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Abstract To make a Born–Infeld (BI) black hole thermally
stable, we consider two types of boundary conditions, i.e.,
the asymptotically anti-de Sitter (AdS) space and a Dirichlet
wall placed in the asymptotically flat space. The phase struc-
tures and transitions of these two types of BI black holes,
namely BI-AdS black holes and BI black holes in a cavity, are
investigated in a grand canonical ensemble, where the tem-
perature and the potential are fixed. For BI-AdS black holes,
the globally stable phases can be the thermal AdS space.
For small values of the potential, there is a Hawking-Page-
like first order phase transition between the BI-AdS black
holes and the thermal-AdS space. However, the phase tran-
sition becomes zeroth order when the values of the potential
are large enough. For BI black holes in a cavity, the glob-
ally stable phases can be a naked singularity or an extremal
black hole with the horizon merging with the wall, which
both are on the boundaries of the physical parameter region.
The thermal flat space is never globally preferred. Besides
a first order phase transition, there is a second order phase
transition between the globally stable phases. Thus, it shows
that the phase structures and transitions of BI black holes
with these two different boundary conditions have several
dissimilarities.
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1 Introduction

The study of black hole thermodynamics has continued to
fascinate researchers since the pioneering work [1–3], where
Hawking and Bekenstein found that black holes possess the
temperature and the entropy. However, it is well known that
a Schwarzschild black hole in asymptotically flat space is
thermally unstable because of its negative specific heat. To
study black hole thermodynamics in a thermally stable sys-
tem, one can impose appropriate boundary conditions. For
example, putting black holes in the anti-de Sitter (AdS) space
can make them thermally stable since the AdS boundary acts
as a reflecting wall for the Hawking radiation. The investi-
gations of the thermodynamic properties of AdS black holes
have come a long way since the discovery of the Hawking-
Page phase transition [4], i.e., a phase transition between the
thermal AdS space and the Schwarzschild-AdS black hole.
Later, with the advent of the AdS/CFT correspondence [5–7],
there has been much interest in studying the phase transitions
of AdS black holes [8–13]. From the holographic perspective,
we are eager to find out whether the duality is independent
of the details of the boundary conditions of the bulk space-
time. It is therefore interesting to study the thermodynamics
and phase structures of black holes under different boundary
conditions and look for similarities or dissimilarities to the
AdS case.

On the other hand, placing a Schwarzschild black hole
in a cavity in the asymptotically flat space, York showed
that the black hole can be thermally stable and has similar
phase structure and transition to these of a Schwarzschild-
AdS black hole [14]. Specifically, the Schwarzschild black
hole in a cavity undergoes a Hawking-Page-like transition to
the thermal flat space as the temperature decreases. The ther-
modynamics and phase structure of a Reissner–Nordstrom
(RN) black hole in a cavity have been studied in a grand
canonical ensemble [15] and a canonical ensemble [16,17],
which showed that the phase structures of the RN black
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hole in a cavity and the RN-AdS black hole have exten-
sive similarities. In a series of paper [18–23] , the phase
structures of various black brane systems in a cavity were
investigated in a grand canonical ensemble and a canoni-
cal ensemble, and it was found that Hawking-Page-like or
van der Waals-like phase transitions always occur except for
some special cases. In [24–27], boson stars and hairy black
holes in a cavity were considered, and it showed that the
phase structure of the gravity system in a cavity is strik-
ingly similar to that of holographic superconductors in the
AdS gravity. The stabilities of solitons, stars and black holes
in a cavity were also studied in [28–35], which showed
that the nonlinear dynamical evolution of a charged black
hole in a cavity could end in a quasi-local hairy black hole.
The thermodynamic behavior of de Sitter black holes in
a cavity has been discussed in the extended phase space
[36]. Recently, McGough et al. [37] proposed that the holo-
graphic dual of T T̄ deformed CFT2 is a finite region of
AdS3 with the wall at finite radial distance, which further
motivates us to explore the properties of a black hole in a
cavity.

