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Abstract We study the spectral action approach to higher
derivative gravity. The work focuses on the classical aspects.
We derive the complete and simplified form of the purely
gravitational action up to the 6-derivative terms. We also
derive the equivalent forms of the action, which might prove
useful in different applications, namely Riemann– and Weyl–
dominated representations. The spectral action provides a
rather rigid structure of the higher derivative part of the the-
ory. We discuss the possible consequences of this rigidness.
As one of the applications, we check whether the conformal
backgrounds are preferred in some way on the classical level,
with the conclusion that at this level, there is no obvious rea-
son for such a preference, the space S1 × S3 studied in earlier
works being a special case. Some other possible properties
of the higher derivative gravity given by the spectral action
are briefly discussed.

1 Introduction

In the absence of a completely satisfactory theory of quan-
tum gravity (QG), it is important to look for some universal
features of the future theory as well as to establish some
connections between different approaches towards it. In this
paper we look at possible benefits one can gain in combin-
ing two such seemingly unrelated approaches to (quantum)
gravity as spectral action and higher derivative gravity.

The spectral action approach [1–3] appeared as a natu-
ral but non-trivial development of the approach to Standard
Model based on the methods of non-commutative geometry
[4,5]. Though this approach does not address directly the
question of QG, one cannot say that it is purely classical as it
is spectral by its nature. The main advantage of the spectral
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action formulation is, from our point of view, that it provides
a geometric unification of gravity with Standard Model: both,
gravity and Yang–Mills (YM) sector, are treated as “pertur-
bations” of some non-commutative geometry while the cou-
pling to fermionic matter takes a form of the usual Dirac
action. The full spectral action is (almost) completely fixed
by the choice of the so-called spectral triple, (A, D,H). Here
A is an algebra of smooth functions on the generalized space-
time of the form M×F , where M is the usual classical smooth
spacetime and F is some finite matrix geometry; D is the
relevant Dirac operator defined on the full non-commutative
geometry; andH is a Hilbert space, on which all these objects
are represented as operators satisfying some conditions (see
[5,6] for the details on non-commutative geometry and, e.g.,
[7] for the non-commutative geometry approach to Standard
Model). Thus the full spectral action is given by [2]

Sspec = Tr χ(
D2

�2 ) + 〈ψ |D|ψ〉, (1.1)

where χ = χ(p) is some positive cut-off function and �

is some characteristic energy scale.1 While the Dirac-type
second term of (1.1) describes the matter-geometry coupling
(including coupling to YM gauge fields) the first term is com-
pletely spectral and describes the dynamics of geometry, i.e.
gravity plus Yang–Mills.2 In the case of pure gravity, i.e.
using the usual Dirac operator, this term correctly “predicts”
the standard Einstein–Hilbert (E–H) action with cosmologi-
cal constant as the first two terms of some asymptotic expan-
sion. The higher terms in this expansion produce action terms

1 The presence of this function χ(p) and the scale � is the reason
why the spectral triple almost fixes the spectral action. As we will
discuss, they should be considered as independent inputs of the theory,
presumably fixed by some fundamental theory of QG.
2 Another nice feature of the spectral action is that Higgs field finds
its natural place on the geometry side of the picture (rather than on the
matter side which is completely encoded in the Hilbert space H).
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depending on higher orders of curvature. The beauty of the
spectral action is that these terms depend only on three inputs:
the choice of the Dirac operator D, the scale � and the cut-off
function χ(p).3 Also, each level of the expansion is a very
precise combination of terms with the same derivative order.
E.g., as we will see, the next term in the expansion (after
the one reproducing E–H action) has precisely four deriva-
tives of the metric tensor. However, it is worth to emphasize
that in principle the series for the spectral action continues
up to infinity, so the full (re-summed) theory would contain
infinitely many derivatives and therefore would be non-local.
The appearance of these higher-order terms (starting with the
ones quadratic in curvature) is what makes the direct connec-
tion with the higher derivative gravity theories. Such theories
contain more (than two) derivatives on metric in their corre-
sponding classical equations of motion (EOM). As we have
discussed above the presence of higher derivative terms (in
the form of terms with higher than linear powers of curva-
ture) in the gravitational action is the inevitable consequence
of models based on the spectral action principle.

The motivation for quantum field theory models of grav-
itational interactions with higher derivatives comes from
many directions. Though there has been a recent revival of
ideas related to higher derivative gravitational theories, the
idea is not new. It was already observed by Utiyama and
DeWitt [8], that the terms with higher derivatives of metric
are needed for the renormalization of two-derivative mat-
ter theory on a curved background. (Basically, since in the
matter part of the theory the couplings are with non-negative
energy dimensions, the same energy dimensionality we must
require from gravitational counter-terms. In d = 4 space-
time dimensions, the generally covariant terms with dimen-
sionless coupling constants must necessarily come with four
derivatives of the metric.) This is one of the reasons for higher
derivative models. The renormalization of infinities in matter
theory occurs in semi-classical approach when the gravity is
taken to be a classical non-dynamical background and when
the effects of back-reaction are neglected (so called quantum
field theory in curved space).

On a different vain, also on the level of classical analysis,
higher derivative theories come with some benefits [9]. When
approximate solutions are studied (for example for Newto-
nian gravitational potential and using the Fourier transform
method which presupposes some boundary conditions at spa-
tial infinity) the effective classical spacetime shows no sin-
gularity at the origin (in this case there is no Newtonian-like
r−1 singularity of the gravitational potential [10–14]). Sim-
ilar resolution of singularities happens also in cosmological
framework [15,16]. However, these results have to be taken

3 The cut-off function is a non-local object so, strictly speaking it intro-
duces the infinite number of parameters, but in a very controlled way,
see below.

with a grain of salt, since they were obtained only in the
perturbative scheme. Moreover, even in the linear approxi-
mation regime, the set of solutions of the higher derivative
analogue of the Laplace equation still contains the singular
r−1 solution (as this was pointed out in [17]). Consequently,
also the class of exact solutions is bigger (than in the standard
two-derivative theory). And there typically among standard
singular solutions (known from the two-derivative Einstein–
Hilbert theory) we find also new types of solutions: often
run-away or non-singular solutions. And these new solutions
are responsible for resolution of singularity or give rise to cos-
mological inflation [18–21], where apparently they are not
unwanted solutions anymore. But we emphasize once again
that in the whole set of exact solutions of higher derivative
gravitational theories we have both singular solutions and
new solutions, and the proper choice between them is speci-
fied by the boundary conditions. We just remark that in higher
derivative theories we need to provide more boundary (or ini-
tial for dynamics in time, so for evolution) conditions than
just in two-derivative theory, because of the increased num-
ber of derivatives on the metric field.

However, the main reason for higher derivatives in the
gravitational setup has to do with quantum physics. As
already noted by Stelle [22] the quantum gravity theory
based on the four-derivative action in d = 4 behaves much
better regarding the situation with UV-divergences. Stelle’s
quadratic gravity is the first model of multiplicatively renor-
malizable gravitational theory. The quantization here can
be performed using the standard methods in a fully covari-
ant fashion (unlike in the more recent re-incarnation of the
higher derivative gravity in the form of Hořava-Lifshitz grav-
ity [23], which explicitly breaks 4-dimensional diffeomor-
phisms,4 and where the higher derivatives are only in the
spatial part). One sees that the inclusion of higher deriva-
tive terms as bare terms of the action is sufficient for absorp-
tion of divergences present in gravitational one-loop counter-
terms [29]. This is intimately related to the observation made
in quantum field theory in curved space, where we need
the same counter-terms but there they are generated from
the matter side [8]. Using the Batalin–Vilkovisky formal-
ism [30,31] the proof of renormalizability can be extended
to all perturbative loop orders. This means that all infinities
appearing in the perturbative calculations can be consistently
taken care of by re-defining the bare couplings of the theory
which are present already at the tree-level. As another advan-
tage one notices that such theory is predictive and only these
couplings, which are present in the tree-level action, require
experimental input, but going to higher loops does not force
us to introduce new couplings at all. This is in strong dis-

4 For some applications of the methods of spectral geometry to Hořava–
Lifshitz type theories, see [24–26] and especially [27,28] for the spectral
action approach.
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tinction with quantum gravity theory based on E–H action,
which is non-renormalizable from two loops on (at one-loop
level without matter and on-shell this theory is miraculously
finite), hence this theory is very badly non-predictive.

Moreover, this is not the end of good points about higher
derivative models. In the quadratic gravity of Stelle the renor-
malization group (RG) behavior of the essential couplings of
the theory can be studied. As it was first discussed by Fradkin
and Tseytlin [32,33] in d = 4, the theory shows asymptotic
freedom in all such couplings. This in turn signifies that the
bare values for all couplings vanish (in the ultra-violet (UV)
limit) and there is no issue of initial values for them, very
similarly to the situation in QCD. Furthermore, the analo-
gies of quadratic (in gravitational curvatures) gravity with
quadratic (in YM field strengths) matter
theory5 go even further regarding, for example, the form
of scattering amplitudes [34]. Both theories are renormal-
izable and both are asymptotically-free. Finally, if one cou-
ples such matter theory to the quadratic gravity then also
the total quantum system is described by renormalizable and
asymptotically-free theory, where all the UV-infinities are
under control. Such generalized framework provides a very
interesting quantum laboratory for study of grand unified
theories (GUT) coupled to gravity as field theory models
of gravity-gauge unification (compare for example [35]). In
the connection with the spectral action approach, it is worth
noting that from the point of view of (1.1) both, YM and
four-derivative gravity terms, appear exactly at the same level
of the asymptotic expansion of the spectral action. Namely,
they come from the Seeley–DeWitt coefficient a4 (see the
next Sect. 2).

The four-derivative models can be also further general-
ized. Inclusion of terms with more derivatives is one such
direction. When 6-derivative terms are added and enough
care is exerted the gravitational model can still be shown
to be renormalizable. But even more, for a particular form
of generalization, the theory reveals to possess bigger con-
trol over perturbative divergences and it is said to be super-
renormalizable. As proven by Asorey, Lopez and Shapiro
[36] for the case of a theory with six derivatives in d = 4, all
the diagrams with more than 3 loops are perfectly UV-finite.
(The increase of number of derivatives can lower this bound
and for example for theory with 10 derivatives in d = 4
spacetime dimensions the UV-divergences remain only at
the one-loop level [37].) The requirement of renormalizabil-
ity constrains the possible terms, which could be added to
the action of a six-derivative theory. First, in the action there
must be terms quadratic in curvature in order to have a highly
improved behavior of the flat spacetime propagator in the
UV-regime. On the other hand, we can add also terms con-

5 We remark that the standard Yang–Mills theory is a quadratic though
two-derivative renormalizable theory.

taining three curvatures but for keeping the dimensionality
of these terms under control they must be with no covari-
ant derivatives in their generally covariant construction. This
is in agreement with the scheme provided by effective field
theories for gravity, where after inclusion of terms with four
derivatives we, in principle, in our effective action should
include all possible terms with six derivatives (partial, of the
metric as seen in EOM). The possible terms can be quadratic
or cubic in curvatures. We notice that such a theory naturally
arises if we study the further expansion of the spectral action,
namely the a6 coefficient. However, such higher derivative
gravitational theory based on the expansion of the spectral
action up to a6 coefficient has very particular coefficients in
front of curvature invariants, which are dictated by spectral
principle. And therefore this special theory can be viewed as
an example of a general six-derivative theory in d = 4. In
this sense we exploit here the predictive power of the spec-
tral principle, since all these coefficients are unambiguously
determined (up to the overall scaling, see in the next Sect. 2).
The main purpose of this paper is to study some (if any) con-
sequences of this special form of the higher derivative (up to
six-derivative) gravity.

