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Abstract The gravitational production of superheavy dark
matter, in the Peebles-Vilenkin quintessential inflation model,
is studied in two different scenarios: When the particles,
whose decay products reheat the universe after the end of
the inflationary period, are created gravitationally, and when
are produced via instant preheating. We show that the viabil-
ity of both scenarios requires that the mass of the superheavy
dark matter to be approximately between 1016 and 1017 GeV.

1 Introduction

Quintessential inflation, which was addressed for the first
time by Peebles and Vilenkin (PV) in [1], is an attempt
to unify inflation and quintessence via a single scalar field
whose potential allows inflation while at late time provides
quintessence (see for instance [2]). A remarkable property
of the PV model is that it contains an abrupt phase transition
from inflation to kination (a regime where all the energy den-
sity of the inflation turns into kinetic), where the adiabatic
regime is broken and, thus, particles could be gravitationally
created [3,4]. This leads to the possibility to explain the abun-
dance of dark matter through the gravitational production of
superheavy particles [5,6], although gravitational production
of dark matter could also occur in standard inflation during
the oscillations of the inflaton field [7–9] (see also the early
papers [10–12]).

Considering the gravitational production of two kinds
of superheavy particles: X -particles, conformally coupled
with gravity, whose energy density after their decay and
later thermalization of decay products will dominate the
energy density of the scalar field in order to match with
the Hot Big Bang (HBB), and dark Y -particles which are
only gravitationally interacting massive particles (GIMP),
we will show that the PV model preserves the Big Bang
Nucleosynthesis (BBN) success. More precisely, the over-
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production of Gravitational Waves (GWs) does not disturb
the BBN for X -particles and Y -particles with masses in the
range of 1015–1016 GeV and 1016–1017 GeV respectively,
leading to a maximum reheating temperature in the GeV
regime.

On the contrary, for massless conformally coupled X -
particles produced via instant preheating (see [13] for a
detailed discussion of this mechanism of particle creation),
assuming that Y -GIMP, which are gravitationally produced,
are the constituent of the dark matter, the viability of the
model requires that the mass of the superheavy Y -particles is
approximately of the order of 1016 GeV, yielding a reheating
temperature around 108 GeV.

The work is structured as follows: In Sect. 2 and improved
version of the well-known Peebles-Vilenkin model for
quintessential inflation is presented. Section 3 is devoted
to the study of gravitational production of superheavy X -
particles whose decaying products reheat the universe and
superheavy Y -particles which are the responsible for the
abundance of dark matter. In addition, we show how to over-
pass the constrains coming from the overproduction of grav-
itational waves. In Sect. 4 we consider the case in which the
X -particles are produced via instant preheating. The dynam-
ics of the scalar field, for the improved model proposed in
Sect. 2, is studied in detail in Sect. 5, and finally, we present
the conclusions of our study in Sect. 6.

2 The Peebles–Vilenkin model

It is well-known that in quintessential inflation the number of
e-folds from the pivot scale exiting the Hubble radius to the
end of inflation is greater than 60. For this reason, in order
that the theoretical values of the spectral index and the ratio
of tensor to scalar perturbations enters in their marginalized
joint confidence contour in the plane (ns, r) at 2σ C.L., we
have changed the quartic inflationary potential of the origi-
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Fig. 1 Marginalized joint confidence contours for (ns , r) at 1σ and
2σ confidence level (CL). Considering the inflationary piece of the
potential as V = λφβ , in quintessential inflation, for the values of
β = 4, 2, 3/4, 1, 2/3, we have drawn the curves from 65 to 75 e-folds
(see the green, which correspond to the original P-V model, and black
curves). And when one considers the standard inflation, for β = 2, 1, the
curves have been drawn in red from 50 to 60 e-folds. As one can see, the
quadratic potential (V ∝ φ2), which is disregarded in standard inflation
at greater than 2σ CL from a combination of Planck and BICEP2 limits
on the tensor-to-scalar ratio [15], is favored for some likelihoods in
quintessential inflation. In the lower part of the image there is the curve
for the potential (2). The value of r is nearly 0 and, if considering all
Planck likelihoods, it stands within the 2σ CL for 65 � N � 75

nal PV quintessential inflation model with a quadratic one,
obtaining:

V (ϕ) =
⎧
⎨

⎩

1
2m

2(ϕ2 + M2) for ϕ ≤ 0

1
2m

2 M6

ϕ4+M4 for ϕ ≥ 0,
(1)

where m is the mass of the scalar field and M ∼ 10 GeV, is
an small mass that has to be calculated numerically [14].

