter density ρ, radial pressure pr and trans-
verse pressure pt with the radial coordinate of the DE model for spher-
ical object PSR J1614-2230
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Fig. 3 Variation of the anisotropy parameter, 
 = pt − pr , with the
radial coordinate r when γ = +0.9 and γ = −0.2 for spherical object
PSR J1614-2230

In fact, we can see that there are a number of problems
in the model. For instance, the divergence of pressure and
energy density in the center of the spherical object. In order,
to solve these problems for modeling a spherical object. We
assume that the spherical object has a center extending to the
finite radius. So to stay away from this singularity in the cen-
ter, we cut the space-time metric (1) close to its center where
we place the anisotropy fluid of constant density ρc. Now, to
find the central solution that can model a DE object with a
repetitive gravitational force. In this respect, we assume that
the fluid governed by the radial EoS in the following form:

pr = λρc , λ < 0. (21)

Here, the mass function m(r) becomes

m (r) = 4πρc

3
r3. (22)

Using this last expression (22), we obtain, with the help of
Eq. (5),
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g(r) = 8πρc

3

(1 + 3λ)(
1 − 8πρc

3 r2
)r. (23)

Therefore, the space-time metric of the center is given by

ds2 =
{

1 − 8πρc

3
r2

}− 1
2 (1+3λ)

dt2

+
{

1 − 8πρc

3
r2

}−1

dr2 + r2d�2. (24)

Note that with Eq. (22), the metric (24) does not diverge at
the center r = 0. The transverse pressure can be obtained as

pt = λ

[
1 + (1 + λ) (1 + 3λ)

2πρ2
c r

2(
3 − 8πρcr2

)
]

ρc, (25)

and the anisotropy factor 
 can be obtained in the form


 = (1 + λ) (1 + 3λ)
2πρ2

c r
2(

3 − 8πρcr2
) , (26)

From the above expression of the anisotropy factor 
, we
must clearly observe that 
 > 0 if λ < −1 and 
 < 0 if
−1 < λ < −1/3. In the center of the spherical object,
 = 0,
which is expected for a physically acceptable solution. We
can also note that for λ = −1 and λ = −1/3, the anisotropic
pressure of the center is reduced to the isotropic pressure.

3 Junction condition for the shell

The spherical object shell is a hypersurface of constant radius
r = R in 3+1 dimensional space-time along which the space-
time dedicated to the matching of the Schwarzschild metric
outside the shell with p = ρ = 0 at the junction interface r =
R, with radius of junction R. The metric of the hypersurface
is given by

ds2 = − (1 − 2M/r) dt2 + 1

(1 − 2M/r)
dr2

+r2
(
dθ2+sin2θdφ2

)
, (27)

describes a pointmass in space-time, with a singularity at the
origin, where the singularity at r = 2M is just a result of
choice of coordinates [63]. We have taken the value of the
radius of junction R > 2M to stay away from the existence
of such singularities i.e., the radius of junction lies exterior
2M , where M can be defined as the total mass of the DE
star. At present using the Darmois-Israel formalism [64,65],

the special function for the shell stress-energy tensor Sij on a
space-time hypersurface is given by the Lanczos equations

Sij = − 1

8π

(
κ i
j − δijκ

k
k

)
, (28)

where the term κ i
j symbolize the extrinsic curvatures discon-

tinuity, Ki
j beyond the hypersurface, i.e., κ i

j = K+
i j − K−

i j .
The extrinsic curvature is defined as [64,65]:

Ki j ≡ nμ;νeμ

(i)e
ν
( j), (29)

where nμ is the unit normal quadric-vector of the hyper-
surface �, and eμ

(i) are the parts of the holonomic premise
vectors tangent of the hypersurface �. Now, we can utilizing
the metrics (1) and (27), we conclude the non-trivial parts of
the extrinsic curvature are given by on the following form

K τ+
τ = 1

R2

M + R̈R2√
1 − 2M

R + Ṙ2
, (30)

K τ−
τ =

(
α1γ + α2 (3γ − 2) R2

) (
1 − α1 − α2R2

)
2R

(
1 − α1 − α2R2

) √
1 − α1 − α2R2 + Ṙ2

+ 2R̈R
(
1 − α1 − α2R2

) − γ Ṙ2

2R
(
1 − α1 − α2R2

)√
1 − α1 − α2R2 + Ṙ2

,

(31)

and

K ϑ+
ϑ = 1

R

√
1 − 2M

R
+ Ṙ2, (32)