The Born–Infeld (BI) electrodynamics is a particular
example of a nonlinear electrodynamics, which is an effec-
tive model incorporating quantum corrections to Maxwell
electromagnetic theory. BI electrodynamics was first pro-
posed to smooth divergences of the electrostatic self-energy
of point charges by introducing a cutoff on electric fields
[38]. Later, it is realized that BI electrodynamics can emerge
from the low energy limit of string theory, which encodes
the low-energy dynamics of D-branes. Coupling the BI elec-
trodynamics field to gravity, the BI black hole solution was
first obtained in [39,40]. For the BI black holes in asymp-
totically AdS space, the thermodynamic behavior and phase
transitions have been investigated in [41–62]. Specifically,
the phase structures and transitions of 4D BI-AdS black holes
in a canonical ensemble were studied in [47,55,58], which
showed that a reentrant phase transition was always observed
in a certain region of the parameter space. Meanwhile, the
thermodynamics and phase transitions in a grand canonical
ensemble have been analyzed in [42], which showed that the
system undergoes the first and zeroth order phase transitions
between the black hole solutions and the thermal AdS space.
On the other hand, by placing a BI black hole in a spheri-
cal thermal cavity, we recently discussed the phase structures
and transitions of the canonical ensemble of this system [63],
which were found to have dissimilarities from these of the
BI-AdS black holes.

In this paper, we study the phase structures and transitions
of the grand canonical ensemble of BI black holes using
both asymptotically AdS and the Dirichlet wall boundary
conditions. So the gauge potential is fixed rather than the
charge on the boundaries in this paper. In the framework of
the AdS/CFT duality, the grand canonical ensemble is more

relevant than the canonical ensemble. Although the phase
structures and transitions of BI-AdS black holes in the grand
ensemble have already been investigated in [42], we carry
out the analysis in a more through way with a broader survey
of the parameter space. The phase diagrams in the parameter
space are obtained, which can be used to make a comparison
with these of BI black holes in a cavity. In the second part
of this paper, we analyze the phase structures and transitions
of BI black hole in a cavity in the grand canonical ensemble.
We find that the thermal flat space, which is the counterpart
of the thermal AdS space in the BI-AdS case, can never be
the globally stable phase. Moreover, the system has no zeroth
order transition, but instead a second order transition occurs.
It turns out that the results of the BI black holes in a cavity
and BI-AdS black holes have several dissimilarities.

The rest of this paper is organized as follows. In Sect. 2, we
study the phase structures and transitions of BI-AdS black
holes and give the phase diagrams, e.g., Figs. 2 and 4. In
Sect. 3, we discuss the phase structures and transitions of BI
black holes in a cavity. The related phase diagrams are given
in Figs. 7 and 10, from which one can read the phase struc-
tures and transitions. Section 4 is devoted to our discussion
and conclusion.

2 Born–Infeld AdS black holes

In this section, we consider the phase structures and transi-
tions of BI-AdS black holes in a grand canonical ensemble.
The action of a (3 + 1) dimensional model of gravity coupled
to a Born–Infeld electromagnetic field Aμ is

S =
∫

d4x
√−g [R − 2� + LBI (F)] , (1)

where the cosmological constant � = −3/ l2, and we take
16πG = 1 for simplicity. The Born–Infeld electrodynamics
Lagrangian density is

LBI (F) = −1

a

(
1 − √

1 − aFμνFμν/2
)

,

where Fμν = ∂μAν−∂ν Aμ, and the Born–Infeld parameter a

is related to the string tension α′ as a = (
2πα′)2

> 0. When
a → 0, LBI (F) reduces to the Lagrangian of the Maxwell
field. The Born–Infeld AdS black hole solution was obtained
in [39,40]:

ds2 = − f (r) dt2 + dr2

f (r)
+ r2

(
dθ2 + sin2 θdφ2

)
,

A = At (r) dt. (2)
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where

f (r) = 1 − M

8πr
+ r2

l2
− Q2

6
√
r4 + aQ2 + 6r2

+ Q2

3r2 2F1

(
1

4
,

1

2
,

5

4
;−aQ2

r4

)
,

A′
t (r) = Q√

r4 + aQ2
. (3)

Here M and Q are the mass and the charge of the back hole,
respectively, and 2F1 (a, b, c; x) is the hypergeometric func-
tion.

At the horizon r = r+, one has that f (r+) = 0, and the
Hawking temperature is given by

T = f ′ (r+)

4π
= 1

4πr+

⎛
⎝1 − 1

2

Q2

r2+ +
√
r4+ + aQ2

⎞
⎠ . (4)

Requiring At (r) at the horizon to be zero, it can show that
the gauge potential measured with respect to the horizon is

	 = 4π At (∞) = 4πQ

r+
2F1

(
1

4
,

1

2
,

5

4
;−aQ2

r4+

)
. (5)

In the limit of r+ → +∞, BI-AdS black holes would reduce
to RN-AdS black holes, and we find that

	(r+, Q, a) ∼ 4πQ

r+
and T ∼ 3r+

4πl2
. (6)

As r+ → 0, Eqs. (4) and (5) gives

	 ∼
√

Q

2
√
a

	c and T ∼ 1

4πr+

(
1 − 	2

	2
c

)
, (7)

where 	c ≡ 4
√

2π

( 1

4

)



(
5
4

)
∼ 32.95. So when 	 > 	c,

T → −∞ as r+ → 0, which means that r+ has a nonzero
minimum value. On the other hand, T → +∞ as r+ → 0
for 	 < 	c, and hence r+ can go to zero in this case.