As we can see in the Fig. 1, the spectral index and the
tensor/scalar ratio enter perfectly in the two dimensional
marginalized joint confidence contour at 2σ Confidence
Level (CL) for the Planck TT, TE, EE + low E and for the
Planck TT, TE, EE + low E + lensing likelihood [15]. In
addition, if one wants that the model enters, at 2σ CL, in
the contour for the Planck TT, TE, EE + low E + lensing
+BK14+BAO likelihood, i.e., taking into account gravita-
tional waves, one has to replace the inflationary piece of the
potential by a plateau-like potential [16] or α-attractors [17–
19] such as an Starobinsky-type potential [20]

V (ϕ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λM4
pl

(

1 − e

√
2
3

ϕ
Mpl

)2

+ λM̃4 for ϕ ≤ 0

λ M̃8

ϕ4+M̃4 for ϕ ≥ 0,

(2)

where λ is a dimensionless parameter of the order 10−10, and
now M̃ ∼ 105 GeV (see [1]). Effectively, for the potential
(2) one has (see for instance [19])

ns ∼= 1 − 2

N
, and r ∼= 12

N 2 , (3)

where N is the number of e-folds. Thus, as we have already
explained, since in quintessential inflation the number of e-
folds is greater than 60 one gets that r < 0.0034, and clearly,
the spectral index and the tensor/scalar ratio enters at 2σ CL,
in the contour for the Planck TT, TE, EE + low E + lensing
+BK14+BAO likelihood (see Fig. 1).

Remark 2.1 The first piece of the potential (2) is obtained
when one deals with R2 gravity in the Einstein Frame [20],
and the tail, which is the same used in [1], comes from SUSY
QED [21].

Remark 2.2 The second derivative of the potentials (1) and
(2) has a jump discontinuity at the beginning of kination,
but its physical origin is not discussed in the present work.
However, one may argue, as was shown in [22] where the
discontinuity of the second derivative of the potential appears
during inflation, that its origin could be due to a second-order
phase transition of another scalar field coupled with the field
ϕ. This is a point that deserves future investigation.

To calculate Hkin , the value of the Hubble parameter
at the beginning of kination for the model (2), first of all
we calculate the slow roll parameters: Denoting by ε∗ =
M2

pl
2

(
Vϕ(ϕ∗)
V (ϕ∗)

)2
and η∗ = M2

pl
Vϕϕ(ϕ∗)
V (ϕ∗) the values of the slow

roll parameters and by ϕ∗ the value of the scalar field when
the pivot scale exits the Hubble radius, since the mass M̃ sat-

isfies M̃ � Mpl , one has ε∗ ∼= 4
3e

2
√

2
3

ϕ∗
Mpl η∗ = − 4

3e

√
2
3

ϕ∗
Mpl ,

and thus, the spectral index is given by [23]

1 − ns ∼= 6ε∗ − 2η∗ ∼= 8

3
e

√
2
3

ϕ∗
Mpl , (4)

meaning that

ϕ∗ ∼=
√

3

2
Mpl ln

(
3

8
(1 − ns)

)

. (5)

On the other hand, the observational estimation of the
power spectrum of the scalar perturbations when the pivot

scale leaves the Hubble radius is Pζ
∼= H2∗

8π2M2
plε∗

∼ 2×10−9

[23]. Since during the slow roll regime the kinetic energy
density is negligible compared with the potential one, we will
have H2∗ ∼= λ

3 M
2
pl , and using the relation ε∗ = 3

16 (1 − ns)2

one gets

λ ∼ 9π2(1 − ns)
2 × 10−9. (6)

Taking into account that the observational value of the
spectral index is ns = 0.968 ± 0.006 [24], if one chooses its
central value one gets

λ = 9 × 10−11 and ϕ∗ ∼= −5.42Mpl . (7)
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Fig. 2 Evolution of the velocity of the scalar field obtained integrating
the Eq. (8) with initial conditions when the pivot scale leaves the Hubble
horizon, i.e., for ϕ∗ = −5.42Mpl and ϕ̇∗ = 0

Now, taking into account that inflation ends when ε = 1,

that is, when e

√
2
3

ϕ
Mpl = √

3(2 − √
3). This means that the

value of the potential energy at the end of inflation is approx-
imately 3

2λ(4−2
√

3)2M4
pl which is many orders greater than

V (0) = λM̃4, because M̃ � Mpl . Thus, we can safely con-
clude that the kination phase, i.e. when practically all energy
density is kinetic, has already started when the field ϕ crosses
the origin (see also the Fig. 2, where one can see that the max-
imum of the velocity of the scalar field is obtained very close
to ϕ = 0.). Then, to simplify, we can consider that kination
starts at ϕkin = 0, and to obtain the value of the Hubble rate
at the beginning of kination, namely Hkin , we have to solve
numerically the conservation equation

ϕ̈ + 3

√
√
√
√

ϕ̇2

2 + V (ϕ)

3M2
pl

ϕ̇ + Vϕ = 0, (8)

with initial conditions ϕ∗ = −5.42Mpl and ϕ̇∗ = 0 (obvi-
ously, one can choose other similar initial conditions and the
result has to be practically the same, because the inflationary
dynamics is an attractor).