K ϑ−
ϑ = 1

R

√
1 − α1 − α2R2 + Ṙ2. (33)

where the dot signifies a derivative with respect to the correct
time, τ . Therefore, from the equations of Lanczos [48,50] one
can write the surface stresses of the thin shell, as follows:

σ = − 1

4πR

{√
1 − 2M

R
+ Ṙ2 −

√
1 − α1 − α2R2 + Ṙ2

}
,

(34)

and

P = 1

4πR

⎧⎨
⎩

R2 R̈ + RṘ2 + R − M

R
√

1 − 2M
R + Ṙ2

−
(
α1γ R + α2 (3γ − 2) R3

) (
1 − α1 − α2R2

) + (
RR̈ + 1

) (
1 − α1 − α2R2

) + 2α2R3 Ṙ2

2R
(
1 − α1 − α2R2

)√
1 − α1 − α2R2 + Ṙ2

⎫⎬
⎭ , (35)

σ and P are the energy density of surface and the transverse
surface pressure, respectively.

We will likewise utilize the conservation law [48,50] given
by

Sij,i = − 1

8π

[
Tμνe

μ

( j)n
ν
]+
−, (36)
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this equation provides us with

σ
′ = − 2

R
(σ + P) + Ξ. (37)

Where Ξ , for notational convenience, we have defined as

Ξ = − 1

4πR

γ
(
α1 + 3α2R2

)
2R

(
1 − α1 − α2R2

)
√

1 − α1 − α2R2 + Ṙ2.

(38)

Using the relationship (7) evaluated at R, it is clear to see that
the transition phase Ξ is zero when γ = 0, which reduces to
the examination inspected by Visser and Wiltshire [36]. The
static solution is given to take into account Ṙ = R̈ = 0. The
aggregate mass of the DE object, for the fixed solution, with
the interface of junction R, is given by

M = m (R) + ms(R)

(√
1 − m (R)

R
− ms(R)

2R

)
, (39)

Wherems is the mass of the surface of the thin layer is defined
as

ms(R) = 4πR2σ. (40)

Substituting the expression of σ in de static case into Eq.
(40), and, with the assistance of condition (39), we get

M = 1

2
R

(
α1 + α2R

2
)

+ ms (R)

√
1 − α1 − α2R2 − m2

s (R)

2R
,

(41)

with

ms (R) = R

(√
1 − α1 − α2R2 −

√
1 − 2M

R

)
. (42)

On the other hand, we can differentiate two times the relation
in (40), and we take into consideration the radial component
of the derivative of σ ′, we can be rewrite expression (37) in
the following form

(
ms(R)

2R

)′′

= ϒ − 4πRσ ′η, (43)

where ϒ and η are two unknown parameters defined respec-
tively by

ϒ = 4π

R
(σ + P) + 2πRΞ ′, (44)

α1 0.45,α2 10 3, 0.9, M 2.3

α1 0.45,α2 10 3, 0.9, M 2.5

0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

r km

Η

Fig. 4 Variation of the velocity of the sound, η, with the radial coor-
dinate r , for tow values of mass M and when the parameter of DE γ is
fixed for spherical object PSR J1614-2230

and

η = P ′

σ ′ . (45)

where the prime indicates the derivative concerning R.
The equation found above will assume an essential role in

deciding the stability area of the static arrangements. We use
η as a parametrization of the stable equilibrium and using
to establish the stability of the system, so that there is no
necessity to identify a EoS of the surface [50]. We introduce
η in Eq. (43), one deduces the idea proposed by Poisson and
Visser [66] and Ishak and Lake [67], which consist that

√
η

is described as the speed of the sound [50,53]. At that point,
the estimations of η are compelled to 0 < η ≤ 1 on the
surface layer, considering the prerequisite that the speed of
sound ought not surpass the speed of light. The behavior of
parameter of the stable equilibrium η is shown in Fig. 4.