The plan of the paper is as follows. In the next Sect. 2
we discuss the expansion of the purely geometric part of the
spectral action (given by the first term in (1.1) for the stan-
dard choice of the Dirac operator) up to six derivatives of the
metric. Section 3 contains our main results. It is devoted to
the detailed study of the obtained higher derivative action in
two different “bases”: Weyl– and Riemann–dominated. We
also obtain the corresponding equations of motion. In Sect. 4,
on the example of the beta function for the cosmological con-
stant, we initiate the study of the consequences of the spectral
action approach on the quantum level. We conclude with the
extensive discussion of further possible consequences of our
approach as well as delineation of further steps. Because one
of the goals of the paper is to bring together the commu-
nities working in the areas of higher derivative gravity and
non-commutative geometry, we include several appendices,
where we provide the technical details of the construction
(even though sometimes they are pretty standard) to make
the paper as much self-contained as possible.

2 Spectral action

As we mentioned in the introduction, the full spectral action
describes both, geometric and matter, sectors. Because we are
interested in the case of pure gravity, here we will consider in
details only the first term of (1.1) for the standard choice of
the Dirac operator. Before we proceed, the word of caution
is in order. The whole construction is well-defined (or rather
well-understood) only for the case of compact Riemannian
manifolds. Hence, the final results for the Lorentzian sig-
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nature should be understood as an analytic continuation of
the results in the Euclidean framework (preceded by taking
some decompactifying limit). Or, another point of view could
be taken: because all the expressions are written in terms of
the geometric invariants, one can continue formally to use
them for the pseudo-Riemannian case (only carefully keep-
ing track of various signs).

First of all, we have to fix our Dirac operator. The choice
of the standard one could be motivated from two different
points of view. The idea of the spectral action is that the same
Dirac operator is used in both terms of (1.1). This was used
to some extreme in [27,28] to relate the free parameters of
the matter and gravitational sectors in Hořava-Lifshitz grav-
ity. Because in the present paper, we do not want to modify
the minimal coupling of matter to gravity and this is given
by the Dirac-type second term in (1.1), we must immedi-
ately conclude that we have to use the same, undeformed
standard Dirac operator on the geometric side. On the other
hand, there is a very powerful result in the spectral (a.k.a.
non-commutative) approach to commutative geometry, due
to Connes [38], which, for our purposes, could be stated as
follows: there is one to one correspondence between compact
Riemannian geometries and the commutative spectral triples
(A, D,H) defined by the usual Dirac operator. All of these
arguments lead us to the following choice (see “Appendix B”
for the notations and details of some relevant calculations)

D = γ μ(∂μ − ωμ) =: γ μ∇ω
μ , (2.1)

where ωμ is the usual spin-connection. Then the object we
want to study is given by the first term in (1.1)

Tr χ(
D2

�2 ). (2.2)

It is obvious that the spectral action (2.2) is a highly non-
trivial object, in particular it is non-local. So, is there any
chance to have an explicit form of it? As we review in the
“Appendix C”, this could be done at least in some limit, using
the so-called heat kernel expansion, which corresponds to the
derivative expansion of (2.2). Using the general result (C.22),
we can easily write the asymptotic expansion for (2.2) in
d = 4 Euclidean space dimensions

Tr χ(
D2

�2 ) =
∞∑

k=0

�4−k f2ka2k(D
2) , (2.3)

where

f0 =
∫ ∞

0
pχ(p) dp , f2 =

∫ ∞

0
χ(p) dp ,

f2(2+k) = (−1)kχ(k)(0) for k � 0 . (2.4)

Here a2k(D2) are Seeley–DeWitt coefficients for the elliptic
operator

−D2 = gμν∇ω
μ∇ω

ν + E , (2.5)

where E is some endomorphism of the corresponding bundle
(see below and “Appendix B”).

To determine these coefficients, the general method, due
to Gilkey [39,40], or due to DeWitt [41] can be used. The
essence of the former method could be roughly described as
follows.

Because the operator (2.5) transforms covariantly under
the diffeomorphisms of space and, in general, twisted spinor
bundle endomorphisms, it is possible to show that all the
coefficients in the heat kernel expansion (C.16) (or (2.3) for
the case of the interest) are given by the space volume inte-
grals of the local geometric invariants, an(x), and subsequent
traces over the bundle indices (in the pure Riemannian case,
this is a spinor bundle). Moreover, the whole explicit depen-
dence on the dimension, d, of the manifold M is given by
an overall factor, according to the formula:

an(D
2) = 1

(4π)d/2

∫

M
Tr an(x, D2)

√
g dd x , (2.6)

which is essentially the formula (C.17) from the “Appendix
C”. In a sense, the volume integrals of the expressions traced
over internal indices can be viewed as the result of tak-
ing functional traces, both in internal and external space at
one stroke. Therefore this generalizes the notion of trace to
include also volume integrals and is in accord with the DeWitt
convention [41] for compact index notation, treating on the
same footing both spacetimeM and internal space. The local
invariants, an(x), are constructed from the only geometric
objects available: the Riemann curvature tensor Rμνρσ , the
endomorphism E (B.9), the “field strength” of the bundle
connection �μν (B.10) and the covariant derivatives ∇μ.
Here we use only Levi–Civita covariant derivatives ∇μ, in
opposition to total covariant derivative with spin-connection
∇ω

μ , because all geometric objects available are proportional
to the identity 1 in the spinor indices space (see also later
and in the “Appendix B”). What invariants enter at each
order n of the expansion, an(x, D2), can be easily decided
from the dimensional analysis, after assigning the standard
dimensions ([xμ] = −1, [gμν] = 0 and the rest follows)
and requiring that the exponent of the heat kernel, tD2, in
(C.8) is dimensionless. From this point of view, it is clear
that the heat kernel expansion (C.16) is a derivative expan-
sion (rather than the curvature expansion – by integrating by
parts, one can always trade some curvature for derivatives,
see also below). In this way, each an(x, D2) is a linear combi-
nation of the local geometric invariants, each having exactly
n derivatives, and the coefficients of this combination are
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universal, i.e. do not depend neither on geometry nor on the
dimension d. This allows to fix these coefficients by eval-
uating the heat kernel on special geometries characterized
by some degree of symmetry (like tori, spheres, etc.). This
is the essence of the Gilkey method. However, the method
by DeWitt is more algorithmic but more tedious since all
these coefficients (generalized Schwinger coefficients) are
obtained by differentiation of the world-line function and
taking the coincidence limits [41,42]. Just a word for ter-
minology: we will call by an(x, D2) the unintegrated coeffi-
cients, while the coefficients an(D2) as in (2.3) are already
integrated (and traced over). Using any of these methods,
one can find the following expressions for the several first
unintegrated Seeley–DeWitt coefficients [39,43]:

a0(x, D2) = Tr 1 (2.7)

a2(x, D2) = 1

6
Tr {R + 6E} (2.8)

a4(x, D2) = 1

360
Tr

{
12�R + 5R2 − 2RμνR

μν

+2Rμνρσ R
μνρσ + 60RE

+60�E + 180E2 + 30�μν�
μν

}
(2.9)

a6(x, D2) = 1

360
Tr

{
1

14

(
18�2R

+17R;μR;μ − 2Rμν;ρRμν;ρ

−4Rμν;ρRμρ;ν + 28R�R

+9Rμνρσ ;κ Rμνρσ ;κ − 8Rμν�Rμν

+24RμνR
μρ ;ν ;ρ + 12Rμνρσ �Rμνρσ

)

+ 1

126

(
35R3−42RRμνR

μν+42RRμνρσ R
μνρσ

−208RμνR
μ

ρR
νρ

−192RμνRρσ R
μρνσ − 48RμνR

μ
ρσκ R

νρσκ

−44Rμνρσ R
μν

κλR
ρσκλ

− 80Rμνρσ R
μ

κ
ρ

λR
νκσλ

)

+8�μν;ρ�μν;ρ − 2�μν
;μ�νρ ;ρ

+12�μν��μν

+12�μν�
μ

ρ�νρ − 6Rμνρσ �μν�ρσ

−4Rμν�
μ

ρ�νρ + 5R�μν�
μν

+6�2
E + 60E�E + 30E;μE;μ + 60E3

+30E�μν�
μν + 10R�E

+4RμνE
;μν + 12R;μE;μ + 30E2R

+12E�R + 5ER2 − 2ERμνR
μν

+2ERμνρσ R
μνρσ

}
, (2.10)

where R is understood as R 1 and we already used some
trivial simplifications compared to [39,40] due to the fact
that the endomorphism E is proportional to the identity 1 in

the spinor space, that allowed to combine some terms, which
otherwise are not equal. To further simplify these general for-
mulas for an(x, D2) we use the explicit expressions forE and
�μν , from (B.9) and (B.10), as well as some standard trace
identities for the Dirac gamma matrices (for our notations,
see the “Appendix A”):

E = −1

4
R 1 , �μν = 1

4
Rμν

ρσ γρσ ,

Tr γμν = 0 , Tr(γμνγρσ ) = −2 Tr(1)gμ[ρgσ ]ν ,

Tr(γμνγρσ γκλ) = −8 Tr(1)g[[ρ[μgν][κgλ]σ ]] . (2.11)

Using these relations, one can easily establish

Tr(�μν�ρσ ) = −1

8
Tr(1)Rμν

κλRρσκλ ,

Tr(�μν�ρσ �κλ) = −1

8
Tr(1)Rμν

αβ RρσαδRκλβ
δ . (2.12)

With the help of these relations, it is straightforward to re-
write (2.7–2.10) in the following form

a0(x, D2) = Tr 1 (2.13)

a2(x, D2) = − 1

12
Tr(1)R (2.14)

a4(x, D2) = − 1

360
Tr(1)

{
3�R − 5

4
R2 + 2RμνR

μν

+7

4
Rμνρσ R

μνρσ

}

= − 1

360
Tr(1)

{
3�R − 3R2 + 9RμνR

μν + 7

4
GB0

}

(2.15)

a6(x, D2) = Tr(1)

{
− 1

1680
�2R + 1

1440
R�R

+ 1

4032
R;μR;μ − 1

360
RμνR;μν

− 1

560
Rμν;ρRμν;ρ + 1

1680
Rμν;ρRμρ;ν

− 1

630
Rμν�Rμν + 1

210
RμνR

μ
ρ

;νρ

− 1

1008
Rμνρσ ;κ Rμνρσ ;κ

− 1

560
Rμνρσ �Rμνρσ

− 1

10368
R3 − 13

2835
RμνR

μ
ρR

νρ

− 4

945
RμνRρσ R

μρνσ + 101

90720
Rμνρσ R

μν
κλR

ρσκλ

+ 109

45360
Rμνρσ R

μ
κ
ρ

λR
νκσλ

+ 1

3024
RμνR

μ
ρκλR

νρκλ

+ 1

2160
RRμνR

μν + 7

17280
RRμνρσ R

μνρσ

}
,

(2.16)
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where we have used the notation GB0 for the standard Gauss-
Bonnet term (see the “Appendix A” for more details). The
above derivation is valid in general dimension d.

3 Higher derivative action and equations of motion

3.1 Spectral action in different representations

Combining (2.13–2.16) and the general result for the asymp-
totic expansion of the spectral action (2.3), we arrive at the
following action for the 6-derivative gravity:

Sgrav =
∫
d4x

√
g

[
�4μ0 − �2μ1R

+μ2

(
R2 − 3RμνR

μν − 7

12
GB0

)

+ μ3

�2

{
1

2240
R�R + 1

5040
Rμν�Rμν

− 1

1260
Rμνρσ �Rμνρσ

+ 1

240
RμνR

μ
ρ

;νρ − 1

360
RμνR

;μν − 1

10368
R3

− 13

2835
RμνR

μ
ρR

νρ − 4

945
RμνRρσ R

μρνσ

+ 101

90720
Rμνρσ R

μν
κλR

ρσκλ

+ 109

45360
Rμνρσ R

μ
κ
ρ

λR
νκσλ + 1

3024
RμνR

μ
ρσκ R

νρσκ

− 1

2160
RRμνR

μν + 7

17280
RRμνρσ R

μνρσ

}]
, (3.1)

where we already integrated by parts and discarded all
the surface integrals. In fact, as we commented in the
“Appendix C” (see the footnote 14), we could do it because
the expansion (2.3) is already written in the assumption that
there is no boundary. Also we explicitly kept the dependence
on the cut-off scale �, while calling the numerical coeffi-
cients for each level with 2k derivatives by μk (which anyway
are not fixed by the model). In this regard, three comments
are in order.

