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Abstract We obtain an exact Kerr-like black hole solution
by solving the corresponding gravitational field equations in
Einstein-bumblebee gravity model where Lorentz symmetry
is spontaneously broken once a vector field acquires a vac-
uum expectation value. Results are presented for the purely
radial Lorentz symmetry breaking. In order to study the
effects of this breaking, we consider the black hole shadow
and find that the radial of the unstable spherical orbit on the
equatorial plane rc decreases with the Lorentz breaking con-
stant � > 0, and increases with � < 0. These shifts are similar
to those of Einstein-aether black hole. The effect of the LV
parameter on the black hole shadow is that it accelerates the
appearance of shadow distortion, and could be detected by
the new generation of gravitational antennas.

1 Introduction

After the first discovery of gravitational wave (GW) on
September 14, 2015 (GW150914) [1], Laser Interferometer
Gravitational wave Observatory (LIGO) has detected GW for
several times. It provides a direct confirmation for the exis-
tence of a black hole and, confirms that black hole mergers are
common in the universe, and will be observed in large num-
bers in the near future. On April 10, 2019, the Event Horizon
Telescope (EHT) Collaboration announced their first shadow
image of a supermassive black hole at the center of a neigh-
boring elliptical M87 galaxy [2]. With these two successive
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breaking discoveries, one can now understand the fundamen-
tal nature of spacetime really through experiments.

For the nature of spacetime, there is a most important prin-
ciple: Lorentz invariance(LI), which is a pillar of general rel-
ativity (GR) and the standard model(SM) of particle physics
which are both successful field theories describing universe.
The former describes gravitation at the classical level, and
the latter depicts particles and other three fundamental inter-
actions at the quantum level. However, LI should not be an
exact symmetry at all energies [3], particularly when one
considering quantum gravity effect, it should not be appli-
cable. Though both GR and SM based on LI and the back-
ground of spacetime, they handle their entities in profoundly
different manners. GR is a classical field theory in curved
spacetime that neglects all quantum properties of particles;
SM is a quantum field theory in flat spacetime that neglects
all gravitational effects of particles. For collisions of parti-
cles of 1030 eV energy (energy higher than Planck scale), the
gravitational interactions predicted by GR are very strong
and gravity should not be negligible [4]. So in this very high
energy scale, one have to consider merging SM with GR in
a single unified theory, known as “quantum gravity”, which
remains a challenging task. Lorentz symmetry is a continuous
spacetime symmetry and cannot exist in a discrete spacetime.
Therefore quantization of spacetime at energies beyond the
Planck energy, Lorentz symmetry is invalid and one should
reconsider giving up LI.

Thus, the study of Lorentz violation (LV) is a valuable tool
to probe the foundations of modern physics. These studies
include LV in the neutrino sector [5], the standard-model
extension (SME) [6–8], LV in the non-gravity sector [9–11],
and LV effect on the formation of atmospheric showers [12].

The SME is an effective field theory describing the SM
coupled to GR, allowing for dynamical curvature modes, and
includes additional terms containing information about the
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LV occurring at the Plank scale [7,8]. The LV terms in the
SME take the form of Lorentz-violating operators coupled
to coefficients with Lorentz indices. The presence of LV in a
local Lorentz frame is signaled by a nonzero vacuum value
for one or more quantities carrying local Lorentz indices.
An explicit theory is the “bumblebee” model1, where the LV
arises from the dynamics of a single vector or axial-vector
field Bμ, known as the bumblebee field. It is a subset of
Einstein-aether theory and ruled by a potential exhibiting a
minimum rolls to its vacuum expectation value. Bumblebee
gravity was first used by Kostelecky and Samuel in 1989
[14,15] as a simple model for spontaneous Lorentz violating.