Using event-driven integration with an ode RK78 integra-
tor, when ϕ vanishes one gets ϕ̇kin = 3.54 × 10−6M2

pl , and
thus

Hkin = ϕ̇kin√
6Mpl

∼= 1.44 × 10−6Mpl , (9)

and

ρϕ,kin ∼= 6.26 × 10−12M4
pl . (10)

Coming back to the PV model (1), one has ε∗ = η∗ =
2M2

pl

ϕ2∗
, and thus, the spectral index is given by

1 − ns = 6ε∗ − 2η∗ = 8M2
pl

ϕ2∗

	⇒ ϕ∗ = −
√

8

1 − ns
Mpl , (11)

and using the formula of the power spectrum of scalar per-
turbations one gets

m ∼
√

3

10
π(1 − ns) × 10−4Mpl , (12)

which for ns = 0.968, leads to

m = 5 × 10−6Mpl and ϕ∗ = −15.81Mpl . (13)

Once again, using event-driven integration with an ode
RK78 integrator one gets ϕ̇kin = 2.34 × 10−6M2

pl , and thus

Hkin = ϕ̇kin√
6Mpl

∼= 9.5 × 10−7Mpl , (14)

and

ρϕ,kin ∼= 2.73 × 10−12M4
pl . (15)

To end this Section, note that, for the model (2), at the
beginning of kination the energy density of the inflation is
ρϕ,kin ∼= 6.26×10−12M4

pl , which shows that the energy den-
sity drops an order of magnitude between the end of inflation
and the beginning of kination, because at the end of inflation
the effective Equation of State (EoS) parameter we f f = P

ρ
is

equal to −1/3, meaning that, at that moment, ϕ̇2 = V (ϕ), i.e.
ρ = 3

2V , and thus, at the end of inflation, as we have already

seen, when ε = 1 	⇒ e

√
2
3

ϕ
Mpl = √

3(2 − √
3) the energy

density is given by 3
2λ(4 − 2

√
3)2M4

pl
∼= 3.8 × 10−11M4

pl .
Finally, note that the same happens for the model (1).

3 Reheating via gravitational particle production

Since the second derivative of the potential (2) is discon-
tinuous at ϕ = 0, from the conservation equation one can
see that the third temporal derivative of the inflation field
is discontinuous at the beginning of kination, and using the

Raychaudhuri equation Ḣ = − ϕ̇2

2M2
pl

one can deduce that at

the beginning of kination the third derivative of the Hubble
parameter is discontinuous, enhancing the particle produc-
tion as discussed in [25].

Then, in order that vacuum polarization effects do not
disturb the dynamics of the ϕ-field, the mass of super-
heavy A-particles, produced gravitationally, has to satisfy
mA � HB � m, where we have assumed that the beginning
of inflation occurs at GUT scales, that is, when the Hubble
parameter is of the order HB ∼ 1014 GeV (see for instance
[26]). For this reason, the mass of superheavy particles must
satisfy mA ≥ 1015 GeV.

In fact, in the conformally coupled case, the k-mode sat-
isfy the equation

χ ′′
k + ω2

k (τ )χk = 0, (16)
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where the derivative is with respect the conformal time and

ωk(τ ) =
√

k2 + a2(τ )m2
A is the time dependent frequency.

Note that the jump discontinuity of the third derivative
of the Hubble rate is equivalent to a jump discontinuity
of the fourth derivative of the frequency ωk(τ ), and thus
its fifth temporal derivative is like a Dirac’s delta, so for a
smoother version of the potential (2) the discontinuity of the
second derivative of the potential could be replaced by the

no-adiabatic condition 1
ω6
k (τ )

d5ω(τ)

dτ 5 ≥ 1 during a short period

of time centered at the beginning of kination. However, a
smoother potential hinders the possibility to obtain analytic
expressions of the energy density of the produced particles,
and for this reason we will continue with the potential (2).

Then, using the WKB approximation up to order two

χWK B
2,k (τ ) ≡

√
1

2W2,k(τ )
e−i

∫ τ W2,k (s)ds, (17)

where W2,k has the following complicated form [27]

W2,k = ωk − m2a4

4ω3
k

(Ḣ + 3H2) + 5m2a6

8ω5
k

H2

+m2a6

16ω5
k

(
...
H + 15Ḧ H + 10Ḣ2 + 86Ḣ H2 + 60H4)

−m4a8

32ω7
k

(28Ḧ H + 19Ḣ2 + 394Ḣ H2 + 507H4)

+221m6a10

32ω9
k

(Ḣ + 3H2)H2 − 1105m8a12

128ω11
k

H4,

(18)

one can find the Bogoliubov coefficients of the k-mode,
namely αk and βk , matching the mode (17) with the com-
bination αkχ

WK B
2,k (τ ) + βk(χ

WK B
2,k )∗(τ ) at ϕkin = 0, i.e.,

when the third derivative of the Hubble rate is discon-
tinuous. Denoting by τkin this time, we will have βk =
iW[χWK B