To study the phase structures and transitions, we need to
consider the free energy of the black hole. The free energy of
a BI-AdS black hole in a canonical ensemble was obtained
by computing the Euclidean action in [58], where an extra
boundary term Ssurf was introduced to keep the charge fixed
instead of the potential. However for the grand canonical
ensemble, Ssurf is not needed any more. Excluding the con-
tribution of Ssurf, the computation of the Euclidean action in
[58] then gives the free energy of the BI-AdS black hole in
the grand canonical ensemble:

F = M − T S − Q	, (8)

where S = 16π2r2+ is the entropy of the black hole. For the
later convenience, we can express quantities in units of l:

T̃ = T l, r̃+ = r+/ l, Q̃ = Q/ l, ã = al−2 and F̃ ≡ F/ l.

(9)

Note that the potential 	 is dimensionless.
To find the phase structures of the black hole, one needs to

use Eqs. (4) and (5) to express the horizon radius r̃+ in terms
of the temperature T̃ and the potential 	: r̃+ = r̃+(T̃ ,	).
When 	 < 	c, T → +∞ in the limits of r+ → 0 and r+ →
+∞, which implies that r̃+(T̃ ,	) are multivalued. In the
left panel of Fig. 1, we plot T̃ as a function of r̃+ and 	 with
ã = 0.1. We plot r̃+ against T̃ for various values of 	 with
ã = 0.1 in the right panel of Fig. 1. When 	 = 10, 25 and 32,
there are two family of black holes of different sizes with the
same values of T̃ and 	: Small BH and and Large BH. When
	 = 35 > 	c, there is only one branch: BH. To consider
the thermodynamic stabilities against thermal fluctuations,
we consider the specific heat at constant potential:

C	 = T

(
∂S

∂T

)
	

= 32l2π2r̃+T̃
∂ r̃+(T̃ ,	)

∂ T̃
. (10)

The thermal stable black holes have C	 ≥ 0, which means
∂ r̃+/∂ T̃ > 0. So the BH/large BH branches in Fig. 1 are
thermally stable. To discuss the phase transitions of the
black hole, we need to calculate the free energies of dif-
ferent branches and compare them. Moreover, the thermal
AdS space with a constant gauge potential is also a classi-
cal solution of the action (1). Therefore, the thermal AdS
space is also considered for the phase transitions in the grand
canonical ensemble.

We find that there are four regions in the ã-	 phase space
of the BI-AdS black holes, in each of which the black holes
have different behavior of the branches of r̃+(T̃ ,	) and
phase structure. These four regions of the ã-	 phase space
are mapped in Fig. 2. In what follows, we discuss the phase
structures and transitions in the four regions:

• Region I: The temperature of a BI-AdS black hole in
this region has a positive minimum value T̃min. For T̃ ≥
T̃min, there are two branches of black holes: small BH
and large BH. The free energies of the two branches with
ã = 0.1 and 	 = 10 and the thermal AdS space are
plotted in Fig. 3a. The large BH branch always has lower
free energy than the small BH branch. The thermal AdS
space is the only phase when T̃ < T̃min. At T̃min, the black
hole appears, and its free energy is larger than that of the
thermal AdS space. As T̃ increases from T̃min, the free
energy of large BH decreases while that of the thermal
AdS space is constant. They cross each other at some
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Fig. 1 Plots of T̃ (r̃+,	) and r̃+(T̃ ,	) for BI-AdS black holes with
ã = 0.1. Left panel: plot of T̃ as a function of r̃+ and 	. T̃ is negative
in the gray area. Right panel: plot of r̃+ against T̃ for various values
of 	. Since thermally stable phases have ∂ r̃+/∂ T̃ > 0, the BI-AdS
black holes on blue/red branches of the r̃+(T̃ ,	) curves are thermally

stable/unstable. We denote the blue branches by Large BH (or BH if
there is only one branch) and red branches by Small BH. The black
holes on the black dashed branches have negative temperature, which
are unphysical

Fig. 2 The four regions in the ã − 	 phase space of BI-AdS black
holes, each of which possesses distinct behavior of the phase structures
and transitions. Varying the temperature, a first order LBH/thermal AdS
phase transition occurs in Regions I while a zeroth order LBH/thermal
AdS phase transition occurs in Regions II. There are no phase transitions
in Regions III and IV

point, where a first-order transition occurs, and large BH
then becomes globally stable.