1. It is clear either from (2.3) or from (3.1) that the level
with 2k derivatives is suppressed by the factor of �−2 com-
pared to the one with 2(k − 1) derivatives. This seems very
natural except that the term without derivatives should corre-
spond to the cosmological constant term, which would lead
to the huge dark energy density. We will not address this point
in this work and rather refer to [3] where the way to resolve
this problem is discussed.

2. As we said above, the numerical coefficients μk are
not specified within this approach and, in principle, are free
parameters of the model. Still one “prediction” can be made.
Let us recall that the arbitrary function χ(p) in (2.2) is sup-
posed to be some kind of a cut-off function and the coef-

ficients μk are proportional to f2k given by (2.4) in terms
of this cut-off function. From this it is clear that while μk ,
k = 0, 1, 2 are really arbitrary non-zero numbers, μ3, being
proportional to χ ′(0), should be zero if χ is flat at the begin-
ning of the spectrum (as it is in the case of the standard cut-off
functions). As we commented above, the actual shape of χ

should be fixed by some fundamental theory, but we might
expect that the behavior of χ in IR is very close to the flat one,
i.e. that χ ′(0) � 1. This is due to the fact that the spectrum of
the standard Dirac operator controls the classical geometry
of spacetime and we do not want to distort this spectrum too
much (by modulating it with χ ) in IR. Hence, based on this
discussion, the prediction of the model would be the addi-
tional suppression of the 6-derivative term by the small factor
μ3 � 1 (in addition to �−2 suppression).

3. The real prediction of this approach is given by the
values of the coefficients within each derivative level (so the
relative weights of terms). This drastically reduces the num-
ber of free parameters in higher derivative gravity. E.g., with-
out spectral action, the number of free parameters for higher
derivative gravity with up to six derivatives would be well
above 10, while in our model we have just 4 (these are μ0,
μ1, μ2, and μ3 respectively).

The main goal of this section is to maximally simplify the
action (3.1) and present it in several equivalent forms that
might be useful for different types of problems.

As the first step, let us make the most obvious simplifica-
tions related to the following terms RμνRμ

ρ
;νρ and RμνR;μν

in (3.1). One trivially has

RμνR
μ

ρ
;νρ = 2RμνR

μ
ρ

;[νρ] + RμνR
μ

ρ
;ρν

= −RμνR
ρσ Rρ

νμ
σ + RμνR

νρRμ
ρ + RμνR

μ
ρ

;ρν ,

where we used the standard result for the commutator of
the covariant derivatives (with the sign conventions from
“Appendix A”). Now using the doubly contracted second
Bianchi identity (A.8), Rμ

ν;μ = 1
2 R;ν we have for the inte-

grals (again, discarding total derivatives):

∫
dd x

√
gRμνR

μ
ρ

;νρ =
∫

dd x
√
g

(
1

4
R�R

+RμνRρσ R
μρνσ +RμνR

μ
ρR

νρ
)
,

(3.2)∫
dd x

√
gRμνR

;μν = 1

2

∫
dd x

√
gR�R . (3.3)

The equation (3.2) is a typical example of how we can trade
derivatives for curvature, so we again stress that the heat
kernel expansion is a derivative expansion rather than the
curvature one.

Now we would like to get rid of the term Rμνρσ �Rμνρσ .
Note that this term enters the generalized Gauss-Bonet term,
GB1 (A.14). Repeatedly using commutators of the covariant
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derivatives and the contracted second Bianchi identity, as in
the derivation of (3.2) and (3.3), one can easily get

∫
dd x

√
g GB1 =

∫
dd x

√
g

(−4RμνRρσ R
μρνσ

−4RμνR
μ

ρR
νρ + 4Rμνρσ R

μ
κ
ρ

λR
νκσλ+

+ Rμνρσ R
μν

κλR
ρσκλ + 2RμνR

μ
ρσκ R

νρσκ
)
.

(3.4)

So far for our simplification of the action functional we
used identities valid in any number of dimensions d. Final
steps are done with the assumption d = 4. Then further
simplification is possible due to a very simple observation:
in 4 dimensions, anti-symmetrizing any tensor with respect to
five or more indices identically gives zero. Choosing different
products of three Riemann, Ricci or Weyl tensors, this leads
to the following identities [44,45]

Rμνρσ R
μν

κλR
ρσκλ

−2Rμνρσ R
μ

κ
ρ

λR
νκσλ

+5RμνR
μ

ρσκ R
νρσκ

+4RμνRρσ R
μρνσ − 2RμνR

μ
ρR

νρ

−1

2
RRμνρσ R

μνρσ + RRμνR
μν = 0,

2RμνR
μ

ρσκ R
νρσκ − 1

2
RRμνρσ R

μνρσ − 4RμνR
μ

ρR
νρ

+4RRμνR
μν + 4RμνRρσ R

μρνσ − 1

2
R3 = 0,

or equivalently in terms of the traceless Weyl tensor

4RμνC
μ

ρσκC
νρσκ − RCμνρσC

μνρσ = 0,

CμνρσC
μν

κλC
ρσκλ − 2CμνρσC

μ
κ
ρ

λC
νκσλ = 0. (3.5)

Combining these relations with (3.2), (3.3) and (3.4) one
gets, after some straightforward calculations, the following
compact result for the action (3.1):

Sgrav =
∫
d4x

√
g

[
�4μ0 − �2μ1R

+μ2

(
R2 − 3RμνR

μν − 7

12
GB0

)

+ μ3

�2

{
9

10
R�R − 3Rμν�Rμν + 8RμνRρσ R

μρνσ

−43

15
RμνR

μ
ρR

νρ − 9

10
R3 + 13

2
RRμνR

μν

−1

5
RRμνρσ R

μνρσ − 1

15
Rμνρσ R

μν
κλR

ρσκλ

}]
,

(3.6)

where compared to (3.1) we changed μ3 → 1008 μ3

(though, as we mentioned, this is quite irrelevant taking into
account that μ3 is a free parameter), also we kept the topo-
logical term GB0 even though it will not contribute to the

classical equations of motion (and, of course, it should be
kept for quantum calculations). This is exactly the form that
we call the action in the Riemann basis or the Riemann–
dominated action.

It is clear that the Riemann–dominated form is not the
most convenient one if one wants to study the conformal
backgrounds. This motivates us to look for the equivalent
expression, but now written in the Weyl basis or in the Weyl–
dominated form. This is readily done by expressing most
of the terms in the Riemann–dominated action (3.6) with
the help of the definition of the Weyl tensor (A.9) and the
relation (A.11) and, when necessary, again using (3.4) and
the identities (3.5). After not so lengthy and straightforward
manipulations we arrive at the result:

Sgrav =
∫
d4x

√
g

[
�4μ0 − �2μ1R

−3μ2

2

(
CμνρσC

μνρσ − 11

18
GB0

)

+ μ3

�2

{
− 1

10
R�R − 3

2
Cμνρσ �Cμνρσ − 2

135
R3

+1

3
RRμνR

μν − 13

15
RμνR

μ
ρR

νρ

+ 7

12
RCμνρσC

μνρσ + 23

5
RμνRρσC

μρνσ

+133

30
CμνρσC

μν
κλC

ρσκλ

}]
. (3.7)

Yet another form might be useful for comparing with other
works on higher derivative gravity (see, e.g. [36,46]) where
the action is written in (R,C, GB)-basis:

SHD = SEH+� +
∫
d4x

√
g

N∑

k=0

(
cRk R�k R

+cCk Cμνρσ �kCμνρσ + cGB
k GBk

)
+ V (R), (3.8)

where V (R) is some “potential” depending on the curvature
R.6 The case V (R) = 0 would correspond to the “minimal”
action in this basis (but compare with the discussion in [37,
47]). But one should remember that in view of (3.4) it is not
preferred in any other sense. In any case, the spectral action
in this basis takes the “non-minimal” form with

Sgrav =
∫
d4x

√
g

[
�4μ0 − �2μ1R

−3μ2

2

(
CμνρσC

μνρσ − 11

18
GB0

)

+ μ3

�2

{
− 1

10
R�R − 3

2
Cμνρσ �Cμνρσ + 41

60
GB1

+ 7

60
R3 − 19

15
RμνR

μ
ρR

νρ + 47

15
RμνRρσ R

μρνσ

6 As a generalized curvature R here we understand any tensor con-
structed from Riemann tensor Rμνρσ by various contractions.
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+86

15
RμνR

μ
ρσκ R

νρσκ

+143

60
Rμνρσ R

μν
κλR

ρσκλ

}]
. (3.9)

After obtaining the simplified forms of the 6-derivative
gravity coming from the spectral action, it is reasonable to
ask whether we have any further advantages of the approach
beyond the obvious rigidness of the result (in the sense of the
great reduction in the number of free parameters). In other
words: is there anything special about the spectral action
approach from the point of view of higher derivative gravi-
ties? In this section we will touch on this point on the classical
level and in the next we briefly discuss some quantum aspects
postponing a more detailed discussion of the quantum case
for the future work.

One may guess that the spectral action has a lot to do with
additional symmetries present in the gravitational interac-
tions. The conformal symmetry may play such a role. Actu-
ally, based on the explicit results of the a4 coefficient (last
part of the first line in (3.7)), one would be almost convinced
about this since in d = 4 dimensions the only non-trivial term
appearing there is the C2 term, which transforms in a covari-
ant way under local conformal transformations. (We neglect
here the Gauss-Bonnet term GB0 since this is a topological
term in d = 4.) Only in four dimensions, in a4 we have only
C2 and GB0 terms, in other dimensions there is a non-zero
coefficient in front of the R2 term. Moreover, in a2 we have
only a term with Ricci scalar R and this is exceptionally con-
formally covariant term in the action of gravity in dimensions
d = 2. This hope is reinforced by the fact that the

√
gR2 term

is missing in a4 in d = 4 and this term is only globally scale-
invariant in four-dimensional case (invariant only under rigid
scale transformations) and hence dimensionless. In a6 we
naturally have terms with six derivatives, so they cannot be
dimensionless in d = 4, but they might transform covari-
antly (that is with a weight factor) under conformal transfor-
mations. The condition for this is that they would have to be
built out of only Weyl tensor and its various contractions and
no covariant derivatives or covariant box operators acting on
these conformal tensors [48]. Then they would be truly con-
formally invariant in d = 6 dimensions and there they would
be therefore dimensionless. However, the inspection of the
action written in the Weyl–dominated form (3.7) shows that
this hope for additional symmetry of the spectral action is
not fulfiled. We find there, in the sector of terms with six
derivatives, terms built also with Ricci scalar (which does
not transform conformally in a neat way) and even terms of
the type Cμνρσ �Cμνρσ , which would break conformal sym-
metry in d = 6. Based on the explicit example of the a6

coefficient we conclude that generally conformal symmetry
(even in a restricted sense in d spacetime dimensions for the

ad coefficient of the expansion) is not a feature of the spectral
action approach.

As the first application of the simplified action in the Weyl
basis, let us evaluate the action (3.7) on the conformal back-
ground, i.e. whenCμνρσ = 0.7 We want to compare this with
the discussion in [3] where this was done for the special case
of S1×S3 background. Even for this case, the calculation was
extremely complicated technically and the main result (that
the 6-derivative part of the action is zero for this background,
see below) was very surprising. Here we re-derive this result,
which will also provide an independent check of our action
(3.7), and discuss what can be said in the case of a general
conformal background. In this way we generalize the results
from [3] including the impact of terms with covariant deriva-
tives on curvature tensors. In the remainder of this section
we analyze this issue, while in the next section we analyze
whether some commonly known background spacetimes are
exact solutions of the theory.