2,k (τ−
kin), χ

WK B
2,k (τ+

kin)], where W is the Wronskian,

and we have used the notation f (τ±
kin) = limτ→τ±

kin
f (τ ),

i.e., f (τ±
kin) denotes the limit on the right and on the left of

the point τkin .
Then, the leading term of the βk-Bogoliubov coefficient is

1
2

(
W2,k (τ

−
kin)−W2,k (τ

+
kin)√

W2,k (τ
+
kin)W2,k (τ

−
kin)

)

, and thus, form the expression (18),

one can see that the discontinuous term is m2a6

16ω5
k

...
H , meaning

that

|βk |2 ∼= m4
Aa

12
kin(

...
H(τ−

kin) − ...
H(τ+

kin))
2

1024ω12
k (τkin)

. (19)

Therefore, deriving the Raychaudury equation twice, one
has

...
H = − 1

M2
pl

(ϕ̈2 + ϕ̇
...
ϕ), obtaining

...
H(τ−

kin) − ...
H(τ+

kin) =
− 1

M2
pl

ϕ̇kin(
...
ϕ(τ−

kin) − ...
ϕ(τ+

kin)). (20)

In addition, from the temporal derivative of the conserva-
tion equation,

...
ϕ +3Ḣ ϕ̇ +3H ϕ̈ + ϕ̇Vϕϕ = 0, and taking into

account that Vϕϕ(0+) = 0, one deduces that for the model
(2)

...
ϕ(τ−

kin) − ...
ϕ(τ+

kin) = −ϕ̇kinVϕϕ(0−)

= −4

3
λϕ̇kinM

2
pl , (21)

thus, using (20) and (21), one gets

...
H(τ−

kin) − ...
H(τ+

kin) = 4

3
λϕ̇2

kin (22)

and the expression of the square of the βk-Bogoliubov coef-
ficient becomes

|βk |2 ∼= m4
Aλ2a12

kin ϕ̇
4
kin

576ω12
k (τkin)

. (23)

On the other hand, the energy density of the produced
particles ρA(τ ) = 1

2π2a4(τ )

∫ ∞
0 ωk(τ )k2|βk |2dk (see for

instance [28]), before the decay of the X -particles, evolves
as

ρA(τ ) ∼= mA

2π2a3(τ )

∫ ∞

0
k2|βk |2dk

∼= 3.7 × 10−6λ2
(

ϕ̇kin

mA

)4 (
akin
a(τ )

)3

, (24)

where A = X,Y .

Remark 3.1 Note that creation of superheavy particles in this

model is power law small. Effectively, ρA(τkin) ∼
(

ϕ̇kin
mA

)4

and this is due to the discontinuity of the second derivative
of the potential at ϕ = 0. On the contrary, when the potential
is very smooth the energy density of the created superheavy
particles is exponentially suppressed by a factor e−cAmA/Hkin

[9], where cA is a model-dependent dimensionless parameter,
meaning that for such a class of potentials the gravitational
particle production mechanism is not efficient.

Thus, before the decay of the X -particles, one will have

ρY (τ ) =
(
mX

mY

)4

ρX (τ ), (25)

which means that, for the PV model, one has to assumemX �
mY in order to have a radiation era.

At this point, it is important to take into account that when
reheating is due to the gravitational production of superheavy
particles, in order that the overproduction of GWs does not
alter the BBN success, the decay of these particles has to
take place after the end of kination [26]. Then, assuming as

123



Eur. Phys. J. C (2020) 80 :257 Page 5 of 10 257

usual instantaneous thermalization, the reheating is produced
immediately after the decay of the X -particles, obtaining

ρY,rh =
(
mX

mY

)4

ρX,rh, (26)

where, the subindex “rh” means that the quantities are eval-
uated at the reheating time. After reheating, the evolution of
the corresponding energy densities will be

ρX (τ )=ρX,rh

(
arh
a(τ )

)4

, ρY (τ )=ρY,rh

(
arh
a(τ )

)3

, (27)

meaning that at the matter-radiation equality:

arh
aeq

= ρY,rh

ρX,rh
=

(
mX

mY

)4

, (28)

and consequently

ρY,eq = ρY,rh

(
mX

mY

)12

= π2g∗
30

T 4
rh

(
mX

mY

)16

, (29)

where Trh is the reheating temperature and g∗ = 106.75 are
the degrees of freedom for the Standard Model.

On the other hand, considering the central values obtained
in [30] of the red shift at the matter-radiation equality
zeq = 3365, the present value of the ratio of the mat-
ter energy density to the critical one �m,0 = 0.308, and
H0 = 67.81 Km/sec/Mpc, one can deduce that the present
value of the matter energy density is ρm,0 = 3H2

0 M
2
pl�m,0 =

3.26 × 10−121M4
pl , and at matter-radiation equality one will

have ρm,eq = ρm,0(1+zeq)3 = 4.4×10−1eV4. Since practi-
cally all the matter has a not baryonic origin, one can conclude
that ρY,eq ∼= ρm,eq , meaning that the reheating temperature
is given by a function of mY /mX as follows:

Trh ∼= 3.3 × 10−10
(
mY

mX

)4

GeV. (30)