• Region II: As in Region I, only the thermal AdS space
exists for T̃ < T̃min, and the BI-AdS black hole appears
and has two branches for T̃ > T̃min. The free energies
of the two branches with ã = 0.1 and 	 = 25 and the

thermal AdS space are plotted in Fig. 3b. However, at
T̃ = T̃min, the free energy of the black hole is smaller
than that of the thermal AdS space. So there is a finite
jump in the free energy at T̃ = T̃min leading to a zeroth
order phase transition from the thermal AdS space to
large BH.

• Region III: In this region, the BI-AdS black holes can
exist for all non-negative values of T̃ , which have large
BH and small BH branches. The free energies of the two
branches with ã = 0.1 and 	 = 32 and the thermal
AdS space are plotted in Fig. 3c. It shows that large BH
always has the smallest free energy. So there is no phase
transition, and the global stable phase is large BH.

• Region IV: Since 	 > 	c in this region, there is only one
branch for the BI-AdS black holes. The free energies of
the black hole with ã = 0.1 and 	 = 35 and the thermal
AdS space are plotted in Fig. 3d. As in Region III, Large
BH is the only global stable phase, and there is no phase
transition.

The phase diagram in the 	−T̃ space of the BI-AdS black
hole with ã = 0.1 is displayed in the left panel of Fig. 4.
There is a BH/thermal AdS first order phase transition line
for some range of 	 and a BH/thermal AdS zeroth order
phase transition line for larger values of 	. These two phase
transition lines meet and terminate at the black dot. Here,
we simply use BH to denote large BH without causing any
confusion. The phase diagram of the BI-AdS black hole with
ã = 10−5 is displayed in the right panel of Fig. 4, which is
similar to the ã = 0.1 case. It is noteworthy that the zeroth
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(a) (b)

(c) (d)

Fig. 3 Plots of the free energy F̃ against the temperature T̃ for BI-AdS black holes in Regions I, II, III and IV. The black holes on the blue branches
are thermally stable

order phase transition line becomes shorter for a smaller value
of ã. For a RN-AdS black hole, which has ã = 0, there is no
zeroth order phase transition [42].

3 Born–Infeld black holes in a cavity

In this section, we consider a thermodynamic system with
Born–Infeld electrodynamics charged black holes inside a
cavity, on the boundary of which the temperature and the
potential are fixed. On a (3 + 1) dimensional spacetime man-
ifold M with a time-like boundary ∂M, the action is given
by

S =
∫
M

d4x
√−g [R + LBI (F)]

−2
∫

∂M
d3x

√−γ (K − K0) , (11)

where K is the extrinsic curvature, γ is the metric on the
boundary, and K0 is a subtraction term to make the boundary
term vanish in flat spacetime. The BI black hole solution of
the action (11) is [63]

ds2 = − f (r) dt2 + dr2

f (r)
+ r2

(
dθ2 + sin2 θdφ2

)
,

A = At (r) dt, (12)
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Fig. 4 The phase diagrams of BI-AdS black holes in the 	-T̃ phase
space. Left panel: ã = 0.1. Right panel: ã = 10−5. The first/zeroth
order phase transition lines separating the black holes and the thermal

AdS space are displayed by the blue/red lines. The first and zeroth order
phase transition lines meet and terminate at the black dots

where

f (r) = 1 − M

8πr
− Q2

6
√
r4 + aQ2 + 6r2

+ Q2

3r2 2F1

(
1

4
,

1

2
,

5

4
;−aQ2

r4

)
,

A′
t (r) = Q√

r4 + aQ2
. (13)

Here M and Q are the mass and the charge of the back hole,
respectively. Note that M plays no role in our paper since we
always use the horizon radius r+ to eliminate M .