With a specific end goal to acquire impression we inves-
tigate our framework by evolution identity defined by

[
Tμνn

μ

( j)n
ν
]+
− = K

i
j S

j
i , (46)

where

K
i
j = 1

2

(
K j+
i + K j−

i

)
, (47)

The above relationship of the evolution identity (46), with the
help of expressions (37)–(40), one can provides the following
relationship
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pr + (ρ + pr ) Ṙ2

1 − α1 − α2R2 =
{

− 1

R

{√
1 − 2M

R
+ Ṙ2 +

√
1 − α1 − α2R2 + Ṙ2

}
P

+ 1

2

⎧⎨
⎩

1

R2

M + R̈R2√
1 − 2M

R + Ṙ2
+

(
α1γ + α2 (3γ − 2) R2

) (
1 − α1 − α2R2

) + 2R̈R
(
1 − α1 − α2R2

) − γ Ṙ2

2R
(
1 − α1 − α1R2

)√
1 − α1 − α2R2 + Ṙ2

}
σ

⎫⎬
⎭ , (48)

In order to considering the static case at R = R0 with
R̈ = Ṙ = 0. From the above condition of the radial pressure
we have the following pressure adjust equation in terms of
the stress of surface as

pr (R0) =
{

− 1

R0

{√
1 − 2M

R0
+

√
1 − α1 − α2R2

0

}
P

+1

2

⎧⎨
⎩

1

R2
0

M√
1 − 2M

R0

+
(
α1γ + α2 (3γ − 2) R2

0

)
2R0

√
1 − α1 − α2R2

0

⎫⎬
⎭ σ

⎫⎬
⎭ ,

(49)

After this above equation, we can see that σ < 0 and the
pressure of the shell acting from the inside is refuting pr <

0, which implies that the stress is in a direction of radial.
Consequently, if a positive transversal surface pressure P is
necessary to maintain the shell stable.

4 Energy conditions on the junction

Located on the current section, let us analyze the energy con-
ditions within the foundation of general relativity relating to
the inside of the star. Presently, taking into consideration the
standard description of this energy conditions for anisotropic
fluids, we analyze: the Weak Energy Condition (WEC), the
Null Energy Condition (NEC), the Strong Energy Condition
(SEC), and the Dominant Energy Condition (DEC), at every
point inside the fluid sphere. More accurately, we have the
following suggestion

NEC : ρ(r) + pr (r) ≥ 0, (50)

WEC : ρ (r) + pr (r) ≥ 0, ρ(r) ≥ 0, (51)

SEC : ρ (r) + pr (r) ≥ 0, ρ (r) + pr (r) + 2pt (r) ≥ 0,

(52)

DEC : ρ (r) > |pr (r)| , ρ (r) > |pt (r)| , (53)

Utilizing the above inequalities hold simultaneously for all
terms of the inside region, one can easily confirm the kind
of energy condition for the particular stellar configuration
developed here. The profiles of the inequalities (50)–(53)
have been demonstrated with the help of graphical depicted
in Fig. 5. As an outcome, it is exceptionally obvious from

Fig. 5 that all energy conditions (WEC), (NEC), (SEC), and
(DEC) are satisfied for our suggested DE model.

5 Equilibrium condition

For exploring the equilibrium condition below various forces
of compact object for a physically suitable model we exam-
ine the forces of gravity and other forces of fluid. If we take
into account the generalized Tolman–Oppenheimer–Volkoff
(TOV) [68], equation one can explain the context of the dis-
tribution of anisotropic fluid, which is given by

−MG(r)

r2 (ρ + pr ) exp

(
λ − ν

2

)
− dpr

dr
+ 2

r
(ρ − pr ) = 0,

(54)

where MG(r) is the successful gravitational mass interior a
object of radius r given by the Tolmam–Whittaker procedure
which is given by

MG (r) = 1

2
r2ν

′
exp

(
ν − λ

2

)
. (55)

Substituting the Eq. (55) into (54) we find finally the modified
TOV equation in a simply form

−ν′

2
(ρ + pr ) − dpr

dr
+ 2

r
(ρ − pr ) = 0, (56)

given this above equation from an equilibrium condition for
anisotropic fluid spheres, the three forces are reactivated,
namely, the gravitational (Fg), the hydrostatics (Fh) and the
anisotropic (Fa) forces are given by :

Fg + Fh + Fa = 0, (57)

where

Fg = −ν′

2
(ρ + pr ) , (58)

Fh = −dpr
dr

, (59)

Fa = +2

r
(ρ − pr ) , (60)
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Fig. 5 Behaviour of the energy condition when α1 = 0.45, α2 = 10−3

as functions of r for fixed value of DE parameter γ = +0.9 for spherical
object PSR J1614-2230
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Fig. 6 Behavior of different forces vs. radial coordinates r for γ =
+0.9 for spherical object PSR J1614-2230

To simplify these Eqs. (58)–(60) mentioned above, we have
drawn the profiles of Fg , Fh , and Fa are demonstrate in Fig. 6.
This figure shows that our DE model is in static equilibrium
is feasible because to pressure gravitational, hydrostatic and
anisotropy forces.