3.1 Decay after the end of the kination regime

As we have already explained in the previous Section, in
order that the overproduction of GWs does not alter the BBN
success, the decay of the X -particles has to be produced after
the end of kination, which occurs when the energy density of
the inflaton field is equal to the one of the X -particles, i.e.,
when ρX (τend) = ρϕ(τend), where we have denoted by τend
the time at which kination ends. Then, the decaying rate,
namely �, has to satisfy � ≤ H(τend) ≡ Hend , and one has

H2
end = 2ρϕ,end

3M2
pl

, (31)

and

ρϕ,end = ρϕ,kin

(
akin
aend

)6

= 3H2
kinM

2
pl

(
akin
aend

)6

. (32)

Now, taking into account that during kination the energy
density of the inflaton field decays as a−6, and the one of the
produced particles as a−3, at the end ok kination (ρX,end =
ρϕ,end ), we will have

ρX,kin

(
akin
aend

)3

= ρϕ,kin

(
akin
aend

)6

, (33)

that is,
(
akin
aend

)3 = ρX,kin
ρϕ,kin

, and introducing the so-called heat-

ing efficiency defined in [31] as

� ≡ ρX,kin

ρϕ,kin

∼= 7.2 × 10−38
(
Mpl

mX

)4

, (34)

we can write ρϕ,end = 3H2
kinM

2
pl�

2.

Consequently, (31) leads to Hend = √
2Hkin�, and from

the constraint � ≤ Hend one obtains the bound

�

Mpl
≤ 1.5 × 10−43

(
Mpl

mX

)4

. (35)

On the other hand, assuming once again instantaneous
thermalization, the energy density of the X -particles at the
reheating time will be ρX,rh = 3�2M2

pl , and thus, the reheat-
ing temperature will be given by:

Trh =
(

90

π2g∗

) 1
4 √

�Mpl ∼= 1.3 × 1018

√
�

Mpl
GeV. (36)

As a consequence, from the two expressions of the reheat-
ing temperature (30) and (36) one can write the mass of the
dark matter as a function of � and mX as follows:

mY ∼= 7.9 × 106
(

�

Mpl

)1/8

mX . (37)

Remark 3.2 In our work we have not considered the pro-
duction of light particles nearly conformally coupled with
gravity [3] because its energy never dominates and do not
have any influence in the evolution of the Universe. Effec-
tively, the energy density of these light particles, namely ρr ,
evolves as [1,3] (see also [32] for a detailed discussion)

ρr (τ ) ∼= 10−2(1 − 6ξ)2H4
kin

(
akin
a(τ )

)4

, (38)

where ξ is the coupling constant and for the sake of simplicity
we will take |1 − 6ξ | ∼ 10−2, although it could be smaller
than 10−2.

Then, when the energy density of the X -particles is
of the same order than of the field ϕ, one has ρr,end ∼=
10−6H4

kin�
4/3 which has to be compared with ρϕ,end =

3H2
kinM

2
pl�

2. A simple calculation leads to

ρr,end

ρϕ,end

∼= 1.3 × 10−3

(

1014 m4
X

M4
pl

)2/3

, (39)
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and for masses satisfying mX ≤ 3 × 10−3Mpl ∼= 7.3 ×
1015 GeV, which as we will see enter in our range, we have

ρr,end

ρϕ,end
≤ 0.53, (40)

concluding that the energy density of the light particles cre-
ated during the phase transition from the end of inflation to
the beginning of kination never dominates because its energy
density decreases as a−4 while the one of X -particles as a−3.

3.2 Overproduction of GWs

The success of the BBN demands that the ratio of the energy
density of GWs to the one of the produced particles at the
reheating time satisfies [33]

ρGW,rh

ρX,rh
≤ 10−2, (41)

where the energy density of the GWs is given by ρGW (τ ) ∼=
10−2H4

kin (akin/a(τ ))4 (see for instance [3]).
Therefore, taking into account that

(
akin
aend

)4

= �4/3, (42)

and
(
aend
arh

)4

=
(

ρX,rh

ρX,end

)4/3

=
(

�√
2Hkin�

)8/3

, (43)

writing akin
arh

=
(
akin
aend

) (
aend
arh

)
we will have

ρGW,rh = 10−2H4
kin

(
�√

2�Hkin

)8/3

, (44)

and thus,

ρGW,rh

ρX,rh

∼= 7.2 × 1038
(
mX

Mpl

)16/3 (
�

Mpl

)2/3

, (45)

meaning that the bound (41) leads to the constraint

�

Mpl
≤ 5.1 × 10−62

(
Mpl

mX

)8

. (46)

Here, it is important to realize that for mX ≥ 2.4 ×
10−5Mpl the constraint (46) automatically implies (35), and
thus, taking into account that Trh > 1 MeV because the BBN
occurs at the MeV regime [34], one gets that � must satisfy

5.9 × 10−43 ≤ �

Mpl
≤ 5.1 × 10−62

(
Mpl

mX

)8

(47)

which always holds when

5.8 × 1013 GeV ≤ mX ≤ 1016 GeV. (48)