Let us trivially evaluate (3.7) for the geometries with
Cμνρσ = 0.8 The result is

Sgrav|conf =
∫
d4x

√
g

[
�4μ0 − �2μ1R + 11μ2

12
GB0

+ μ3

�2

{
− 1

10
R�R − 2

135
R3

+1

3
RRμνR

μν − 13

15
RμνR

μ
ρR

νρ

}]
. (3.10)

Already from this result it is obvious that in the case of a
general conformal background, i.e. when Cμνρσ = 0, the
6-derivative part of the action will not be zero. This makes
the result for S1 × S3 even more surprising. Our general
result (3.10) allows to obtain it almost trivially compared
to [3]. First of all, because this background has a constant
scalar curvature (see (3.12) below), the term R�R drops out
automatically. The only non-trivial components of Riemann
tensor are

Ri jkl = − 1

a2

(
gikg jl − gil g jk

)
, (3.11)

where a is the radius of S3 and the space-like indices
i, j, k, l = 1, 2, 3. Contracting, we get Ricci tensor and

7 By conformal backgrounds we mean backgrounds which are con-
formally flat, that is by conformal transformation of the metric tensor
gμν → g′

μν = �2(x)gμν with some suitable function �(x) we get the
metric g′

μν as the metric of flat spacetime, i.e. the Riemann tensor of
the g′ metric vanishes identically. The condition for conformal flatness
in dimensions d � 4 is equivalent to vanishing of Weyl tensor Cμνρσ .
Hence this last tensor is also called as the tensor of conformal curvature.
8 Note that for the calculation of the equations of motion on the con-
formal background, one cannot just set all the Weyl terms to zero. This
is because the variation of the Weyl tensor evaluated on the conformal
background is not zero, so one has to keep the terms linear in Cμνρσ ,
see below.
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the scalar curvature (pay attention to our sign convention
in (A.1), (A.2) and (A.3))

Ri j = 2

a2 gi j and the rest are zero,

R = 6

a2 . (3.12)

Using this, one easily calculates the relevant terms in (3.10).

Rμνρσ R
μνρσ = RμνR

μν = 12

a4 , R2 = 36

a4 ,

GB0 = Rμνρσ R
μνρσ − 4RμνR

μν + R2 = 0,

13

15
RμνR

μ
ρR

νρ = 24

a6 . (3.13)

Combining these results and using them in (3.10), it is trivial
to see that the 6-derivative term is zero, while the whole
action evaluated on this background is given by

Sgrav|S1×S3 = 4π3a3b

(
�4μ0 − �2μ1

6

a2

)
, (3.14)

where 4π3a3b is just the volume of S1 × S3 with b being the
radius of S1 and a of S3. The equation (3.14) is essentially the
result obtained in [3] by the direct evaluation of a6 (2.10) for
the S1 × S3 background. Thus our approach correctly repro-
duces this result and demonstrates the role of the performed
simplifications. Also, we want to stress one more time that the
cancellation of the 6-order terms for this background should
be considered as accidental: it is not automatical but happens
due to the non-trivial cancellation between terms depending
on the curvature. Because this happens exactly for the coef-
ficients fixed by the spectral action, one might speculate that
the spectral action somehow prefers this background.

3.2 Equations of motion

Now let us make one step further and derive the equations
of motion for the Riemann– and Weyl–dominated forms
of the action, (3.6), (3.7). Though the general equations of
motion following from (3.6) are not very illuminating, in the
“Appendix D” we give the final result for them for the pos-
sible future references and applications. Below we will con-
sider a special case of these equations for the very important
case of the Ricci–flat backgrounds. In the case of GR, Ricci–
flat geometries are the special types of the Einstein spaces
for the case of zero cosmological constant. The most known
(and, probably, the most important) of these solutions is the
Schwarzschild one. In the framework of the higher derivative
gravity, one would like to find the corrections to this solution
(and extract from there the quantum-gravitational corrections
to Newton’s law). Postponing this very important task for the
future research, here we just show how the simplified form
of the action (3.6) easily allows to derive a compact set of
the equations of motion for a general Ricci–flat background.

Also we verify that, not surprisingly, the Schwarzschild met-
ric is not a vacuum solution of these equations and rather
requires as a source the energy-momentum tensor with very
peculiar, exotic and unphysical properties.

To derive the vacuum EOM (where we do not include
matter energy-momentum tensor on the RHS) for Rμν = 0
case from (3.6) we note that one can set to zero in (3.6) all
the terms that are more than linear in Rμν and R (but not in
Rμνρσ !). The linear terms should be kept. One should also
drop the GB0 term. This immediately kills almost all the
terms in (3.6):

Sgrav =
∫
d4x

√
g

[
�4μ0 − �2μ1R

− μ3

5�2

(
RRμνρσ R

μνρσ + 1

3
Rμνρσ R

μν
κλR

ρσκλ

)]

+O (
R2, R2

μν, RRμν

)
. (3.15)

Now (3.15) can be straightforwardly varied using the stan-
dard variations collected in the “Appendix D” (D.3) produc-
ing a very compact result for the tensor of equations of motion
(sometimes called a bit incorrectly by generalized Einstein
tensor) Eαβ = 1√

g
δSgrav
δgαβ

. The tensor Eαβ is the gravitational
part of EOM of the system and it reads

Eαβ = �4μ0

2
gαβ − μ3

5�2

[
1

6
gαβ Rμνρσ Rμν

κλRρσκλ

+4RαμνρRβσ
ν
κ Rμσρκ

+2Rαμνρ;σ Rβ
σνρ;μ − ∇κ∇λ

([
gαβgκλ

−δβ
κδα

λ

]
Rμνρσ Rμνρσ

)]
. (3.16)

As we said above, not surprisingly, the standard Schwarzschild
spacetime with a metric tensor in standard Schwarzschild
coordinate system given by

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2d�2,

(3.17)

(by d�2, as usual, we denote angular part of the metric, that
is d�2 = dθ2 + sin2 θdφ2) is not a vacuum solution to the
equations (3.16). We find for the respective components

Et
t = 8μ3

5�2

M2(−298M + 135r)

r9 ,

Er
r = 56μ3

5�2

M2(14M − 9r)

r9 ,

Eθ
θ = Eφ

φ = 8μ3

5�2

M2(−442M + 189r)

r9 . (3.18)

Utilizing (3.18) one can come up with the correspond-
ing plots as shown in Fig. 1. There we exploited the dimen-
sionless variable X = r

M and rescaled the components of
EOM in (3.18) by a common power M3. It is evident that
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Fig. 1 Various components of the energy-momentum tensor of matter source (or effectively of the LHS of the EOM) for a Schwarzschild ansatz

as functions of the dimensionless radial coordinate X . For preparation of the plots we used an identification 8μ3M3

5�2 → 1
630

zeros for the three components Et
t , Er

r and Eθ
θ = Eφ

φ

are given by approximate values of the X coordinate X ≈
2.2, 1.55 and 2.34, respectively. We observe that energy
density Et

t and azimuthal pressure Eθ
θ = Eφ

φ both are
positive for considerably higher radii. Whereas, the radial
pressure Er

r becomes negative at X � 1.55. So we see
that to get (3.17) as a solution, (3.16) must be sourced by a
very non-physical energy momentum tensor (the cosmolog-
ical constant is set to zero).

One can check that the components of the effective energy-
momentum tensor (as evaluated in Eq. (3.18)) do not satisfy
energy conditions (neither strong, dominant, nor null one).
This feature is actually common to almost all higher deriva-
tive theories since this is the price to have among bigger
set of solutions also those which are non-singular. (This is a
caveat to the celebrated Hawking-Penrose theorems about
inevitability of spacetime singularities – in theories with
higher derivatives classical energy conditions are violated
and that is why singularities can be avoided in some exact
solutions of such theories.)

However, from the point of view of effective theory two
aspects are worrisome here. First is that for X � 1.55 the
radial pressure Er

r attains negative values. This characteris-
tics cannot be accepted as pertaining to an effective matter
source since there does not exist any type of classical matter
which exhibits negative pressure. Some exotic examples are
brought by quantum effects (vacuum polarization effects) or
vacuum energy realized for example as a cosmological con-
stant source (or by Casimir effects). The second problem is
not so severe since it touches on the behavior for smaller radii
and for two different components of the effective energy-
momentum tensor, namely for Et

t and Eθ
θ = Eφ

φ . We find
that these components become negative inside the core of
our solution. Hence our solution cannot be a physical repre-

sentation of a star in higher derivative gravitational theories.
This latter issue is not so problematic because these effects
happen roughly under the classical Schwarzschild horizon,
which is located at X = 2. Even in Einstein–Hilbert grav-
itational theory the source of the gravitationally collapsing
configuration (producing eventually a black hole) inside the
Schwarzschild horizon is not a stationary matter source and
energy densities there may be negatively valued.

Of course, what one should do, instead of just checking
that (3.17) is not a vacuum solution of this version of the
higher derivative gravity, is to look for the corrections to
the Schwarzschild metric following from the full set of the
equations (D.5) (now one cannot use the Ricci–flat ansatz).
But this is technically quite involved and will require some
numerical study. We are planning on returning to this in the
future research.

Analogous analysis can be performed for the Weyl–
dominated form of the action (3.7) in the case of a conformal
background. Again, in this case one can keep in (3.7) only
the terms up to the first order in Cμνρσ (and one can drop
GB0 as it will not contribute to the equations of motion):

Sgrav =
∫
d4x

√
g

[
�4μ0+ μ3

5�2

{
−1

2
R�R

− 2

27
R3 + 5

3
RRμνR

μν −

−13

3
RμνR

μ
ρR

νρ + 23RμνRρσC
μρνσ

}]

+O
(
C2, GB0

)
. (3.19)

The simplification is not as radical as in the Ricci–flat case
(3.15) but still one can straightforwardly find the correspond-
ing equations of motion (the most relevant variation, δCμνρσ ,
is given in (D.4)):
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Eαβ = �4μ0

2
gαβ + �2μ1

(
Rαβ − 1

2
gαβ R

)

+ μ3

5�2

[
203

6
gαβ RμνRμ

ρRνρ

+71

2
Rαβ RμνRμν − 105RαμRβνRμν

−100

3
gαβ RμνRμνR + 81RαμRβ

μR

−163

6
Rαβ R2 + 397

54
gαβR3 − 79

6
RRαβ;μ

μ

−2

3
Rαβ R;μ

μ + 55

36
gαβ RR;μ

μ − 10

3
Rαβ;μR;μ

−11

36
gαβ R;μR;μ + 23Rαβ;μνRμν + 29

6
gαβ RμνR;μν

+36R(αμRβ)
μ

;ν
ν + gαβ R;μ

μ
ν
ν − 36R(αμ;β)νRμν

−23Rαμ;νRβ
ν;μ + 36Rαμ;νRβ

μ;ν
−11gαβ RμνRμν

;ρ
ρ + 18gαβ Rμν;ρRμρ;ν

−11gαβ Rμν ;ρRμν;ρ − 23Rμν;(αRβ)
μ;ν

+25

3
R(αμ;β)R;μ+11Rμν;(αβ)Rμν−13R(αμ;νRμν

;β)

+11Rμν;αRμν
;β − 43

36
R;αR;β − 44

3
R(αμR;β)

μ

+ 91

18
R;αβ R − R;μ

μ
αβ

]
. (3.20)

One of the most important conformally flat backgrounds is
the cosmological Friedmann–Lemaître–Robertson–Walker
(FLRW) spacetime (which is conformally flat for any value
of the FLRW topology index k = −1, 0,+1 [49])

ds2 = a(t)2
(

−dt2 + dr2

1 − kr2 + r2d�2
)

. (3.21)

Plugging this into (3.20) one obtains the following non-zero
components for the tensor of equations of motion Eα

β (only
the diagonal components are non-vanishing):

Et
t = 1

2
�4μ0 − 3�2μ1

(
a′2

a4 + k

a2

)