6 Some characteristics

6.1 Mass function

The mass expression inside the radius r which is mentioned
in section 2 by Eq. (7) as,

m (r) = 4π

∫ r

0
ρ (ω)ω2dω = α2

2
r3 + α1

2
r, (61)

As limr→0 m(r) = 0, imply that the mass function is reg-
ular at the core of the the DE object. The behavior of the
mass function is plotted in Fig. 7, which demonstrates that
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Fig. 7 Behaviour of the mass function when α1 = 0.45, α2 = 10−3

as functions of the radial coordinates r for spherical object PSR J1614-
2230
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Fig. 8 Behaviour of the compactness function when α1 = 0.45, α2 =
10−3 as functions of the radial coordinates r for spherical object PSR
J1614-2230

mass function is positive and monotonic expanding physical
quantity according to the radial coordinates r .

6.2 Mass-radius function

The mass-radius relationship of a compact object can not be
arbitrarily big. Buchdahl [69] demonstrated that for a (3+1)-
dimensional fluid sphere 2M

R < 8
9 (where R is the star radius)

where R > 2M . The relationship mass-radius of our model
is given in explicit form by

u(r) = m(r)

r
= α2

2
r2 + α1

2
, (62)

The behavior of the compactification factor is represented in
in Fig. 8. The factor u = m(R)/R = M/R characterizes
the relationship mass-radius (the compactification factor) of
the astrophysical configuration. The figure demonstrates that
the compactification factor is a monotonic increasing rela-
tion according to the radial coordinates r . To see maximum
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Table 1 Physical parameters for different anisotropic astrophysical models for α1 = 0.45 and α2 = 0.001

Observed objects Radius R (km) M
(
M⊙)

Central density( ×1015

gm cm−3

) Surface density( ×1018

gm cm−3

) Mass-Radius Ratio
u = M/R

Surface Red-
shift zs

PSR J1614-2230 9.69 1.970 3.102 0.517 0.2719 0.4807

Vela X-1 9.56 1.770 3.154 0.483 0.2706 0.4766

4U 1608-52 9.52 1.740 3.170 0.481 0.2703 0.4754

PSR J1903+327 9.43 1.667 3.208 0.474 0.2694 0.4726

4U 1820-30 9.31 1.580 3.261 0.467 0.2683 0.4691

Cen X-3 9.17 1.490 3.324 0.461 0.2670 0.4650

Her X-1 8.10 0.880 3.924 0.395 0.2578 0.4368

SAX J1808.4-3658 7.95 1.435 4.028 0.682 0.2566 0.4332

value permissible the mass-radius ratio M/R is determined
as M/R = 0.2719 for our current model which lies in the
normal framework of Buchdahl [69]. The impact of the mass-
radius ratio on the EoS has been considered by Carvalho et
al. [74] for white dwarfs and neutron stars, by Swift et al. [75]
for exoplanets and for the nuclear center by Lattimer [76].
Similarly supposing the estimated masses and radii for sev-
eral compact spherical objects: five X-ray binaries, namely
Vela X-1, Cen X-3, 4U 1538-52, SAX J1808.4-3658 and Her
X-1, analysis by Rawls et al. [77]; Abubekerov et al. [78];
Elebert et al. [79] and two binary millisecond pulsars, namely
PSR J16142230 and PSR J1903+327 analysis by Demorest
et al. [80]; Freire et al. [81], we have performed a compara-
tive study of the values of the physical parameters which is
shown in Table I, and are closely equal to the observed val-
ues of most of the compact spherical objects. Once again, we
compared our solution of mass-radius relation for the com-
pact neutron and quarks stars in one paradigmatic extension
of general relativity, namely the realistic models of relativis-
tic stars in f (R) = R + αR2 gravity studied by Astashenok
et al. [82]. The same behavior of the mass-radius relation was
previously have been analyzed to model compact objects in
the framework of f (R) gravity in [82–106], which do not
cross the proposed range by Buchdahl in [69].