Taking into account that mX ≥ 1015 GeV, (recall that,
as we have explained in Sect. 2, mX � HB ∼ 1014 GeV)
the mass of X -particles is constrained to 1015 GeV ≤ mX ≤

1016 GeV, and consequently, from (36) and (47), for our
model the reheating temperature is bounded by

1 MeV ≤ Trh ≤ 9.7 GeV, (49)

and from (37) and (47) the mass of the Y -particles by

4.1 × 1016 GeV ≤ mY ≤ 4.1 × 1017 GeV. (50)

We finish this Section with the following remark: As
we can see, the choice of masses of the X -field greater
than 1015 GeV produce a very low reheating temperature.
However, as has been discussed in the introduction of [18]
(see also the end of the Section 4.2 in [17] and the bound
obtained in [31]), when reheating is via gravitational pro-
duction of light particles, for very low temperatures less
than 104 GeV, a spike in the Gravitational Wave spectrum,
which is large enough to challenge the BBN process, is gen-
erated during kination. To overpass this situation we have
to consider masses of the X -field satisfying the condition
5.8 × 1013 ≤ mX < 1014 GeV, because in this situation,

taking �
Mpl

= 5.1 × 10−62
(
Mpl
mX

)8
in (47), one gets

Trh = 2.93 × 10−13
(
Mpl

mX

)4

GeV, (51)

which for mX < 1014 GeV, leads to the lower bound Trh ≥
104 GeV.

Another way to alleviate this situation is to assume that the
X -field is not conformally coupled with gravity. In this situ-
ation, the X -field could have masses of the order 1015 GeV
or greater, obtaining a maximum reheating temperature of 66
TeV (see [37] for a detailed discussion).

Finally, as we will see in next Section, when the particles
responsible for the reheating are created via instant preheat-
ing this problem disappear, because the reheating tempera-
ture is around 108 GeV.

4 Instant preheating

In this Section we consider an interaction between the
scalar field and a massless X -field conformally coupled with
gravity, whose interacting Lagrangian is given by Lint =
− 1

2g
2ϕ2X2, where g is a coupling constant and the enhanced

symmetry point has been chosen ϕ = 0, because, as we have
already seen, at this point the velocity of the scalar field is
nearly maximum (see Fig. 2), what, as one can see from for-
mula (57), maximizes the particle production. In this situation
X -particles, having an effective massmef f = gϕ(t), are cre-
ated via a mechanism named instant preheating, which was
introduced in [13] in the framework of standard inflation, and
was applied, for the first time, to quintessential inflation in
[35].

123



Eur. Phys. J. C (2020) 80 :257 Page 7 of 10 257

Remark 4.1 Note that here the X -field is completely differ-
ent to the one considered in the previous Sections, however
the superheavy dark matter Y -field is the same, i.e., it con-
tinues only interacting gravitationally.

As was discussed in [35], in order to avoid a second infla-
tionary period, it is mandatory that, unlike the superheavy
particles created gravitationally studied in the previous sec-
tion, these X -particles decay well before the end of kination.
Then, at the matter-radiation equality we will have

ρX,eq = ρX,dec

(
adec
aeq

)4

, ρY,eq = ρY,dec

(
adec
aeq

)3

, (52)

and since ρX,eq = ρY,eq one will have

ρY,eq = ρY,dec

(
ρY,dec

ρX,dec

)3

. (53)

Now, using that the decay of the X -particles is finished

when � = Hdec = Hkin

(
akin
adec

)3
, and that the energy

density of the Y -particles decreases as a−3, i.e., ρY,dec =
ρY,kin

(
akin
adec

)3
, we obtain

ρY,eq = ρY,kin
�

Hkin

(
ρY,dec

ρX,dec

)3

. (54)

In addition, taking into account that at the decay time the
scalar field is near Mpl (see for details [35]), and thus, the
effective mass of the X -particles is gMpl , one gets

ρX,dec = gMplnX,dec = gMplnX,kin

(
akin
adec

)3

, (55)

where nX denotes the number density of produced X -
particles.

Therefore, one will have
ρY,dec

ρX,dec
= ρY,kin

gMplnX,kin
. (56)

On the other hand, at the beginning of kination the number
density of X -particles is [35]

nX,kin = g3/2ϕ̇
3/2
kin

8π3 , (57)

and the energy density of the Y -particles is given by the
formula (24), meaning that, at the matter-radiation equality
one has

ρY,eq = ρY,kin
�

Hkin

(
8π3ρY,kin

g5/2Mpl ϕ̇
3/2
kin

)3

∼= 9.6 × 10−53g−15/2
(
Mpl

mY

)16
�

Mpl
eV4, (58)

which compared with the observational value of the matter
density at the matter-radiation equality 4.4×10−1eV4, leads
to

mY ∼= 5.9 × 10−4g−15/32
(

�

Mpl

)1/16

Mpl . (59)