Suppose that the wall of the cavity enclosing the BI black
holes is at r = rB , and the wall is maintained at a temperature
of T and a gauge potential of 	, where we assume that 	 > 0
without loss of generality. For this system, the Euclidean
continuation of the action S was calculated in [63]:

SE = 16πrB
T

[
1 − √

f (rB)
]

− S − Q	

T
, (14)

where S = 16π2r2+ is the entropy of the black hole. In the
semiclassical approximation, the free energy F is related to
SE by

F = TSE . (15)

Expressing the mass M in terms of the horizon radius r+, one
finds that the free energy F is a function of the temperature

T , the potential 	, the charge Q, the cavity radius rB and the
horizon radius r+:

F = F (r+, Q; T,	, rB) , (16)

where T , 	 and rB are parameters of the grand canonical
ensemble. The locally stationary points of the free energy F
can be determined by extremizing F (r+, Q; T,	, rB) with
respect to r+ and Q:

dF (r+, Q; T,	, rB)

dr+
= 0 	⇒ T = Th√

f (rB)
,

dF (r+, Q; T,	, rB)

dQ
= 0 	⇒ 	 = 4π At (rB)√

f (rB)
, (17)

where

Th = 1

4πr+

⎛
⎝1 − 1

2

Q2

r2+ +
√
r4+ + aQ2

⎞
⎠ , (18)

is the Hawking temperature of the black hole. Usually, it is
convenient to express quantities in units of rB :

x ≡ r+
rB

, Q̃ ≡ Q

rB
, ã ≡ a

r2
B

, T̃ ≡ rBT and F̃ = F

16πrB
.

(19)
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Fig. 5 Left panel: Physically allowed values of x and Q̃ for BI black
holes in a cavity. The blue lines are the boundaries, on which the colored
dots represent the candidates for the global minimum state of the free
energy on the boundaries. Right panel: Global minimum state of the

free energy on the boundaries in the T̃ -	 space with ã = 0.1. Only NS
state and Extremal State can be the global minimum state on the whole
physical region

The potential 	 is dimensionless. In terms of x and tilde
quantities, f (rB) and F̃ can be expressed as

f (x) = 1 − x + x Q̃2

6
√
x4 + ã Q̃2 + 6x2

− Q̃2

3x
2F1

(
1

4
,

1

2
,

5

4
;− ã Q̃2

x4

)

− Q̃2

6
√

1 + ã Q̃2 + 6
+ Q̃2

3
2F1

(
1

4
,

1

2
,

5

4
;−ã Q̃2

)
,

F̃ = F̃
(
x, Q̃; T̃ ,	

)
= 1 − √

f (x) − πx2T̃ − Q̃	

16π
,

(20)

respectively.
For the BI black holes residing in a cavity, there appears to

be some constraints imposed on x and Q̃. As shown in [63],
when Q̃2 < 4ã, BI black holes are Schwarzschild-like type,
which exist for 0 < r+ < rB , or 0 < x < 1 in tilde variables.
When Q̃2 ≥ 4ã, BI black holes are RN type, which can have
the extremal BI black hole solution with the nonzero horizon
radius re = √

Q2 − 4a/2. Requiring that re < r+ < rB

leads to
√
Q̃2 − 4ã/2 < x < 1 and Q̃2 ≤ 4 (1 + ã). The

physically allowed region for x and Q̃ is depicted as the
gray area in the left panel of Fig. 5. To determine the phase
structures and transitions of a BI black hole residing in a
cavity, we should find the local and global minima of the

free energy over the physically allowed region of x and Q̃.
Solve Eq. (17) for x and Q̃ gives the possible local minima of
the free energy in the x-Q̃ space. However, one also needs to
evaluate the free energy on the boundaries of the physically
allowed region of x and Q̃ to determine the global minimum:

• B1: 0 ≤ x ≤ 1 and Q̃ = 0. The global minimum of the
free energy on B1 is at x = 0 when T̃ < TB1c ≈ 0.2686
and at x = xB1min > 0 otherwise. When Q̃ = 0 and
x = 0, the boundary state is just the thermal flat space.
The boundary state with Q̃ = 0 and x = xB1min is a
Schwarzschild black hole in a cavity, which is dubbed as
Schwarzschild State. However, one finds that

∂ F̃

∂Q
|B1 = − 	

16π
< 0, (21)

which means that neither the thermal flat space nor
Schwarzschild State can be the global minimum of the
free energy over the whole physical region of x and Q̃.

• B2: x = 0 and 0 ≤ Q̃ ≤ 2
√
ã. For the state on B2, its

metric and Ricci scalar are

f (r) = 1 − Q

2
√
a

+O (r) and R = Q√
ar2

− 2

a
+O (r) ,

(22)

respectively. Although the metric is regular, the space-
time has a physical singularity at r = 0. So the state on B2
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Fig. 6 Plots of T̃ (x,	) and x(T̃ ,	) for BI black holes at locally stationary points. Here ã = 0.1. Left panel: plot of T̃ as a function of x and 	.
T̃ is negative in the gray area. Right panel: plot of x against T̃ for various values of 	. The blue/red branches are thermally stable/unstable

is a naked singularity since it has no horizon. The global
minimum of the free energy on B2 is at Q̃ = Q̃B2min with
0 < Q̃B2min < 2

√
ã when 	 ≤ 	B2c and at Q̃ = 2

√
ã

otherwise. For simplicity, we denote the boundary state
at Q̃ = Q̃B2min and x = 0 as NS State. Note that the
thermal flat space, which is at Q̃ = 0 and x = 0 on B2,
is never the global minimum of the free energy on B2.