+ μ3

�2

(
137a′6

a12 + 147ka′4

5a10 + 16a′′3

a9 + 9a(3)2

5a8

−21ka′′2

5a8 − 360a′4a′′

a11 + 132a(3)a′3

a10

+150a′2a′′2

a10 − 144a(4)a′2

5a9 − 168ka′2a′′

5a9

+18a(5)a′

5a8 − 18a(4)a′′

5a8 + 42ka(3)a′

5a8 − 48a(3)a′a′′

a9

)

and

Er
r = Eθ

θ = Eφ
φ = 1

2
�4μ0 + �2μ1

(
a′2

a4 − 2
a′′

a3 − k

a2

)

+ μ3

�2

(
−411a′6

a12 − 343ka′4

5a10 + 68a′′3

a9 − 19a(3)2

a8

−77ka′′2

5a8 + 6a(6)

5a7 + 14ka(4)

5a7

+1234a′4a′′

a11 − 428a(3)a′3

a10 − 830a′2a′′2

a10

+508a(4)a′2

5a9 + 532ka′2a′′

5a9 − 78a(5)a′

5a8

−146a(4)a′′

5a8 − 126ka(3)a′

5a8 + 328a(3)a′a′′

a9

)
. (3.22)

One notices that the EOM evaluated on FLRW back-
ground do not depend at all on the coefficient μ2. This is
actually true on any conformal background. The reason for
this is that the term in the expansion of the spectral action
proportional to μ2 is precisely with four derivatives and as
found in [4,5] it is exactly conformally invariant

√
gC2 term,

see (3.7). Hence there is no contribution of the first variation
of it on the conformal background. From this one derives
that conformally flat backgrounds are exact solutions in the
same way (we mean that exactly the same form of the source
is needed) as in two-derivative Einstein theory with a cos-
mological constant, when the expansion to the order of a4 is
retained. However, as seen from above equations, the inclu-
sion of the next term in the expansion – the a6 coefficient
changes this conclusion and we get many non-zero terms
proportional to μ3 in EOM. This means that we cannot rely
on cosmological solutions of Einstein-Hilbert theory possi-
bly with a cosmological constant and the set of Eq. (3.22)
has to be solved anew. For example, the question whether
one can find some well-behaved solution for the scale factor
a(t) for some reasonable cosmological energy-momentum
tensor requires further study.

4 Some quantum properties of the model

As we saw in the previous section, using just the classical
analysis of the derivative expansion of the spectral action it
is difficult to see if there is anything special about it. As a
next step, it is very important to check whether the spectral
action is preferred on quantum level. In this section we make
some initial effort in this direction, postponing the detailed
study for the future research.

To proceed, one should quantize the higher derivative the-
ory given for example by the expansion of the spectral action
up to the a6 coefficient. (The quantization of the action up to
a4 was already considered by Stelle in [22] since the model
resulting from this level of expansion of the spectral action is
a four-derivative theory only with C2 and GB terms (without
R2 term), with Einstein-Hilbert term R and a non-zero cos-
mological constant.) For the covariant quantization one can
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use the method presented in [35] or one may desire to use
Batalin–Vilkovisky formalism from [30,31] to have better
control over remaining BRST symmetry of the quantized the-
ory. Since the special attention was paid to conformal back-
grounds in previous studies (in particular to 4-dimensional
product manifolds of the type S1 × S3) in [3–5], it seems
natural to investigate the quantum stability of perturbations
around these backgrounds. In some minimal sense one should
check the positive-definiteness of the quadratic operator gov-
erning the dynamics of small quantum perturbations around
a conformal background. This issue is tightly related to the
positivity of beta functions in front of R2 and C2 invariants
in the form of the one-loop divergent effective action in the
theory. In Euclidean framework both these curvature invari-
ants are positive-definite. In a bigger generality one could
consider the whole system of beta functions for the quan-
tum theory, not only in front of dimensionless (in d = 4)
terms R2 and C2, but also the beta function of the cosmolog-
ical constant βcc and the beta function βG of the Newton’s
constant coupling GN . This last beta function is defined as
the divergent coefficient in front of Ricci scalar term R in
the one-loop divergent effective action. Actually, for the last
two beta functions βcc and βG we know the answer in gen-
eral higher derivative theories. The easier computation of
the beta function βcc was first done in [36], while the more
involved computation of βG involving contributions from
generalized Gauss-Bonnet terms was achieved in [46]. The
analysis presented in [36,46] is generally valid on any back-
ground spacetime but obviously very easily we can restrict it
to a preferred conformal background or even to a particular
example of S1 × S3 manifold.

First, one can understand that terms cubic in curvatures
do not contribute to the beta function βcc. This statement
is based on the argumentation presented in [37,46,50]. One
may say in simple words that all the terms in the “poten-
tial” depending on the curvature V (R) do not influence at all
the beta function of the cosmological constant in the theory.
However, it is expected that they will contribute to two beta
functions of dimensionless couplings βR2 and βC2 as well
to βG . Actually, the computation of the two remaining beta
functions βR2 and βC2 is one of the very important goals of
the extension of the project, which we plan to address in the
nearest future. When one checks the actual expression for the
beta function βcc, one sees almost no speciality of the theory
based on the action (3.1). Since this beta function is com-
pletely insensitive to terms cubic in curvature in (3.1), see
below, we can concentrate only on terms quadratic in curva-
ture. These terms in the action are, of course, very important
for defining the kinetic operator and hence ensuing propaga-
tor for gravitational quantum fluctuations around flat space-
time background. If we could see any extraordinary behavior
of the system of beta functions here, we must emphasize that
this would not be a virtue of spectral action approach only

since the latter constrains tightly also the numerical coeffi-
cients in front of cubic terms, but βcc does not depend on
them. Instead the special behavior could be associated to
hypothetic structural relations between the terms quadratic
in curvature describing kinetic part of the theory. For analysis
of the beta function we can use either the Weyl–dominated
basis (3.7) or the (R,C, GB)-basis (3.9). Following discus-
sions in [36,46], we note that for the beta function we need
to focus on the coefficients in front of the terms with respec-
tively two derivatives, four derivatives and six derivatives
being also quadratic in curvatures. Towards this end, let us
write (3.7) or (3.9) in the form (3.8)

Sgrav =
∫
d4x

√
g

(
c−2 + c−1R + cR0 R2 + cC0 CμνρσC

μνρσ

+cR1 R�R + cC1 Cμνρσ �Cμνρσ
)

+O
(
R3

)
, (4.1)

where

c−1 = −�2μ1, cR0 = 0, cC0 = −3

2
μ2,

cR1 = − 1

10

μ3

�2 , cC1 = −3

2

μ3

�2 . (4.2)

We notice right away that the beta function does not depend
on the cosmological constant term c−2 (because there are
no derivatives in this term – and the difference in energy
dimensionalities of this term compared to the coefficients cR1
and cC1 is bigger than the number of dimensions d = 4),
neither on cGB

0 (because this is a topological term in d = 4),
nor on cGB

1 (because this term can be re-written in terms that
are cubic in curvatures (3.4)). The result for the beta function
βcc from [36] (where we have to take N = 1 corresponding
to the theory with six derivatives) reads

βcc = − 1

2(4π)2

⎡

⎣c−1

(
1

3

1

cR1
− 5

1

cC1

)
+

(
cR0
cR1

)2

+ 5

(
cC0
cC1

)2
⎤

⎦ .

(4.3)

Plugging into this (4.2), one finds

βcc = − 1

(4π)2

5

2
�4

(
μ2

μ3

)2

. (4.4)

We comment on some simplification which occurred above.
First, the second term in the square bracket in (4.3) is not
present since cR0 = 0 as this was discussed to be a feature
of the spectral action to the order a4 in expansion. However,
the vanishing of the first term proportional to c−1 is a gen-
uine feature of the coefficients appearing in the expansion
to the level of a6. The relation between cR1 and cC1 (that is
cC1 = 15cR1 ) is dictated by spectral action approach, but as we
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emphasized above cubic terms in V (R) do not participate, so
right now we cannot judge whether this is a mere numerical
coincidence or some deeper fact related to the roots of spec-
tral action and non-commutative geometry approaches. We
put importance to the fact that this relation holds indepen-
dently of the value of the dimensionful cut-off parameter �

as well as of the arbitrary and adjustable value of the dimen-
sionless coefficient μ3. However, from the field theory point
of view, there is not much of importance of this observa-
tion, since the total beta function is non-zero. As far as we
know there does not exist any clear interpretation of the fact
that the final expression for the cosmological constant beta
function is independent of the value of c−1 coupling, which
stands in front of the Ricci scalar in the action (4.1). The final
expression for the beta function (4.4) shows that it is always
negative-definite and that it depends on the value of the ratio
of the coefficients μ2/μ3 only. There is a very little amount
of speciality of the quantum behavior of the spectral action.

We also remark that using the analysis presented in [46] we
cannot unambiguously determine βG since in our model (3.9)
we have other terms cubic in curvature besides the general-
ized Gauss-Bonnet term GB1, while the analysis of [46] was
done for the “minimal” model with V (R) = 0. Some pre-
liminary results indicate that there is no exceptional behavior
of the other three beta functions of the theory, that is we do
not find any of βR2 , βC2 and βG to be zero or to be always
strictly positive though some further analysis is still required.

5 Discussion and conclusions

In this paper, we studied some classical aspects of a specific
higher derivative gravity theory motivated by the spectral
action approach. One of the aims of this work was to bring
attention of the researchers working in higher derivative grav-
ity to the methods of noncommutative geometry. This goal
partly defined the style of the paper – along with the origi-
nal research, it contains some details (mostly collected in the
appendices) known to those who work in noncommutative
geometry but mostly unfamiliar to the higher derivative grav-
ity community. One of the main motivations to consider the
spectral action as the basis for the effective higher derivative
gravity is the fact that the derivative expansion has a fixed
structure within each derivative level, greatly reducing the
dimension of the parameter space. This gives hope that the
spectral HD gravity might have some special properties com-
pared to the general case. The immediate analysis is difficult
due to the very “bulky” form of the general expressions for
the relevant terms in the expansion of the spectral action.
So, the major part of the paper is devoted to deriving the
most compact form of the 6-derivative part as well as some
equivalent representations, which might be useful for differ-

ent types of problems. The formulas (3.6), (3.7) and (3.9)
constitute ones of the main technical results of our work.

As we mentioned above several times, the rigidity of the
structure of the higher derivative terms gives hope that the
theory might possess the features absent in the general case.
This hope is somewhat supported by the observation made
in the paper with the title suggesting the existence of such
special features – “The Uncanny Precision of the Spectral
Action” [3]. There it was shown that on the special type of a
conformal background, S1 × S3, the higher derivative part of
the action is identically zero. Our result (3.7) allowed us to
study this point in great generality. We showed that the result
of [3] does not hold for a general conformal background, so
it is, in some sense, accidental (or signalling that S1 × S3

background is in some way special). In particular, the action
is not trivial for one of the most physically relevant con-
formal backgrounds - cosmological spacetimes. To continue
the study of the classical gravity based on spectral action, we
derived the general equations of motion, as well as their spe-
cial cases – for Ricci–flat and conformal backgrounds. While
the general EOM, do not seem to be particulary simple, in the
Riemann/Weyl basis there are serious simplifications. As an
(somewhat trivial) application, we explicitly demonstrated
that neither Schwarzschild nor cosmological spacetimes are
the exact solutions of these equations for the same matter
energy-momentum source as this was in standard Einstein
gravity.

At this point, it seems that the main conclusion of the clas-
sical analysis is that at this level there is nothing much special
about the specific values of the parameters fixed by the spec-
tral action. While this appears to be the case, it does not mean
that the same should be said in general. The reason is that
there is still a chance that the special values of the parameters
will be important at the quantum level. In this work, using the
example of the cosmological constant beta function, βcc, we
briefly touched upon the possible implications of the spectral
action approach on quantum level. But much more detailed
study is still needed. So, naturally this should be one of the
most urgent next steps in the continuation of this project.

