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Abstract We study scalarization of spherically symmet-
ric neutral reflecting shells in the scalar-tensor gravity. We
consider neutral static massless scalar fields non-minimally
coupled to the Gauss–Bonnet invariant. We obtain a relation
representing the existence regime of hairy neutral reflecting
shells. For parameters unsatisfying this relation, the massless
scalar field cannot exist outside the neutral reflecting shell.
In the parameter region where this relation holds, we get ana-
lytical solutions of scalar field hairs outside neutral reflecting
shells.

1 Introduction

One well known property of classical black holes is the
famous no hair theorem, which states that spherically sym-
metric black holes cannot support static scalar field hairs
in the asymptotically flat background, see references [1–9]
and reviews [10,11]. The belief in this no hair behavior is
partly based on the existence of black hole absorbing hori-
zons. According to some candidate quantum-gravity models,
quantum effects may prevent the formation of stable black-
hole horizons [12–16]. And horizonless compact objects with
reflective boundary conditions have been proposed as alter-
natives to the familiar (classical) black-hole spacetimes [17–
23]. So it is interesting to study properties of horizonless
reflecting objects.

Interestingly, no hair theorem also holds in such horizon-
less reflecting object backgrounds. Hod firstly proved that
massive static scalar field hairs cannot form in the back-
ground of neutral horizonless reflecting objects [24]. This
no hair theorem for neutral horizonless reflecting objects
was also extended to the case of massless scalar field hairs
[25,26]. Considering a positive cosmological constant, it was
found that the no hair theorem still holds in the background of
neutral horizonless reflecting objects [27]. This no hair theo-
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rem for composed system of scalar fields and neutral horizon-
less reflecting objects was further generalized by including
couplings between scalar fields and Ricci curvature [25,28].
However, when horizonless reflecting objects are charged,
analytical and numerical results showed that scalar field hairs
can exist [29–38]. From front progress, we conclude that no
static scalar field hair behavior is a very general property in
the background of neutral horizonless reflecting objects.

In other modified gravities, whether static scalar field hairs
could exist outside neutral horizonless reflecting objects is a
question to be answered. On the other side of black holes,
usual ways to introduce scalar hairs are considering station-
ary scalar fields or adding a confinement to the system [39–
48]. Recently, a novel approach to trigger black hole scalar
hairs was provided by considering non-minimal couplings
between scalar fields and the Gauss–Bonnet invariant [49–
55]. Moreover, it was found that this scalar-Gauss–Bonnet
coupling can lead to scalar condensations in various black
hole models [56–64]. Inspired by these black hole proper-
ties, in the background of neutral reflecting compact stars,
we have constructed scalar hairy configurations by includ-
ing scalar-Gauss–Bonnet couplings with numerical methods
[65]. In particular, reflecting shell backgrounds usually allow
fully analytical studies, which showed that neutral reflecting
shells cannot support static scalar hairs [29,30]. As a fur-
ther step, it is interesting to examine whether scalar fields
can condense outside neutral reflecting shells in the model
generalized by including scalar-Gauss–Bonnet couplings.

This work is organized as follows. We firstly construct a
system with static massless scalar fields outside neutral hori-
zonless reflecting shells in the scalar-Gauss–Bonnet grav-
ity. Then we obtain a relation representing existence regime
of hairy shells. For parameters satisfying this relation, we
get analytical solutions of scalar field hairs outside neutral
reflecting shells. The analytical solutions presented in this
paper are valid only in the linearized regime of the scalar
fields. At last, we give the main conclusion.
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2 Scalar condensation behaviors around neutral
Dirichlet reflecting shells

2.1 A characteristic relation for scalar hairy neutral
reflecting shells

We now write down the model with static massless scalar
fields non-minimally coupled to the Gauss–Bonnet invari-
ant. The Lagrangian density of this scalar-tensor gravity is
described by [49–55]

L = R − |∇μψ |2 + f (ψ)R2
GB, (1)

where R is the Ricci curvature, ψ(r) is a real scalar field,
f (ψ) is the coupling function and R2

GB is the source term.
In the linear regime, without generality, we can take the cou-
pling function in the form

f (ψ) = ηψ2 (2)

with η describing the coupling strength [51,52]. The source
term is the Gauss–Bonnet invariant given by

R2
GB = Rμνρσ R

μνρσ − 4RμνR
μν + R2. (3)

When neglecting matter fields’ backreaction on the metric,
the Gauss–Bonnet invariant term is

R2
GB = 48M2

r6 . (4)

We consider spherically symmetric static neutral space-
times. The metric ansatz in Schwarzschild coordinates is of
the form [52]

ds2 = −g(r)dt2 + dr2

g(r)
+ r2(dθ2 + sin2θdφ2), (5)

where the metric function is g(r) = 1 − 2M
r with M cor-

responding to the ADM mass. The shell radius is imposed
at the radial coordinate r = rs . Since we concentrate on
the horizonless spacetime, the shell radii satisfy the relation
rs > 2M . The spherically symmetric angular coordinates are
labeled as θ and φ.