Seeking for black hole solutions are very important works
in any theory of gravity, because black holes provide into
the quantum gravity realm. In 2018, Casana et al. found an
exact Schwarzschild-like solution in this bumblebee gravity
model and investigated its some classical tests [16]. Then
Rong-Jia Yang et al. study the accretion onto this black hole
[17] and find the LV parameter � will slow down the mass
accretion rate. However, rotating black hole solutions are
the most relevant subcases for astrophysics. These solutions
may be also provide exterior metric for rotating stars. So in
the present paper, we try to give an exact Kerr-like solution
through solving Einstein-bumblebee equations.

We then study black hole shadow and obtain some devi-
ations from GR and some LV gravity theories. The rest of
the paper is organized as follows. In Sect. 2 we provide the
background for the Einstein-bumblebee theory studied in this
paper. In Sect. 3, we derive the Kerr like solution by solving
the gravitational field equations. In Sect. 4, we study its black
hole shadow and find some effects of the Lorentz breaking
constant �. Section 5 is devoted to a summary.

2 Einstein-bumblebee theory

In the bumblebee gravity theory, the bumblebee vector field
Bμ acquires a nonzero vacuum expectation value, under a
suitable potential, inducing a spontaneous Lorentz symmetry
breaking in the gravitational sector. It is described by the
action,

S =
∫

d4x
√−g

[ 1

16πGN
(R + �BμBνRμν)

−1

4
BμνBμν − V (Bμ)

]
, (2.1)

where �2 is a real coupling constant (with mass dimension
−1) which controls the non-minimal gravity interaction to

1 To the inspiration for this name, see Ref. [13].
2 If � = 0, it is the original KS (Kostelecký and Samuel) bumblebee
models [15].

bumblebee field Bμ (with the mass dimension 1). The bum-
blebee field strength is defined by

Bμν = ∂μBν − ∂νBμ. (2.2)

Lorentz and/or CPT (charge, parity and time) violation is
triggered by the potential V (Bμ), whose functional form is
chosen as

V = V (BμB
μ ± b2), (2.3)

in which b2 is a real positive constant. It provides a non-
vanishing vacuum expectation value (VEV) for bumblebee
field Bμ. This potential is supposed to have a minimum at
BμBμ ±b2 = 0 and V ′(bμbμ) = 0 to ensure the breaking of
the U (1) symmetry, where the field Bμ acquires a nonzero
VEV, 〈Bμ〉 = bμ. The vector bμ is a function of the space-
time coordinates and has constant magnitude bμbμ = ∓b2,
where ± signs mean that bμ is timelike or spacelike, respec-
tively.

The action (2.1) yields the gravitational field equation in
vacuum

Rμν − 1

2
gμνR = κT B

μν, (2.4)

where κ = 8πGN and the bumblebee energy momentum
tensor T B

μν is3

T B
μν = BμαB

α
ν − 1

4
gμνB

αβBαβ − gμνV + 2BμBνV
′

+�

κ

[1

2
gμνB

αBβ Rαβ − BμB
αRαν − BνB

αRαμ

+1

2
∇α∇μ(BαBν) + 1

2
∇α∇ν(B

αBμ) − 1

2
∇2(BμBν)

−1

2
gμν∇α∇β(BαBβ)

]
. (2.5)

The prime denotes differentiation with respect to the argu-
ment,

V ′ = ∂V (x)

∂x

∣∣∣
x=BμBμ±b2

. (2.6)

Using the trace of Eq. (2.4), we obtain the trace-reversed
version

Rμν = κT B
μν + 2κgμνV − κgμνB

αBαV
′

+�

4
gμν∇2(BαBα) + �

2
gμν∇α∇β(BαBβ). (2.7)

The equation of motion for the bumblebee field is

∇μBμν = 2V ′Bν − �

κ
BμRμν. (2.8)

In the remainder of this manuscript, we assume that the
bumblebee field is frozen at its VEV, i.e., it is fixed to be

Bμ = bμ, (2.9)

3 Its first term should be plus sign as compared to that in Refs. [7,8,16].
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then the particular form of the potential driving its dynamics
is irrelevant. And consequently, we have V = 0, V ′ = 0.
Then the first both terms in Eq. (2.5) are like those of the
electromagnetic field, the only difference are the coupling
terms to Ricci tensor. Under this condition, Eq. (2.7) leads to
gravitational field equations

R̄μν = 0, (2.10)

with

R̄μν = Rμν − κbμαb
α
ν + κ

4
gμνb

αβbαβ + �bμb
αRαν

+�bνb
αRαμ − �

2
gμνb

αbβRαβ + B̄μν,

B̄μν = −�

2

[
∇α∇μ(bαbν) + ∇α∇ν(b

αbμ) − ∇2(bμbν)
]
.