Dealing with the reheating temperature, if one assumes
once again instantaneous thermalization, it is given by (see
[36] for details)

Trh =
(

30

g∗π2

)1/4

ρ
1/4
X,dec

√
ρX,dec

ρϕ,dec

∼= 1014g15/8
(
Mpl

�

)1/4

GeV, (60)

because at the end of the decay of the X -particles

ρϕ,dec = 3�2M2
pl and

ρX,dec ∼= 10−2g5/2

√
Hkin

Mpl

�

Mpl
M4

pl . (61)

When X -particles decay into fermions via a Yukawa type

interaction hψψ̄X with a decaying rate � = h2gMpl
8π

, where
h is a coupling constant [35], the mass of the Y -particles and
the reheating temperature become

mY ∼= 1.1 × 1015g−13/32h1/8 GeV and

Trh ∼= 2.2 × 1014g13/8h−1/2 GeV. (62)

However, as has been showed in [36] there is a narrow
range of values of the parameters g and h for which instant
preheating is viable. For example, choosing (h = 10−1, g =
10−4) or (h = 10−2, g = 5 × 10−5) one gets:

mY ∼ 1016 GeV and Trh ∼ 2.2 × 108 GeV. (63)

Finally, we want to stress that when the particle production
of X -particles is via instant preheating the overproduction of
GWs does not alter the success of the BBN, because

ρGW,rh

ρX,rh
≤ ρGW,kin

gMplnX,kin

∼= 1.6 × 10−16g−5/2 ≤ 10−5. (64)

5 Evolution of the universe in quintessential inflation

This section is a review of [14] and the Section 4 of [37].
We start with the initial conditions, at the beginning of

kination for the model (2), obtained in Sect. 2:

ϕkin = 0, ϕ̇kin = 3.54 × 10−6M2
pl . (65)

During kination, the scale factor and the Hubble rate
evolves as a ∝ t1/3 	⇒ H = 1

3t , and from the Friedmann
equation, the evolution in this phase will be

ϕ̇2

2
= M2

pl

3t2 	⇒ ϕ(t) =
√

2

3
Mpl ln

(
Hkin

H(t)

)

. (66)
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Then, at the end of kination, one has

ϕend = −
√

2

3
Mpl ln

(√
2�

)
, ϕ̇end = 2

√
3Mpl Hkin�,

(67)

where, once again, we have used the relation Hend =√
2Hkin�.
During the period between tend and trh , in the case that the

X particles are created gravitationally, the universe is matter
dominated and, thus, the Hubble parameter becomes H = 2

3t .
During this epoch, the gradient of the potential could also be
disregarded, hence, the equation of the scalar field becomes
ϕ̈ + 2

t ϕ̇ = 0, and thus, after few calculations, at the reheating
time one has

ϕrh ∼= ϕend +
√

2

3
Mpl (68)

and

ϕ̇rh =
√

3

4

Mpl H2
rh

Hkin�
(69)

During the radiation period one can continue disregarding
the potential, obtaining

ϕ(t) = ϕrh + 2ϕ̇rhttr

(

1 −
√
trh
t

)

, (70)

and thus, since ϕ̇rhttr = π
6

√
g∗
30

T 2
rh

Hkin�
(in [14] and [37]

wrongly the authors take ϕ̇rhttr =
√

2
3 Mpl ) at the matter-

radiation equality one has

ϕeq = ϕrh + π

3

√
g∗
30

T 2
rh

Hkin�

(

1 −
√

4Heq

3Hrh

)

= ϕrh + π

3

√
g∗
30

T 2
rh

Hkin�

(

1 −
√

4

3

(
geq
g∗

)1/4 Teq
Trh

)

∼= ϕrh + π

3

√
g∗
30

T 2
rh

Hkin�
∼= ϕrh + 2T 2

rh

Hkin�
, (71)

where geq ∼= 3.36 are the degrees of freedom at the matter-
radiation equality and Teq is the temperature of the radiation
at the matter-radiation equilibrium, which is related with the
energy density via the relation ρeq = π2

15 geqT
4
eq

∼= 8.8 ×
10−1eV4 , and thus, given by Teq ∼= 7.9 × 10−10 GeV.

In the same way,

ϕ̇eq = ϕ̇rh
trh
teq

√
trh
teq

=
(

16geq
9g∗

)3/4 (
Teq
Trh

)3

ϕ̇rh

∼= 1.7
T 3
eqTrh

Mpl Hkin�
∼= 5.8 × 10−46 Trhm

4
X

M3
pl

. (72)

After the matter-radiation equality the dynamical equa-
tions can not be solved analytically and, thus, one needs
to use numerics to compute them. In order to do that, we
need to use a “time” variable that we choose to be minus
the number of e-folds up to the present epoch, namely,

N ≡ − ln(1 + z) = ln
(

a
a0

)
. Now, using the variable N ,

one can recast the energy density of radiation (the energy
density of the decay products of the X -field which we con-
tinue denoting by ρX ) and dark matter respectively as

ρX (N ) = ρeq

2
e4(Neq−N ), ρY (N ) = ρeq

2
e3(Neq−N ), (73)

where Neq = − ln(1 + zeq) = −8.121 is the value of N at
the matter-radiation equality.