• B3: x = 1
2

√
Q̃2 − 4ã and 2

√
ã ≤ Q̃ ≤ 2

√
1 + ã. The

boundary state on B3 is an extremal BI black hole. In par-
ticular, the boundary state at Q̃ = 2

√
1 + ã and x = 1

corresponds to the extremal BI black hole with the hori-
zon merging with the wall of the cavity. We denote this
state as Extremal State. It shows that the free energy can
not have a local minimum on B3 so the global minimum
of the free energy on B3 is either at Q̃ = 2

√
ã and x = 0

or Q̃ = 2
√

1 + ã and x = 1.
• B4: x = 1 and 0 ≤ Q̃ ≤ 2

√
1 + ã. For a black hole on

B4, the event horizon merges with the wall of the cavity.
On B4, ∂ F̃/∂Q = −	/16π < 0, and hence the global
minimum of the free energy on B4 is at Q̃ = 2

√
1 + ã,

which corresponds to Extremal State.

We find that the global minimum of the free energy on the
four boundaries can only occur at Schwarzschild State, NS
State or Extremal State, depending on the values of ã, T̃ and
	. In the right panel of Fig. reffig:CB, the global minimum
state on the boundaries is plotted in the T̃ -	 space with ã =
0.1. As discussed above, only NS State and Extremal State are
the candidates for the global minimum state on the physical
region of x and Q̃.

The black hole at the locally stationary points of the free
energy can remain in thermal equilibrium at constant tem-

perature and potential in a cavity. To determine the hori-
zon radius of the black hole, we need to solve Eq. (17) for
x in terms of T̃ and 	: x(T̃ ,	). If x(T̃ ,	) is multival-
ued, there are more than one branch of different sizes. As
x → 0, we find that there is a critical potential 	c1 such that
T̃ → +∞ (−∞) when 	 < 	c1 (	 > 	c1). As x → 1,
one has that

T̃ ∼ 	2
c2 − 	2

32π2
√

1 + a	
, (23)

where 	c2 = 8
√

1+aπ√
1+2a

< 	c1. Therefore at x = 1, T̃ >

0 (< 0) when 	 < 	c2 (	 > 	c2). We also find that, for
	 > 	c1, T̃ is always negative, and hence F̃ has no locally
stationary points. When 	c2 < 	 < 	c1, it can show that
T̃ is monotonic as a function of x , which means that there is
only one branch of black holes with fixed values of T̃ and 	.
In the left panel of Fig. 6, we plot T̃ as a function of x and
	 with ã = 0.1, which shows that T̃ is negative for large
enough value of 	, as expected. We also plot x against T̃ for
various values of 	 with ã = 0.1 in the right panel of Fig. 6.
When 	 = 4 and 7, there are two family of black holes of
different sizes with the same values of T̃ and 	: small BH
and and large BH. When 	 = 20 < 	c2, T̃ > 0 at x = 1 and
there is only one branch: BH. When 	 = 30 > 	c2, there
is still only one branch, on which there exists an extremal
black hole at T̃ = 0. Since thermally stable phases have
∂x/∂ T̃ > 0, the BI black holes on blue/red branches are
thermally stable/unstable.

Evaluating the free energy both on the boundaries and
at the locally stationary points, we find that there are four
regions in the ã-	 phase space, in each of which the the
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Fig. 7 The four regions in the ã-	 space of the systems with BI black
holes enclosed in a cavity, each of which possesses distinct behavior
of the phase structures and transitions. Varying the temperature, a first
order NS State/Large BH phase transition and a second order Large
BH/Extremal State phase transition occur in Regions I, while only a
first order NS State/Extremal State phase transition occurs in Regions
II and III. There is no phase transition in Regions IV

system have different phase structures and transitions. These
four regions of the ã-	 phase space are mapped in Fig. 7. In
what follows, we discuss the system in the four regions:

• Region I: There is a temperature of T̃min > 0, above
which black holes at the locally stationary points have
two branches: Large BH and Small BH. The Large/Small
BH branch is thermally stable/unstable. The free energies
of the two branches, NS State and Extremal State are
plotted in Fig. 8a, where ã = 0.1 and 	 = 4. For T̃ <