(2.11)

In the next section, we find the rotating black hole solution
by using an elementary method in this Einstein-bumblebee
model.

3 Exact Kerr-like solution in Einstein-bumblebee model

In this section, we will give the exact Kerr-like solution
through solving Einstein-bumblebee equations.

Rotating black hole solutions are the most relevant sub-
cases for astrophysics. These solutions may be also provide
exterior metric for rotating stars. However, the generation of
such exact rotating solution to Einstein’s field equations is
very difficult due to the highly non-linear differential equa-
tions. Schwarzschild black hole solution was published in
1916 soon after GR was discovered [18]. But 47 years later,
in 1963, the rotating black hole solution was found by Kerr
[19]. So it is frequently alleged that the Kerr metric cannot
be derived by elementary methods (by inference from [20],
p. 877). But in 1982, Klotz used an elementary method to
reproduce Kerr solution [21,22]. Then it is used to derive
Kerr–Newman [22] and five dimensional Myers–Perry met-
ric [23]. In this method, the radiating stationary axially sym-
metric black hole metric have the general form [21,22]

ds2 = −γ (ζ, θ)dτ 2 + a[p(ζ ) − q(θ)]
×

(
dζ 2 + dθ2 + q

a
dφ2

)
− 2q(θ)dτdφ, (3.1)

where a is a constant inserted for dimensional reasons. The
time t is given by

dτ = dt − qdφ, (3.2)

then Eq. (3.1) becomes

ds2 = −γ (ζ, θ)dt2 + a[p(ζ ) − q(θ)](dζ 2 + dθ2)

+{[1 − γ (ζ, θ)]q2(θ) + p(ζ )q(θ)}dφ2

−2q(θ)[1 − γ (ζ, θ)]dtdφ. (3.3)

We will use this metric ansatz to set up gravitational field
equations.

In this study, we focus on that the bumblebee field acquir-
ing a purely radial vacuum energy expectation since the
spacetime curvature has a strong radial variation when com-
pared with very slow temporal changes. So the bumblebee
field is spacelike and assumed to be

bμ = (0, b(ζ, θ), 0, 0). (3.4)

By using the condition bμbμ =constant, the explicit form of
bμ is

bμ = (0, b0
√
a(p − q) , 0, 0), (3.5)

where b0 is a constant. Note that it is different from the elec-
tromagnetic field Aμ [22]. The bumblebee field strength is

bμν = ∂μbν − ∂νbμ. (3.6)

Its nonzero components are bζθ = −bθζ = ab0q ′/2√
a(p − q), where the prime denotes to derivative to its argu-

ment. The other nonzero components of the quantity bα
μbνα

are bα
ζ bζα = bα

θ bθα = b2
0q

′2/4(p − q)2. And the quantity

bαβbαβ = b2
0q

′2/2a(p − q)3.
For the metric (3.3), the nonzero components of Ricci

tensor are Rt t ,Rtφ,Rζ ζ ,Rζθ ,Rθθ ,Rφφ , shown in the
appendix. Here we find that B̄ζθ = 0 and, give some of
gravitational field equations as following

R̄ζθ = (1 + �)Rζθ (3.7)

R̄tt = Rt t + gtt
(κ

4
bαβbαβ − �

2
bζbζRζ ζ

)
+ B̄tt , (3.8)

R̄tφ = Rtφ + gtφ
(κ

4
bαβbαβ − �

2
bζbζRζ ζ

)
+ B̄tφ, (3.9)

where � = �b2
0. The quantities Rζθ , B̄tt , B̄tφ are as

Rζθ = −�̄12

2�̄
+ �2[(p − q)�̄1 + 2�̄p1]