With variation methods, we get the exact linearized scalar
equation [49–55]

∇ν∇νψ + ηR2
GBψ = 0. (6)

By employing the line element (5), the scalar equation
takes the form [65]

ψ ′′ +
(

2

r
+ g′

g

)
ψ ′ + ηR2

GB

g
ψ = 0 (7)

with g = 1 − 2M
r and R2

GB = 48M2

r6 .
In the limit case of M � rs , the functions are g(r) =

1 − 2M
r → 1 and g′(r) = 2M

r2 → 0 as assumed in Refs.
[29,31]. In the large-r regime, g′(r) is neglected and g(r) is
set to be 1. The presence of a coupling parameter η is crucial

for the existence of a non-trivial analytical solution. With the

nonzero term ηR2
GB = 48ηM2

r6 , η appears in the scalar field
equation. It means that we study the scalar condensation in
the large η regime. In this shell background, the Eq. (7) can
be expressed as

ψ ′′ + 2

r
ψ ′ + 48ηM2

r6 ψ = 0. (8)

In order to solve the equation, we need boundary con-
ditions of the scalar field. The asymptotic behavior of the
massless scalar field near the infinity boundary is

ψ ∝ 1

r
f or r → ∞. (9)

So the infinity boundary condition is

ψ(∞) = 0. (10)

At the shell radius, we impose Dirichlet reflecting bound-
ary conditions that the scalar field vanishes. So the scalar
field condition at the surface is

ψ(rs) = 0. (11)

We introduce a new radial function ψ̃ = √
rψ . According

to (8), ψ̃ satisfies the differential equation

r2ψ̃ ′′ + rψ̃ ′ +
(

−1

4
+ 48ηM2

r4

)
ψ̃ = 0. (12)

With relations (9) and (11), we get boundary conditions

ψ̃(rs) = 0, ψ̃(∞) = 0. (13)

From boundary conditions (13), one deduces that the func-
tion ψ̃ must possess one extremum point r = rpeak in the
range (rs,∞). At this extremum point, the scalar field satis-
fies relations [24]

{ψ̃ ′ = 0 and ψ̃ψ̃ ′′ � 0} f or r = rpeak . (14)

Relations (12) and (14) yield the following inequality

− 1

4
+ 48ηM2

r4 � 0 f or r = rpeak . (15)

This inequality can be transformed into

√
ηM

r2 � 1

8
√

3
f or r = rpeak . (16)

Considering rs � rpeak , we conclude that scalar hairy
shells should satisfy the relation

√
ηM

r2
s

� 1

8
√

3
. (17)
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Table 1 Radii of Dirichlet
reflecting scalar hairy shells

i 1 2 3 4 5

rsi 1.1161η
1
4 M

1
2 0.7658η

1
4 M

1
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Fig. 1 We plot the scalar field solution around Dirichlet reflecting shells. We take the value ηM2 = 1 with various rs as: a the case rs1 = 1.1161
in small region, b the case rs1 = 1.1161 in large region, c the case rs2 = 0.7658 in small region, d the case rs2 = 0.7658 in large region

2.2 Construction of massless scalar field hairy neutral
Dirichlet reflecting shells

In this section, we apply analytical methods to get solutions
of scalar field hairs outside Dirichlet reflecting shells in the
scalar-Gauss–Bonnet gravity. The general solutions of Eq.
(12) can be expressed with Bessel functions in the form [66]

ψ̃(r) = A · J− 1
4

(
2
√

3ηM

r2

)
+ B · J 1

4

(
2
√

3ηM

r2

)
(18)

with A and B as integral constants.
At the infinity, the solution (18) asymptotically behaves

as

ψ̃(r) ∝ A · √r + B · 1√
r
. (19)

According to the condition (13), the first coefficient A is zero:
A = 0. So the bound-state neutral massless scalar fields are

ψ =
√

1

r
ψ̃(r) = B ·

√
1

r
J 1

4

(
2
√

3ηM

r2

)
. (20)

With the scalar reflecting condition (11), we get the char-
acteristic scalar field equation

J 1
4

(
2
√

3ηM

r2
s

)
= 0. (21)

If we find parameters satisfying (21), scalar field hairs exist.