T̃min, there are no locally stationary points, and the global
minimum of the free energy is at NS State. At T̃ = T̃min,
locally stationary points start to appear. As T̃ increases
from T̃min, the free energy of Large BH decrease while
that of NS state is constant. They cross each other at
the blue dot, where a first order phase transition occurs.
Further increasing T̃ , Large BH stays globally stable until
it terminates and merge into Extremal State at the brown
dot. At the brown dot, Large BH and Extremal State both
have x = 1, and the entropy is continuous across the
transition. So the phase transition occurring at the brown
dot is a second order one, after which Extremal State
becomes the globally minimum state.

• Region II: As in Region I, the free energy has no locally
stationary points, and the global minimum state is NS
state when T̃ < T̃min. The locally stationary points of
the free energy emerge when T̃ > T̃min, which consist
of one thermally stable branch and one or two thermally

unstable branches. When there are two branches of black
holes, the free energies of the two branches, NS State and
Extremal State are plotted in Fig. 8b, where ã = 0.1 and
	 = 7. It shows that there seems to be a second order
phase transition from Large BH to Extremal Sate. How-
ever, the Large BH branch and the second order phase
transition are never the global minimum. So we only have
a first order phase transition from NS State to Extremal
State occurring at the blue dot. In this region, the black
holes at the locally stationary points could also have three
branches, which are plotted in the left panel of Fig. 9.
Only Intermediate BH is thermally stable. The free ener-
gies of the three branches, NS State and Extremal State
are plotted in the right panel of Fig. 9, where ã = 0.7
and 	 = 5.5. It shows that, as T̃ increases, the global
minimum also experiences a first order phase transition
from NS State to Extremal State. The inset in the right
panel of Fig. 9 illustrates that the phase transition from
Intermediate BH to Extremal State is first order due to
the existence of Large BH.

• Region III: The locally stationary points only consist
of one thermally unstable branch, which can never be
the global minimum. The free energies of the unstable
branch, NS State and Extremal State are plotted in Fig. 8c,
where ã = 0.1 and 	 = 20. The global minimum state
is NS state for low temperatures and Extremal State for
high temperatures. A first order phase transitions occurs
at the blue dot.

• Region IV: When 	 < 	c1, the locally stationary points
exist and have only one branch of thermally unstable
black holes. The free energies of the unstable branch,
NS State and Extremal State are plotted in Fig. 8c, where
ã = 0.1 and 	 = 30. Extremal State is the only global
stable phase, and there is no phase transition. When
	 > 	c1, there are no locally stationary points for the
free energy, and Extremal State is the only globally stable
phase as well.

In Fig. 10, the globally stable phase diagram of the system
with ã = 0.1 is displayed in the 	-T̃ phase space. For NS
State and Extremal State, the system admits a globally stable
phase on the boundaries of the physical x and Q̃ region. As
discussed above, there is no more than one thermally stable
branch of BI black holes at the locally stationary points. So
the system admits at most one locally stable phase, which
describes a BI black hole in thermally stable equilibrium
in a cavity and is denoted by BH. The BH phase occurs
in the phase diagram when it is globally stable. There is a
BH/NS State first order phase transition for some range of
	, a NS State/Extremal State first order phase transition for
some smaller range of 	 and a BH/Extremal State second
order phase transition for some larger range of 	. These
three phase transition lines merge together at the black dot.
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(a) (b)

(c) (d)

Fig. 8 Plots of the free energy F̃ against the temperature T̃ for differ-
ent branches of BI black holes at the locally stationary points, NS State
and Extremal State of the systems in Regions I, II, III and IV. The black

holes on the blue branches are thermally stable. The blue/brown dots
represent first/second phase transitions of the globally stable phases

4 Discussion and conclusion

In this paper, we studied the phase structures and transitions
of BI black holes in a grand canonical ensemble by consider-
ing two boundary conditions, namely the asymptotically AdS
boundary and the Dirichlet boundary in the asymptotically
flat spacetime. For BI-AdS black holes, the phase structure

with respect to ã and 	 was displayed in Fig. 2, where there
are four regions. For fixed values of the potential 	 and the
temperature T , the black holes in Regions I, II and III admit
two solutions of different sizes: Large BH (thermally stable)
and Small BH (thermally unstable). In Region IV, there is
only one branch of black hole solutions, which are thermally
stable. In Fig. 4, the globally stable phases and the phase
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0.7
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0.9