We want to discuss here the issue of the dependence of the
spectral action on the order of expansion. We can now com-
pare results (both classical and quantum) in higher derivative
gravitational theories based on the action given up to a4 and
a6 coefficients. One sees that inclusion of terms with higher
number of derivatives changes theory quite dramatically. For
example, in the domain of classical exact solutions (and their
stability properties) we observed a lot of differences between
the two models as discussed in Sect. 3. One may ask whether
the inclusion of terms with six derivatives of the metric ten-
sor present in a6 is a small perturbation added to the system.
From the field theory viewpoint, this is not the case. Classi-
cal EOM change their character from forth to sixth order in
derivatives and this implies that we have two new families
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of solutions for each problem. One might think that how-
ever, the perturbation by sixth derivative term is small and
it modifies the known solutions (from four derivative theory
or even from Einstein theory) only by a little. But due to the
higher derivative character of modification we see strong dif-
ferences both in the IR (long wavelengths) as well as in the
UV-regime (boundary with quantum microscopic domain).
The first regime exhibit differences because of the new fam-
ilies of solutions (like runaway solutions compared to 1/r
Newtonian potential solution). Whereas in the short distances
regime the terms with higher derivative again start to lead
and dominate over terms with lower number of derivatives
because generally this regime is identified with high ener-
gies and then the more derivatives we have in the action or
EOM, the higher power of energy or momentum we have in
the corresponding solutions (compare this to the discussion
of the scaling dimension in [24]). In ordinary field theory it
is possible to conceive modifications which are true small
perturbations (like a non-derivative interaction in renormal-
izable scalar field models), however, in gravitational setup we
are doomed to consider only higher derivative modification
of the Einstein-Hilbert plus cosmological constant action.
Such deformations of the standard gravitational theory can-
not be considered as perturbative since it is difficult to find a
regime in which they are not the dominant ones over the terms
with lower number of derivatives (compare also discussion
in [51,52]). This remark applies not only to the jump from a2

to a4 but also from a4 to a6 or from a6 to higher orders in the
expansion. Therefore the question arises whether we should
trust more the results obtained in a higher truncation based on
a6 than on a4 and whether the results and conclusions there
will not be washed away by consideration of the even more
accurate model based on a8 coefficient of the expansion and
so on.

One of the possible solutions to this problem is naturally
given by the spectral action approach since there are two
ingredients which could help us. First one is the presence
of the arbitrary energy scale �. Thanks to this, we can treat
the terms in the expansion of the spectral action as terms
in an asymptotic series in �−1 variable. Then despite that
numerical coefficients of higher derivative terms are finite
(not infinitesimal!) numbers we can make them perturba-
tive by considering � very big compared to other energy
scales present in the system (for example comparing to elec-
troweak symmetry breaking scale in the Standard Model
E ≈ 216 GeV). Strictly speaking the impact of higher deriva-
tives is perturbative only when the scale � is sent to infin-
ity. Another source for justification of the perturbative treat-
ment comes with the coefficients μ2 and μ3. They depend
on the precise form of the cut-off function as described in
Sect. 2. However, from physical requirements of having a
good decoupling of high energy modes, the cut-off profile
should be very close to flat near zero. This means that the μ3

coefficient should be very small. And this provides an addi-
tional suppression of the higher derivative terms and allows
to treat their impact on classical exact solutions as small.
However, one can see that assumption μ3 � μ2 � 1 blows
up the expression for the beta function in (4.4). Then to ren-
der it finite one must enter into a game of playing with three
parameters �, μ2 and μ3, which is significantly more com-
plicated and will be discussed elsewhere.

Actually the problems with dependence on the level
of expansion are much deeper on the quantum level. To
have a renormalizable model of quantum gravity one must
treat higher derivatives as the leading and dominant terms,
not as perturbatively small additions to perturbatively non-
renormalizable Einstein-Hilbert gravitational action. When
one does this, one indeed finds that the model based on the
expansion up to a6 coefficient is renormalizable. (The model
with a4 coefficient is formally non-renormalizable because
it does not contain in the action the term with R2 but the
stronger reason is the presence of conformal anomaly in this
model [48].) Actually, using the definitions in [35,37] this
is a three-loop super-renormalizable model of QG, meaning
that the last divergences are met on the level of three-loop
computation, while from the forth loop and upwards the the-
ory is completely UV-finite. Similarly, when we discuss the
form of one-loop beta functions (related to perturbative UV-
divergences) we assume that the terms giving rise to the UV
behavior of the propagator are from the terms in the action
with the highest number of derivatives. Not assuming this
non-perturbative character of higher derivative terms would
immediately spoil super-renormalizability and renormaliz-
ability of the model.9 The UV behavior of the propagator for
gravitational perturbations is the crucial thing for the discus-
sion of any UV properties of the theory. For any local higher
derivative theory the procedure of finding the UV behavior of
the propagator consists of looking for the terms in the action,
which are quadratic in curvatures and with the highest, but
finite, number of derivatives on the metric tensor. These terms
shape the ultra-violet form of the kinetic operator for quan-
tum fluctuations. One understands that the beta functions in
the model based ona6 are different from the ones in the model
based on a4 and there does not exist any limit which makes
the two match, which is obvious from the explicit formulas
for beta functions in [46]. Therefore one cannot treat the six-
derivative terms in a6 as quantum perturbations in any sense.
Moreover, for the derivation of beta functions of the theory
the terms with six derivatives are the leading ones in the UV
and hence cannot be considered small in this regime.

9 If one includes the effects of higher derivative terms only as vertices
of the theory, while keeps at the same time propagator derived from
terms with less derivatives, then new perturbative UV-divergences pop
out. These divergences contain more derivatives, more even than there
are in originally added higher derivative terms. Hence such theory is
perturbatively non-renormalizable.
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Analogous problem we meet when we search for the per-
turbative spectrum of fluctuations. For definiteness we can
study this spectrum around flat spacetime background. In
order to find poles of the propagator in respective sectors
of spin-2 and spin-0 fluctuations, one needs all set of terms
which are quadratic in curvatures and the term linear in Ricci
scalar and cosmological constant term. Inevitably in higher
derivative theories we are faced with the problem of perturba-
tive ghosts in the spectrum. These virtual states have negative
sign of the kinetic term (for tachyons they have negative real
part of the mass square parameters), hence they endanger
perturbative unitarity of the theory. For example, the opti-
cal theorem for on-shell scattering amplitudes does not hold
anymore. These are undesirable states and they should be
eradicated from the theory by all means. For removing them
(or their effects on observable predictions of HD theories)
various approaches have been introduced: Lee–Wick pre-
scription [53,54], fakeons [55–57], disappearance of unsta-
ble perturbations on non-trivial backgrounds [58]. However,
none of the proposals seems to be completely satisfactory. Of
course, one can always argue that the full spectral action will
give rise to also non-perturbatively unitary higher derivative
quantum field theory of gravitational interactions and blame
the apparent non-unitarity as the result of truncation of the
spectral action to some finite-order HD models, but to make
this statement precise much more of a very non-trivial anal-
ysis should be done.

In our case to find poles of the propagator (or equivalently
zeros of the kinetic operator governing dynamics of quan-
tum perturbations), one needs to know all the coefficients in
front of the terms quadratic and linear in curvatures. This is
in distinction to the computation of UV-divergences where
we needed only the coefficients of few terms with the highest
number of derivatives in UV (in d = 4 we need coefficients
of terms with highest number of derivatives and the ones with
two and four less derivatives only). The reason for this is that
the beta functions are the UV issue while the spectrum is
the problem at all energy scales. The necessary information
is given in (4.2) and the value of the cosmological constant
coupling, c−2 = �4μ0. Once again we do not have any
contribution from terms which are cubic in curvatures (this
is true for flat spacetime propagator). Another problem is
that for the theory with cosmological constant c−2 �= 0 flat
spacetime is not an on-shell background. (It does not satisfy
vacuum gravitational EOM with the cosmological constant
term and none energy-momentum source of matter origin on
the RHS of gravitational EOM.) Then we cannot consider
quantum dynamics of fluctuations in the WKB approxima-
tion and the analysis of the propagator around flat background
is purely academic. However, mathematically, as a demon-
stration, one can neglect this obstacle and continue with the
analysis. The zeros of the kinetic operator are zeros of the
respective polynomials in k2 variable in momentum space,

in two gauge-invariant sectors of spin-2 (related to the terms
quadratic in Weyl tensor) and spin-0 (related to the terms
quadratic in Ricci scalar) fluctuations. These zeros describe
the mass square parameters of the modes. In HD models we
always meet ghosts [36] as the consequence of UV-improved
behavior of the theory compared to two-derivative theories.
In our case, the theory is based on the action functional given
in (3.9) and we have that both polynomials are of the third
order in k2 variable. This means that in each sector we expect
three (possibly some are equal), in general, complex roots
describing mass square parameters. For the precise values
we need to solve cubic equations. We will not do this here,
but we will comment on the general features of these solu-
tions. The exact values depend on the numerical values of
μk parameters (for k = 0, 1, 2, 3) and on c’s in (4.2). There
are two possibilities: the three roots come in a form of one
complex pair (of two complex conjugate roots) and one real
root or all three roots are real. The former case is well known
and then the pair is called a pair of Lee-Wick particles. They
have quite peculiar properties similar a bit to a couple of
unstable particles in standard field theories [59,60]. There-
fore the model with six derivatives may realize the scenario
of Lee-Wick quantum gravity (it was impossible to have a
pair of complex ghosts in four-derivative theories).

Here, one can also ask the question how stable is the posi-
tion of poles of the propagator against inclusion of higher
terms in the expansion of the spectral action. Again the situ-
ation is quite delicate but not as dramatic as for beta functions
(where we had discontinuous jumps when we increased the
order of the expansion). Because the higher degree poly-
nomials have more solutions on the complex plane and the
coefficients of the terms with the highest power exponent on
k2 variable are highly suppressed by the scale �, the new
roots always come in pairs from the point at complex infin-
ity and the picture (or position on the complex plane) of
the other roots is only slightly modified. This pair of new
zeros moves smoothly when the value of the � parameter
is changed from infinity, so the change in the set of zeros
is continuous. For example, if we find that the theory based
on the spectral action up to the coefficient a6 is a model of
Lee-Wick quantum gravity (for some definite values of �,
μ0, μ1, μ2, μ3), then it is likely that this feature of having
addditional particles beside the real graviton only in com-
plex conjugate pairs, will be preserved for higher orders in
truncation of the spectral action, provided also that the value
of the � parameter is large (then the number of these LW
pairs will increase). Hence the Lee–Wick characteristics of
models of quantum gravity is quite stable.

One might ask many reasonable questions about what
would happen if we had at our disposal the full re-summed
spectral action, i.e. if we would have a control over the non-
perturbative form of the spectral action. Some of these ques-
tions are: What would be the exact classical solutions? Will
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the quantum theory be eventually unitary, renormalizable,
or even UV-finite? To what extent solutions or beta func-
tions based on truncated action reflect the situation in the
full theory? Can they be treated as subsequent approxima-
tions in some perturbative scheme? We do not have even
tentative answers to these important questions and due to
technical reasons we must deal with the expansion of the
spectral action in number of derivatives. One should expect
some very non-trivial UV properties of the full spectral action
[61]. It is plausible to think that the full theory may take a
form of some non-local model of QG as discussed in [62].
And then the expansion that we are performing parallels the
limiting method of approaching non-local models by some
higher derivative models. Therefore, with such a perspec-
tive the questions of exact solutions and of beta functions
acquire completely new answers in full re-summed models.
For example for beta functions, we must not look into ratios
like μn−1/μn (cf. (4.4)), but into the limit of these ratios when
n is sent to infinity. Then this changes the philosophy and we
must instead ask questions about convergence radius of the
analytic function given by a formal series

∑∞
n=1 μnzn . Even

if we know that formally the term with the highest number of
derivatives in such expansion does not exist (firstly, because
it is formally with n = ∞, secondly because of its coeffi-
cient vanishing as limn→∞ μn = 0), we can still in some
sense talk about the beta function in non-local theory which
is defined by the convergence radius above. Perhaps, in a
similar sense we can talk and define non-perturbative beta
functions of couplings in full spectral action. It remains to
be seen what is the full analytic structure of the theory based
on the full re-summed spectral action and whether this can
be mapped to some non-local models of quantum gravity.
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A Conventions and useful formulas

Here we collect some notations and standard formulas used
in the main text.