Defining a new parameter x =
√

ηM
r2
s

, there is x � 1
8
√

3
according to (17). The remaining question is to solve the
equation

J 1
4
(2

√
3x) = 0 (22)

in the region x � 1
8
√

3
. With numerical methods, the condi-

tion (22) determines discrete values of xi

· · · > x3 > x2 > x1 = xmin � 1

8
√

3
. (23)
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Table 2 Radii of Dirichlet
reflecting scalar hairy shells

i 1 2 3 4 5

rsi 1.8090η
1
4 M
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1
4 M

1
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Fig. 2 We show behaviors of the scalar field around Neumann reflecting shells. We take the value ηM2 = 1 with various rs as: a the case
rs1 = 1.8090 in small region, b the case rs1 = 1.8090 in large region, c the case rs2 = 0.8992 in small region, d the case rs2 = 0.8992 in large
region

Fixing shell radii at rsi = η
1
4 M

1
2

x
1
2
i

, the corresponding scalar

field is ψ ∝
√

1
r J 1

4
(

2
√

3ηM
r2 ) in the form of (20). In Table

1, we show various values of rsi with respect to i . We plot
the first two solutions of scalar fields in the background of
Dirichlet reflecting shells in Fig. 1. The scalar fields start
from zero at the shell radii and asymptotically approach zero
at the infinity.

3 Scalar condensation behaviors around neutral
Neumann reflecting shells

Now we turn to study scalar hair formations in the back-
ground of neutral reflecting shells with Neumann surface
boundary conditions. At the surface, we impose the Neu-
mann reflecting condition ψ ′(rs) = 0. The derivative of the
function ψ̃ satisfies boundary conditions

ψ̃ ′(rs) = (
√
rψ)′|r=rs = 1

2
√
rs

ψ(rs) + √
rsψ

′(rs)

= 1

2
√
rs

ψ(rs) = 1

2rs

√
rsψ(rs) = 1

2rs
ψ̃(rs). (24)

The case of ψ̃(rs) = 0 is just the model studied in Sect. 2.
In this part, we focus on the case of ψ̃(rs) 	= 0. In the case
of ψ̃(rs) > 0, the function ψ̃ increases to be more positive
around the surface and then decreases asymptotically to be
zero. In another case of ψ̃(rs) < 0, the function decreases
to be more negative around the surface and then increases to
be zero at the infinity. For both cases, one extremum point
r = rpeak satisfying (14) exists. Following analysis in part
A of Sect. 2, for scalar hairy Neumann reflecting shells, we
can easily get the same relation as (17) in the form

√
ηM

r2
s

� 1

8
√

3
. (25)
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With the scalar field solution (20), we can express the
Neumann reflecting condition as

dψ

dr
|r=rs = d

dr

[√
rψ̃

] |r=rs

= d

dr

[√
r J 1

4

(
2
√

3ηM

r2

)]
|r=rs= 0. (26)

The Eq. (26) can be solved through numerical methods. In
the parameter regime obeying (25), we obtain discrete values
of shell radii which can support the existence of static neutral
massless scalar fields. We give the discrete shell radii in Table
2. We also plot the first two solutions of scalar fields outside
Neumann reflecting shells in Fig. 2. The scalar fields start
with ψ ′(rs) = 0 at the radii and asymptotically approaches
zero in the large r region.

4 Conclusions

We studied condensations of static massless scalar fields non-
minimally coupled to the Gauss–Bonnet invariant outside
neutral reflecting shells. At the shell radii, we imposed scalar
reflecting boundary conditions. We took two types of reflect-
ing conditions, which are Dirichlet and Neumann reflecting
boundary conditions. For both types of conditions, we ana-
lytically obtained a characteristic relation for hairy shells in

the form
√

ηM
r2
s

� 1
8
√

3
, where rs is the shell radius, M is

the shell mass and η is the coupling parameter. For parame-
ters unsatisfying this relation, there is no scalar hair theorem.
For parameters obeying this relation, we obtained analytical
solutions of massless neutral scalar field hairs.
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