0.190.18

Intermediate BH

Fig. 9 Left panel: plot of x against T̃ for various values of 	 with
ã = 0.7. Only the blue branches are thermally stable. The systems with
	 = 5 and 5.5 are in Region II, which have three branches of BI black

holes. Right panel: plot of F̃ against T̃ for the phases of the system
with 	 = 5.5 and ã = 0.7. As T̃ increases, the system undergoes a first
order transition from NS State to Extremal State

Fig. 10 The globally stable phase diagram of the system with ã = 0.1
in the 	-T̃ space. The blue/brown line represents a first/second phase
transition line. The three phase transitions merge at the black dot

transitions were shown in the 	-T̃ phase space. There are
two the globally stable phases, which are BH and thermal
AdS space. There are a BH/Thermal AdS zeroth order phase
transition for some range of 	 and a BH/Thermal AdS first
order phase transition for smaller values of 	. Note that the
local and global stabilities of BI-AdS black holes in the grand
ensemble were already studied in [42], where the branches
of BI-AdS black holes and the BH/Thermal AdS first and
zeroth order phase transitions were found. In this paper, we
investigated phase structures of BI-AdS black holes in the
grand ensemble in a more thorough way. To our knowledge,
the phase diagrams 2 and 4 has yet to be reported. Moreover,
Region III of Fig. 2 was not observed in [42]. One can also

study the phase structures and transitions of BI-AdS black
holes in the context of the extended phase space thermody-
namics, where the cosmological constant is interpreted as
thermodynamic pressure, i.e., P = 6/ l2 [13,64]. Our results
can simply be generalized to the extended phase space case
by making replacements

T̃ = T
√

6/P, ã = aP/6 and F̃ ≡ F
√
P/6. (24)

To determine the phase structure of BI black holes in a
cavity, we computed the locally stationary points of the free
energy of the system over the physical parameter space and
the global minimum on the corresponding boundaries. For
the global minimum state on the boundaries, only NS State,
which describes a naked singularity, and Extremal State,
which describes an extremal black hole with the horizon
merging with the wall of the cavity, are the candidates for
the global minimum state on the whole physical region. The
phase structure with respect to ã and 	 was displayed in
Fig. 7, where there are also four regions. In Regions I and II,
the system admits one locally (thermally) stable phase while
there are one or two locally (thermally) unstable phases. The
system in Region III and IV only has one locally (thermally)
unstable phase. The phases of the system that have the glob-
ally minimum of the free energy were shown in Fig. 10, which
are Black hole, NS State and Extremal State. The phase tran-
sitions between globally stable phases of the system were also
represented in Fig. 10, which shows there occur a Hawking-
Page-like transition between BH and NS State and a second-
order phase transition between BH and Extremal State. In this
paper, we only focus on spherical topology, and hence it is
possible that there are some other states of lower free energy
in a different topological sector with the same potential and
temperature. If this happens, the globally stable phases dis-
cussed above could be only metastable.

For BI black holes in a cavity, the flat thermal space is on
the boundary of the physical region of the system. However,
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NS state or Extremal State is always preferred over the flat
thermal space. So the flat thermal space is never the globally
stable phase of the system. As shown in Fig. 8a, b, there are
some regions of the parameter space, in which NS state is
globally stable while there is an unstable branch of the BI
black hole solution. Perturbing the unstable black hole, we
find that the black hole radiates away more energy than it
absorbs, and the system would eventually settle down to a
naked singularity. Finding a time-dependent solution, which
describes a BI black hole evolving to a naked singularity, is
very tempting, since such solution can provide a counterex-
ample to the weak cosmic censorship conjecture [65].

Finally, we found that, in the grand canonical ensemble,
there are some dissimilarities between the phase structures
and transitions of BI-AdS black hole and those of BI black
holes in a cavity: (1) For BI-AdS black holes, the thermal AdS
space is sometimes preferred over the black hole solutions.
Inspired by the phase structure of RN black holes in a cavity
[17], one would expect that, for BI black holes in a cavity,
the thermal flat space could sometimes be globally preferred.
However, our results showed that the thermal flat space is
never globally preferred. Instead, NS state or Extremal State
can be the globally minimum state. (2) Although a Hawking-
Page-like first order phase transition occurs in both cases,
the system admits a second order phase transition for BI
black holes in a cavity and a zeroth order phase transition
for BI-AdS black holes. (3) In some regions in the parameter
space of BI black holes in a cavity, the system can have three
locally extremal states of different sizes: one thermally stable
one and two thermally unstable ones. On the other hand, BI-
AdS black hole solutions have no more than two branches of
different sizes.
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