Our conventions for symmetrization and anti-symmetri-
zation of indices are the following: (μ1 . . . μn) and [μ1 . . . μn]
mean respectively complete symmetrization and anti-
symmetrization with respect to the indices μ1 to μn , with
the proper symmetry factor (that is 1/n!). In the situation,
where there are various operations nested on the same group
of indices, the bracket [[· · · ]] will be used for not confusing
which pair of the indices is being anti-symmetrized in the
second turn (see the “Appendix D”).

Covariant derivatives on the geometric objects (trivial
from the point of view of bundle space structure) we denote
either in the standard semicolon (;) postfix (GR) notation or
in a operatorial prefix notation with the symbols of nabla (∇),
which is however a more frequent choice in field theory.

In the Euclidean signature (used mostly through the text
of the article) we choose signature of the metric tensor to be
all pluses, and in Minkowski (analytically continued) case
we take the time as the first coordinate and choose the sig-
nature of the metric to be (+,−,−,−) in four spacetime
dimensions.

Our convention for overall signs of Riemann tensor, Ricci
tensor and Ricci scalar takes respectively the following
forms:

Rμν
ρ

σV
σ = − [∇μ,∇ν

]
V ρ , (A.1)

Rμν = −gρσ Rμρνσ , (A.2)

R = gμνRμν . (A.3)

Note the non-standard sign in the definition of the Riemann
and Ricci tensors (opposite, for example, to conventions of
Landau-Lifshitz [63]). This choice is made to agree with the
notations used in the literature on the heat kernel expansion
[39,40] and on non-commutative geometry [1–3]. Using this
definition, the commutator of the covariant derivatives act-
ing on a general tensor T α1...αm

β1...βn (with m contravariant
indices and n covariant ones) can be written as,

[∇μ,∇ν]T α1...αm
β1...βn

= −
m∑

i=1

Rμν
αi

σ T
α1...αi−1σαi+1...αm

β1...βn

−
n∑

i=1

Rμνβi
σ T α1...αm

β1...βi−1σβi+1...βn . (A.4)

We remind that Bianchi identities for the Riemann tensor
are expressed as

Rμ[νρσ ] = 0 (A.5)
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and

Rμν[ρσ ;κ] = 0 (A.6)

with the names of respectively the first and the second iden-
tity. Contracting the second Bianchi identity, we get the
singly contracted second Bianchi identity

Rμ
νρσ ;μ = 2Rν[ρ;σ ] = Rνρ;σ − Rνσ ;ρ . (A.7)

Contracting one more time, will lead us to the doubly con-
tracted second Bianchi identity:

Rμ
ν;μ = 1

2
R;ν . (A.8)

The standard expression for the Weyl (conformal) tensor
in d dimensions takes the following form,

Cμνρσ = Rμνρσ + 4

d − 2
g[μ[[ρRσ ]]ν]

− 2

(d − 2)(d − 1)
gμ[ρgσ ]νR . (A.9)

One can easily find the following useful expressions:

CμνρσC
μνρσ = Rμνρσ R

μνρσ

− 4

d − 2
RμνR

μν + 2

(d − 2)(d − 1)
R2

(A.10)

and with one power of the covariant box (covariant
d’Alembertian) operator � = gμν∇μ∇ν , inserted:

Cμνρσ �Cμνρσ = Rμνρσ �Rμνρσ

− 4

d − 2
Rμν�Rμν+ 2

(d−2)(d−1)
R�R .

(A.11)

Actually, the above formula is valid for any power (or even
an analytic function) of the � operator since it is a spectator
in the derivation. One can notice very big similarity in the
structure and coefficients of the corresponding terms between
formulas (A.9), (A.10) and (A.11). This is not an accidental
coincidence and is due to the complete tracelessness property
of the Weyl tensor in any dimension. The match would be
perfect, if we used the Landau-Lifshitz convention for the
overall sign of the Ricci tensor (opposite to the one accepted
in (A.2)).

The Gauss-Bonnet scalar is defined by

GB0 = GB = Rμνρσ R
μνρσ − 4RμνR

μν + R2 , (A.12)

while its generalization containing 2N+4 derivatives is given
by

GBN = Rμνρσ �N Rμνρσ − 4Rμν�N Rμν + R�N R.

(A.13)

In the main text we use the generalized Gauss-Bonet term
with N = 1:

GB1 := Rμνρσ �Rμνρσ − 4Rμν�Rμν + R�R . (A.14)

While for N = 0, GB0 = GB is the standard Gauss-Bonnet
term, which is topological in the 4-dimensional case (and
related there to the Euler invariant), for N � 1 it is not
topological anymore but it can be transformed to the form

O(R3) + ∇μK
μ ,

where R3 stands for different cubic invariants in curvature
(see the formula (3.4) and the footnote 6) and Kμ is a vector
field constructed from curvatures and their covariant deriva-
tives, so the last term above is a total derivative. We remark
that since GB is topological in d = 4 it does not contribute to
classical EOM (obtained by the first variation of the action).
Away from the case of d = 4 or for N � 1 the generalized
Gauss-Bonnet term in the action has an impact on EOM.

B Lichnerowicz formula

Here we derive the formula (2.5) both, to make the presen-
tation more accessible and self-contained, and to introduce
our notations and conventions regarding spinors and Dirac
operator.

We define the algebra of the flat gamma matrices with the
minus sign:

{γa, γb} = −2δab , (B.1)

where δab is the metric of the flat d-dimensional Euclidean
space in Cartesian coordinates. It is well known that �ab :=
1
2γab, where γab := 1

2 [γa, γb], are the generators of the
Euclidean version of the Lorentz symmetry, i.e. of the orthog-
onal group SO(d) satisfying the following commutation rela-
tions

[�ab, �cd ] = −δac�db + δbc�da + δad�cb − δbd�ca

= −4δ[a[[c�d]]b]. (B.2)

This choice of the Clifford algebra (B.1) forces us to use the
following as the action for the standard Dirac spinor (two-
derivative theory) on flat Euclidean space background:

SD =
∫
dd xψ̄(−i∂/ − m)ψ =

∫
dd xψ̄(−iδabγa∂b − m)ψ.

(B.3)

Introducing the tetrads associated with the metric gμν of the
curved space

δabe
a
μe

b
ν = gμν , gμνeaμe

b
ν = δab (B.4)
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we can define the curved gamma matrices by

γμ = γae
a
μ (B.5)

and they satisfy the anti-commutation relation

{γμ, γν} = −2gμν . (B.6)

In passing, we note that the small Greek letters we use for
curved (world) space indices, while the small Latin letters we
use exclusively for denoting flat (tangent) space indices. In
the former space we use the curved metric gμν to raise world
indices, while in the latter flat space we use the Kronecker
delta tensor δab to do the corresponding operation on flat
indices.

Using these notations the standard Dirac operator is given
by

D = γ μ(∂μ − ωμ) =: γ μ∇ω
μ , (B.7)

where ωμ = 1
4ωab

μγab is determined by the requirement
that the tetrads are covariantly constant with respect to the
covariant derivative ∇ω

μ

∇ω
μe

a
ν = ∂μe

a
ν + δbcω

ab
μe

c
ν − �ρ

μνe
a
ρ = 0 . (B.8)

Here ∇ω
μ = ∇μ − ωμ is the total covariant derivative, while

∇μ is the usual, Levi-Civita, one.10 Since the tetrad (viel-
bein) is valued both in the tangent as well as curved space
(it possesses both types of indices), then the total covari-
ant derivative ∇ω

μ must include connection coefficients from
both spaces. In the external space these are given by stan-
dard (metric) Christoffel coefficients (and then ∇μeaν =
∂μeaν −�ρ

μνeaρ), while in the tangent space this role is played
by the SO(d) gauge potentials ωab

μ.
The main result that allows the direct application of the

heat kernel techniques is the Lichnerowicz formula

D2 = − (
gμν∇ω

μ∇ω
ν + E

)
, E := −1

4
R 1, (B.9)

where R is the scalar curvature of the metric gμν . Due to the
importance of this formula let us sketch its proof.

We will need several identities:

• ∇ω
μγ ν ≡ ∂μγ ν−[ωμ, γ ν] = 0, i.e. γ ν is covariantly con-

stant with respect to the total covariant derivative defined
after (B.9). This is an immediate consequence of the anal-
ogous statement about the tetrads (B.8).

10 This is the same definition as in (B.7), taking into account that acting
on a spinor (being in a representation not carrying any Lorentz indices,
so not on a gravitino) ∇μ is just a partial derivative ∂μ.

• The commutator of two total covariant derivatives reads

− [∇ω
μ,∇ω

ν

] = 1

4
Rμν

ρσ γρσ =: �μν , (B.10)

which is nothing but the second Cartan equation (after
trivially using (B.2) or directly commuting the gamma
matrices).11

• Rμνρσ γ μνγ ρσ ≡ Rμνρσ γ μγ νγ ργ σ = 2R. This is eas-
ily proven noticing that γ νγ ργ σ = γ [νγ ργ σ ]−gνργ σ −
gρσ γ ν + gνσ γ ρ and using the first Bianchi identity,
Rμ[νρσ ] = 0.

Using these identities it is straightforward to calculate D2:

D2 = γ μ∇ω
μγ ν∇ω

ν = γ μγ ν∇ω
μ∇ω

ν

= −gμν∇ω
μ∇ω

ν + γ μν∇ω
μ∇ω

ν

= −gμν∇ω
μ∇ω

ν + 1

8
γ μνRμν

ρσ γρσ

≡ −
(
gμν∇ω

μ∇ω
ν − 1

4
R

)
. (B.11)

C Calculation of the trace

The spectral action is a special case of the following more
general expression:

Tr χ(P) , (C.1)

where χ is some “more or less” nice function (the exact
meaning of this will be given below) and P is some positive-
definite operator on a Hilbert space. In our case, P = −D2 is
represented on the Hilbert space of square-integrable spinors.
Because the result for this expression in terms of the heat
kernel expansion is one of the main tools in our approach,
here we give a detailed (and more or less rigorous) derivation
of this expansion. Also, this will hopefully make the paper
self-contained.

Let us start by requiring for χ = χ(p) to be a piecewise
continuous function on R

+ such that

lim
p→0+

χ(p)

pa1
= b1 ∈ R/{0} and

lim
p→+∞

χ(p)

pa2
= b2 ∈ R/{0} . (C.2)

In other words, we require that the small-p asymptotics (near
p = 0) is given by b1 pa1 (χ(p) = O(pa1) for p → 0) and
similarly the large-p asymptotics (in the p → +∞ limit) is
given by b2 pa2 (χ(p) = O(pa2) for p → +∞). We also

11 The choice of a sign in (B.10) agrees with the convention for the sign
of the Riemann tensor stipulated in (A.1).
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demand that a2 < a1. The interval (−a1,−a2) is called the
fundamental strip of χ . E.g., if χ(p) is some smooth cut-
off function, which at infinity goes to zero faster than any
negative degree monomial of p and is of order of p0 when
p → 0, then the fundamental strip is (0,+∞). Also, let the
integral

φ(s) =
∫ ∞

0
psχ(p)

dp

p
(C.3)

be convergent when s belongs to the fundamental strip (the
function φ(s) is called a Mellin transform of the function
χ(p)), then χ(p) can be recovered via the inverse Mellin
transform:

χ(p) = 1

2π i

∫ c+i∞

c−i∞
p−sφ(s)ds, (C.4)

where c is a number which should also belong to the funda-
mental strip.