6.3 Surface redshift function

The surface redshift function zs of a compact object can be
given by the through expression

1 + zs = 1√
1 − 2u

, (63)

substituting Eq. (62) into (63), thus, we get zs as,

zs =
(

1 − α1 − α2R
2
)− 1

2 − 1, (64)

The values of the surface redshift parameter for various astro-
physical structures are given in Table 1. For an isotropic

spherical object, in the absence of a cosmological constant,
Buchdahl [69] and Straumann [107] have demonstrated that
zs ≤ 2. Böhmer and Harko [108] indicated that for an
anisotropic spherical object, in the presence of a cosmologi-
cal constant, the surface redshift can take a lot higher value
zs ≤ 5. The limitation was thusly modified by Ivanov [109]
who demonstrated that the most extreme admissible value
could be as high as zs = 5.211. In our situation, we have
zs ≤ 1 for various compact spherical object models devel-
oped in this paper.

7 Stability analysis

We will then focus on Lobo and Crawford’s approach [53]
to successfully consider dynamic thin shells that can radially
move to the limit point of the star and examine under what
conditions the star arrangement will be stable. A dynamic
thin-shell associating two global static spherically symmetric
space-times have additionally as of late been thought about
[53] in a slightly different context.
We will portray the approach quickly, points of interest can
be found in ref. [53]. It is appealing to note that Eq. (27), can
be modified to get a condition of movement of the thin layer,
as takes the follows,

V (R) + Ṙ2 = 0, (65)

with V (R) defined as

V (R) = 1 − M + m(R)

R
−

(
ms(R)

2R

)2
−

(
M − m(R)

ms(R)

)2
,

(66)

Note that the resulting potential V (R) leads us to decide the
stability analysis for the thin layer within our linear distur-
bance. Now we are going to consider the Taylor extension
around the radius of the equilibrium R0 of the static arrange-
ment, to the second order, we get
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V (R) = V (R0) + (R − R0) V
′
(R0)

+ (R − R0)
2

2
V

′′
(R0) + O

[
(R − R0)

3
]
, (67)

where “ ′ ” signified the derivative concerning R. As indicated
by the standard technique we are linearizing around the static
radius R = R0 we should have V (R0) = 0, V

′
(R0) = 0.

The solution will be stable if and only if the resulting potential
V (R) has a minimum of locality at R0 and V

′′
(R0) > 0 is

checked.
Now, it is easy to see that the condition V

′
(R0) = 0 gives

the following expression

φ ≡
(
ms(R0)

2R0

)
′ = −

(
R0

ms(R0)

)(
M + m(R0)

R0

)′

−2

(
R0

ms(R0)

) (
M − m(R0)

ms(R0)

) (
M − m(R0)

ms(R0)

)′

.

(68)

With this last description the second derivative V
′′
(R0) can

be composed as

V
′′
(R0) = −

(
M + m (R0)

R0

)′′

− 2

((
ms (R0)

2R0

)′)2

− 2

(
ms (R0)

2R0

) (
ms (R0)

2R0

)′′

− 2

((
M − m(R0)

ms(R0)

)′)2

− 2

(
M − m(R0)

ms(R0)

) (
M − m(R0)

ms(R0)

)′′

. (69)

In this way, a static solution asks for that the initial two rela-
tions of the Taylor development vanish, and the principal
non-zero relation in the extension for the expression of the
movement of the thin layer might be composed as (thinking
about the Eq. (69))

Ṙ2 + 1

2
V

′′
(R0) (R − R0)

2 + O
[
(R − R0)

3
]

= 0. (70)

To guarantee the static solution stabilities at R = R0, the
second differential of the resulting potential shall be strictly
positive, i.e., V

′′
(R0) > 0. In order to simplicity were return-

ing the formula (69), which appears

V
′′
(R0) = � − 2φ2 − ms (R0)

R0

[
ϒ − 4πRσ

′
η
]
R0

, (71)

with

� = −
(
M + m (R0)

R0

)′′

− 2

((
M − m(R0)

ms(R0)

)′)2

−2

(
M − m(R0)

ms(R0)

)(
M − m(R0)

ms(R0)