In order to obtain the dynamical system for the (2) model,
we introduce the following dimensionless variables

x = ϕ

Mpl
, y = ϕ̇

H0Mpl
, (74)

where H0 ∼= 1.42×10−33 eV denotes the current value of the
Hubble parameter. Now, using the variable N = − ln(1 + z)
defined above and also using the conservation equation ϕ̈ +
3H ϕ̇ +Vϕ = 0, we will have the following non-autonomous
dynamical system:

⎧
⎨

⎩

x ′ = y
H̄

,

y′ = −3y − V̄x
H̄

,
(75)

where the prime represents the derivative with respect to N ,
H̄ = H

H0
and V̄ = V

H2
0 M

2
pl

. Moreover, the Friedmann equation

now looks as

H̄(N ) = 1√
3

√

y2

2
+ V̄ (x) + ρ̄X (N ) + ρ̄Y (N ), (76)

where we have introduced the following dimensionless
energy densities ρ̄X = ρX

H2
0 M

2
pl

and ρ̄Y = ρY
H2

0 M
2
pl

.

Then, we have to integrate the dynamical system, starting
at Neq = −8.121, with initial condition xeq and yeq which are
obtained analytically in formulas (71) and (72). The value of
the parameter M̃ is obtained equaling at N = 0 the equation
(76) to 1, i.e., imposing H̄(0) = 1.

On the other hand, note that

yeq = 4.1 × 10−4 Trh
GeV

(
mX

Mpl

)4

, (77)

and thus, for viable reheating temperatures Trh ≤ 9.7 GeV
one has yeq � 1. And for xeq , after a simple calculation, one
gets (Fig. 4)
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Fig. 3 Evolution of the different dimensionless energy densities for
mX ∼ 1014 GeV and Trh ∼ 104 GeV

Fig. 4 Evolution of the different � for mX ∼ 1014 GeV and Trh ∼
104 GeV. At late times �ϕ = 1, meaning that all the energy density of
the universe is the one of the scalar field

xeq ∼=
√

2

3

(

86.17 − 4 ln

(
Mpl

mX

))

+1.9 × 1041 T 2
rh

M2
pl

(
mX

Mpl

)4

. (78)

Summing up, what we have obtained numerically for the
viable values of the reheating temperature and the masses of
the X -filed is that the value of the mass M̃ ranges between
2.5×105 and 8.6×105 GeV, what completely agrees with the
value obtained by Peebles and Vilenkin in his seminal paper
[1]. In addition, as one can see in Fig. 3 that the scalar field
slow-rolls the inverse power law potential after the matter-
radiation equality, leading to an eternal acceleration because
the effective Equation of State parameter goes towards −1
(see Fig. 5).

Finally note that the for the potential (2) the energy scale of
inflation is [38] V 1/4(ϕ � −Mpl) ∼ λ1/4Mpl ∼ 1015 GeV,
which is very close to the GUT scales, while the energy scale
for Dark Energy V 1/4(ϕ ∼= 0) ∼ λ1/4M̃ ∼ 102 GeV is near
the electroweak scale. Therefore, our model provides natural
scales for inflation and Dark Energy.

Fig. 5 Evolution of the effective Equation of State parameter formX ∼
1014 GeV and Trh ∼ 104 GeV. Al late times we f f → −1, what means
that the universe accelerates forever entering in a de Sitter phase

6 Conclusions

In this paper we have presented the idea of creating dark mat-
ter in a quintessential inflation model whose potential, which
is an improvement of the well-known Peebles-Vilenkin one,
is composed by a Starobinsky Inflationary type-potential
matched with an inverse power law potential, which is
responsible for quintessence. Since the phase transition from
the end of inflation to the beginning of kination is very abrupt,
the adiabatic regime is broken and superheavy particles could
be gravitationally produced. We have assumed two different
reheating mechanisms:

1. In the first one, two kind of superheavy particles are grav-
itationally produced. X -particles, whose decay products
form the baryonic matter, and GIMP Y -particles, which
are responsible for the dark matter abundance. For this
model we have shown that, for reasonable masses of the
X -particles between 1014 and 1016 GeV, a viable model
with a reheating temperature from the MeV to the TeV
regime is obtained when the mass of the dark matter par-
ticles is of the order 1016 − 1017 GeV.

2. The second mechanism is the well known instant pre-
heating, where now the X -field is massless and coupled
with the scalar field, and the superheavyY -field depicting
dark matter continues only interacting gravitationally. In
this situation, a viable model requires a reheating tem-
perature around 108 GeV and dark matter particles with
masses around 1016 GeV.

Finally, in the case that both kind of particles are produced
gravitationally, we have shown numerically that the model
leads, at late times, to an eternal inflation with and Equation
of State parameter equal to −1.
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