Let P be a positive-definite operator and χ(p) be some
cut-off function (i.e. its fundamental strip is (0,+∞)) with
φ(s) being its Mellin transform. Then, using the spectral
functional calculus, we can define a function of an operator
P

χ(P) = 1

2π i

∫ c+i∞

c−i∞
P−sφ(s)ds, (C.5)

where φ(s) is given by (C.3). Then the functional (or total)
trace of χ(P) (C.1) is given by

Tr χ(P) = 1

2π i

∫ c+i∞

c−i∞
ζP (s)φ(s)ds, (C.6)

where we have introduced the generalized ζ -function:

ζP (s) := Tr P−s . (C.7)

The integration contour in (C.6) can be chosen in such a
way that it encircles all the poles of the integrand, that is
all the poles are inside the contour and the contour is closed
at infinity. It is possible to show that the contribution of the
integration over this part of the contour is zero. We will find
the poles of ζP (s)φ(s) by some indirect method – using the
known results for the heat kernel expansion. The relevance
of the heat kernel will become clear after re-writing the zeta-
function (C.7) in terms of

Tr e−t P , (C.8)

which is the object called a trace of heat kernel.

Towards this end, let us use Cahen–Mellin integral (which
we will also need later) and its inverse:

e−p = 1

2π i

∫ c+i∞

c−i∞
p−s�(s)ds , c > 0 , Re(p) > 0

(C.9)

with the standard integral definition of the Gamma function
�(s):

�(s) =
∫ ∞

0
xs−1e−xdx , Re(s) > 0.

(C.10)

By doing formal change of variable in the last integral, x →
t P , (again using the functional calculus for a positive-definite
operator), we have

�(s) =
∫ ∞

0
t s−1Pse−t Pdt

or

P−s = 1

�(s)

∫ ∞

0
t s−1e−t Pdt . (C.11)

Taking trace of both sides we get12

ζP (s) ≡ Tr P−s = 1

�(s)

∫ ∞

0
t s−1 Tr e−t Pdt . (C.12)

Now, let us analyze the poles of the underintegral expression
in (C.6), ζP (s)φ(s).

First, let us show that φ(s) has poles at s = 0,−1,−2, ....
We know that φ(s) is regular when Re(s) > 0 (the funda-
mental strip). Now consider φ̃(s) defined by

φ̃(s) =
∞∑

k=0

χ(k)(0)

k!
1

s + k
(C.13)

and consider the following integral

χ̃(p) = 1

2π i

∫ c+i∞

c−i∞
p−s φ̃(s)ds , (C.14)

where we again assume that the contour could be closed to
encircle all of poles. Then using the Cauchy residue theo-
rem13 we have

χ̃(p) = 1

2π i

∫ c+i∞

c−i∞
p−s

∞∑

k=0

χ(k)(0)

k!
1

s + k
ds

12 Though the convergence of the integral (C.10) is guaranteed if
Re(s) > 0 now one should be careful because taking trace over the
infinite-dimensional space may introduce new divergences, see below.
13 Here by χ(k) we denote in a standard way the k-th derivative of the

cut-off function with respect to its argument p: χ(k) = dkχ(p)
dpk

.
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=
∞∑

k=0

χ(k)(0)

k! pk ≡ χ(p) . (C.15)

Hence, φ̃(s) ≡ φ(s), which proves the above statement
about the poles. The last equality in the above formula is
valid within the analytic convergence region of the Maclau-
rin series of the cut-off function χ(p). In what follows, we
will assume that the convergence radius is infinite.

Now, let us consider the poles of ζP (s). For this, we will
use the following asymptotic small t expansion for the traced
heat kernel coefficients:

Tr e−t P �
∑

n�0

t
n−d
m an(P) , (C.16)

where d is the dimension of the manifold M, m is the order
of P and an(P) are defined by

an(P) =
∫

M
an(x, P)

√
g dd x (C.17)

for some known Seeley–DeWitt coefficients an(x, P).
By the inverse Mellin transform (C.4), we can write for

small t

Tr e−t P �
∑

n�0

t
n−d
m an(P) = 1

2π i

∫ c+i∞

c−i∞
t−s�(s)ζP (s)ds .

(C.18)

Once again being sloppy about the contour and not pretend-
ing to be rigorous we can read of poles of �(s)ζP (s):

Res(�(s)ζP (s))|s= d−n
m

= an(P) . (C.19)

Let us now specify to the case m = 2 and d = 4. Then
an(P) = 0 for all odd n’s.14 Then we see from (C.19) for
n = 4, 6, 8, ... (s = 0,−1,−2, ...) that all poles come from
the �-function and ζP (s) is regular and equal

ζP (s) = 1

Res(�(s))|s= d−n
m

an(P) ≡ (−1)ss!|s=| d−n
m |an(P) .

(C.20)

On the other hand, when n = 0, 2 (s = 1, 2) the poles should
come from ζP (s) because �(s) is regular:

Res ζP (s)|s=1,2 = a0,2(P) . (C.21)

14 This is true for the case of the manifold without a boundary. When
the boundary is not trivial, one also has an(P) �= 0 for odd n, see e.g.
[64].

Now, we can evaluate (C.6) using the information about
the poles of ζP (s)φ(s) from the previous paragraph.

Tr χ(P) = 1

2π i

∫ c+i∞

c−i∞
ζP (s)φ(s)ds

= φ(2)a0(P) + φ(1)a2(P)

+
∞∑

s=0

(−1)sχ(s)(0)a2(s+2)(P)≡
∞∑

k=0

f2ka2k(P),

(C.22)

where (using the definition of φ(s) as a Mellin transform of
χ(p))

f0 = φ(2) ≡
∫ ∞

0
pχ(p) dp ,

f2 = φ(1) ≡
∫ ∞

0
χ(p) dp ,

f2(2+k) = (−1)kχ(k)(0) , k � 0 . (C.23)

D General equations of motion

The simplest way to calculate the variation of the Riemann
tensor and all of its contractions is to vary directly the defining
formulas (A.1), (A.2) and (A.3), taking into account that the
variation of the Christoffel symbols �σ

νρ are tensors given
by

δ�σ
νρ = 1

2
gσκ

(∇νhρκ + ∇ρhνκ − ∇κhνρ

)

= 1

2

(∇νhρ
σ + ∇ρhν

σ − ∇σ hνρ

) =: Cσ
νρ , (D.1)

where hμν := δgμν . Then one trivially gets the linear part of
the variation:

δRμνρ
σ = 2∇[μCσ

ν]ρ
= −gσκ

(
Rμν(ρ

λhκ)λ − 2∇[μ∇[[ρhν]κ]]
)
, (D.2)

where we used (A.4) and in all the formulas of this
appendix we use anti-symmetrization exclusively inside pairs
of indices (here never between three or more indices) and
we denote it by brackets [· · · ] or [[· · · ]] as explained in the
“Appendix A”. The variations of the other geometric objects
trivially follow from (D.2). For example, the variations rel-
evant for getting the equations of motion (3.16) from the
action in (3.15) are

δRμνρσ = Rμν[ρκhσ ]κ + 2∇[μ∇[[ρhσ ]]ν],
δRμν

ρσ = −R[μκ
ρσ h

ν]
κ + 2∇[[ρ∇[μhσ ]]ν],

δRμνρσ = −2Rρσ [μ
κh

ν]κ − R[ρκμνhσ ]
κ + 2∇[μ∇[[ρhσ ]]ν],

δRμν = ∇κ∇(μhν)κ − 1

2
∇μ∇νh − 1

2
�hμν,

δRμν = −2R(μκhν)
κ + ∇κ∇(μhν)

κ − 1

2
∇μ∇νh − 1

2
�hμν,
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δR = −Rμνhμν + ∇μ∇νhμν − �h . (D.3)

To vary the Weyl–dominated form of the action (3.7), one
also needs the variation of the Weyl tensor in d = 4 space
(or spacetime) dimensions:

δCμνρσ = Cμν[ρκhσ ]κ + R[μκgν][[ρhσ ]]κ + 2∇[μ∇[[ρhσ ]]ν]

+2g[μ[[ρ
(

∇κ∇(σ ]]hν])κ − 1

2
∇σ ]]∇ν]h−1

2
�hσ ]]ν]

)

+R[μ[[ρhσ ]]ν] − 1

3
Rg[μ[[ρhσ ]]ν]

+1

3
gμ[ρgσ ]ν

(
Rκλhκλ − ∇κ∇λhκλ + �h

)
. (D.4)

Using these variations (and the related ones) the general
form of the tensor of classical equations of motion, Eαβ ,
resulting from the action in (3.6), in the Riemann basis is
given by (to be symmetrized with respect to (α, β) pair of
indices, if needed):

Eαβ = �4μ0

2
gαβ + �2μ1

(
Rαβ − 1

2
gαβ R

)

−μ2

(
2Rαβ R + 3

2
gαβ RμνRμν

−1

2
gαβ R2 + 6RμνRα

μ
β

ν

)

+ μ3

�2

(
504

5
Rαβ ;μ

μ − 84

5
gαβ R;μ

μ − 168

5
R;αβ

+13

15
gαβ RμνRμ

ρRνρ − 13

2
Rαβ RμνRμν

−2RαμRβνRμν + 13

4
gαβ RμνRμνR

−4

5
RαμRβ

μR + 27

10
Rαβ R2 − 9

20
gαβ R3

+63

10
gαβ RμνRρσ Rμρνσ + 1

5
Rαβ Rμνρσ Rμνρσ

− 1

10
gαβ RRμνρσ Rμνρσ − 1

30
gαβ RμντωRμν

ρσ Rρστω

+61

5
RRαμβνRμν − 4RανμρRβ

μRνρ

−73

5
RανβρRμ

ρRμν + 16Rαρβσ RμνRμρνσ

+2

5
RRαμνρRβ

μνρ + 1

5
RαμνρRβ

μ
στ Rνρστ

−2

5
Rαμρσ Rβν

ρσ Rμν − 2

5
RαμνρRβ

ν
στ Rμρστ

−4

5
RαμνρRβσ

ν
τ Rμσρτ − 57

10
RRαβ ;μ

μ

−43

10
Rαβ R;μ

μ + 43

20
gαβ RR;μ

μ

−23

10
R;αμRβ

μ − 17

5
Rαβ;μR;μ + 41

40
gαβ R;μR;μ

+8Rαβ;μνRμν − 1

5
gαβ RμνR;μν

+43

5
Rαμ;ν

νR
β

μ + 3Rαβ;μ
μ

ν
ν − 3

10
gαβ R;μ

μ
ν
ν

− 5

36
Rαμ;νRβ

ν;μ + 39

5
Rαμ;νRβ

μ;ν

−4

5
RαμβνR;μν − 8gαβ RμνRμν

;ρ
ρ

−14RαμβνRμν
;ρ

ρ − 8Rαμβν;ρ
ρRμν

+ 3

10
gαβ Rμρ;νRμν;ρ − 9

2
gαβ Rμν;ρRμν;ρ

−16Rαμβν;ρRμν;ρ + 8

5
RαρμνRβ

μ;νρ

−2

5
Rαμνρ;σ Rβ

σνρ;μ − 2gαβ Rμρνσ Rμν;ρσ

+2

5
gαβ Rμνρσ Rμνρσ

;τ
τ + 2

5
gαβ Rμνρσ ;τ Rμνρσ ;τ

+7

5
Rμν;αRβ

μ;ν − 19

10
Rαμ;β R;μ

−4Rαμνρ;β Rμν;ρ−53

5
Rαμ;νβ Rμν − 4Rμν;ραRβ

μνρ

−2

5
Rμνρσ ;αRμνρσ

;β + 3Rμν;αβ Rμν

+ 7

10
RR;αβ − 2

5
Rμνρσ ;αβ Rμνρσ − 6

5
R;μ

μ
αβ

)
. (D.5)

This result is independent of the signature since it is written
in a generally covariant way. Therefore, it holds both for
Euclidean spaces and also for Lorentzian spacetimes of any
dimension.
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