)′′

. (72)
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Fig. 9 Plots of the dimensionless parameter dσ 2/dR as function of R
for spherical object PSR J1614-2230

Now from this last expression the second derivative (71) for
V

′′
(R0) > 0 , and assuming η (R0) = η0, we have

η0
dσ 2

dR

∣∣∣∣
R0

>
σ

2π

{
ϒ + R0

ms (R0)

(
2φ2 − �

)}
. (73)

Currently, from this last Eq. (73), we get stable equilibrium
regions to be managed by the following inequalities

η0 >
σ

2π

{
ϒ + R0

ms (R0)

(
2φ2 − �

)} {
dσ 2

dR

∣∣∣∣
R0

}−1

,

i f
dσ 2

dR

∣∣∣∣
R0

> 0, (74)

η0 <
σ

2π

{
ϒ + R0

ms (R0)

(
2φ2 − �

)} {
dσ 2

dR

∣∣∣∣
R0

}−1

,

i f
dσ 2

dR

∣∣∣∣
R0

< 0. (75)

We will currently model the astrophysical object by picking
particular mass functions, and thusly, decide the equilibrium
regions of the stability managed by the inequalities (74) and
(75). As it was emphasized out in [48,50], one can discover
the stability regions graphically. The outcome is outlined
in Fig. 9, which shows that the region of stability is given
beneath the surface by Eq. (75).

8 Concluding remarks

BHs are well settled and generally acknowledged in relativ-
ity due to its strong cosmic proof for their reality, however,
principal significance connects with horizons of BH present
various hypothetical problems which have not yet to be agree-
ably settled. Along these lines, it has been contended by a
few authors that after the gravity collapse of heavy objects,
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the various body could be shaped other than BHs. Among
the proposals that have been put forward recently to dis-
integrate the problem of the horizon and singularity is the
gravastar model suggested by Mazur and Mottola [33–35],
has a successful stage change at/close where the event hori-
zon is relied upon to be formed. It has as of late demonstrated
that the ideal would be to generalize the gravastar picture by
corresponding an inside solution matching to a EoS of DE
to an outside solution of Schwarzschild at an interface of the
junction. Such a spherically symmetrical model ought not
to have a horizon and it should deal with a solution of static
equilibrium, at some point alluded as a DE object [48,50,70–
73].

We have contemplated a relativistic static and spheri-
cally symmetric astrophysical configuration living in a space
filled with anisotropy fluid described by a EoS of DE. From
this EoS of DE, we adapted our inner space-time to the
Schwarzschild outer space-time within the sight of a thin
shell where we have expected a positive pressure of sur-
face to maintain the thin shell opposite to collapse. We have
examined the configuration of stellar by commanding a par-
ticular choice of mass function in the inside of compact
objects. Therefore we additionally broadened our analysis
by studying the energy conditions, hydrostatic equilibrium
under various forces, and velocity of sound. We have found
through our investigation that all energy conditions are ful-
filled at the inside of the configuration and hold equilibrium
between various forces because of anisotropy, as should be
obvious from Figs. 5 and 6. Besides, we underline the out-
comes in more details, with observational data by Rawls et
al. [75]; Abubekerov et al. [76]; Elebert et al. [77]; Demor-
est et al. [78]; Freire et al. [79] of some well-known pul-
sars like Vela X-1, Cen X-3, 4U 1538-52, SAX J1808.4-
3658, Her X-1, PSR J16142230 and PSR J1903+327. For
this purpose, we produce information sheet for the purpose
of comparison between present model spherical objects and
the known compact objects in Table I. As one can see, the
outcomes extracted in this theory is especially perfect with
the outcomes acquired through the observations and the got
mass-radius ratio for various strange spherical objects lies
in the proposed range by Buchdahl [69]. Next, we analyzed
the surface redshift (Zs) of the various compact spherical
objects are of finite values and vanishes outside of the spher-
ical object (see Table I), which lies in the proposed range by
Buchdahl [69]; Straumann [103]; Böhmer and Harko [102];
Ivanov [104], are physically satisfactory with those of obser-
vations. We have note that the surface redshift is increas-
ing with mass-radius ratio. The stability analysis was also
discussed under a small radial disorder. As a finale com-
ment, it is conceivable to get the existence of DE spherical
objects; however, it is critical to comprehend the nature and

general properties of compact objects by through fine tun-
ing.
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