4(p − q)�̄2
, (3.10)

B̄tt = �
[ γ11

2a(p − q)
+ γ

4a(p − q)�̄
p1γ1 − 1

4a�̄
γ 2

1

]
,

(3.11)

B̄tφ = �
[

− qγ11

2a(p − q)
+ q(2 − γ )

4a(p − q)�
p1γ1 + q

4a�̄
γ 2

1

]
,

(3.12)

where �̄ = q + γ (p − q), and the derivatives with respect
to ζ and θ are denoted by the suffixes 1 and 2, respectively.

R̄ζθ = 0 showing that Rζθ is zero, then from Eq. (3.10),
we can assume that �̄2 = 0 or

γ2 = − (1 − γ )q2

p − q
. (3.13)

Then the function γ can be given by

γ = 1 − 2h(ζ )

p(ζ ) − q(θ)
. (3.14)
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The condition �̄2 = 0 enables us to introduce a new inde-
pendent variable,

σ =
∫ √

�̄dζ, (3.15)

where �̄ = p−2h. So, derivatives with respect to ζ become

p1 = dp

dζ
= dσ

dζ

dp

dσ
=

√
�̄
dp

dσ
,

p11 = d2 p

dζ 2 = �̄
d2 p

dσ 2 + 1

2

(
dp

dσ

)2

− dh

dσ

dp

dσ
. (3.16)

From the Eqs. (2.10), (3.8) and (3.9), we can find the com-
bination that

gtφ R̄tt − gtt R̄tφ = 0. (3.17)

This combination can be reduced to

p
[
4(1 + �)

ḣ ṗ

h
q2 − 2qq22 + q2

2 + 2(1 + �) p̈q2
]

−4(1 + �) ṗ2q2 − 2(p − q)2q2ḧ
(
1 + �

h

)

−q
[
4(1 + �)

ḣ ṗ

h
q2 − 2qq22 + 5q2

2

+2(1 + �) p̈q2
]

= 0, (3.18)

where dots denote derivatives with respect to σ . Note that p
and h are functions of σ only, and q is a θ function, so we
must have

ḣ ṗ

h
= k, ṗ2 = cp + n, ḧ = 0, (3.19)

where k, c, n are some constants. Then p̈ = k = c/2 and
Eq. (3.18) can be reduced to

4(1 + �)(k − c)q2 − 2qq22 + q2
2 + (1 + �)cq2 = 0,

4k(1 + �)q2 − 2qq22 + 5q2
2 + (1 + �)cq2

+4(1 + �)nq = 0. (3.20)

They both give

q2
2 = −(1 + �)(cq2 + nq). (3.21)

We can obtain that

q = −n

c
sin2[√(1 + �)cθ/2]. (3.22)

By setting the constants c = 4/(1 + �) and n = −4a, it
becomes

q = (1 + �)a sin2 θ. (3.23)

From the conditions (3.19), we find that

p = σ 2

1 + �
+ a(1 + �), h = c′σ,

γ = 1 − 2(1 + �)c′σ
σ 2 + a(1 + �2 cos2 θ)

, (3.24)

where c′ is a constant. After choosing σ = √
(� + 1)/ar ,

c′ = M/
√

(� + 1)a and φ = ϕ/
√

1 + � for Boyer–Lindquist
coordinates, we can get that

p = r2

a
+ a(� + 1), h = Mr

a
, γ = 1 − 2Mr

ρ2 , (3.25)

where ρ2 = r2 + (1 + �)a2 cos2 θ . Lastly, substituting these
quantities into Eqs. (3.3) and (3.5), we can get the bumble-
bee field bμ = (0, b0ρ, 0, 0), and the rotating metric in the
bumblebee gravity

ds2 = −
(

1 − 2Mr

ρ2

)
dt2 − 4Mra

√
1 + � sin2 θ

ρ2 dtdϕ

+ρ2

�
dr2 + ρ2dθ2 + A sin2 θ

ρ2 dϕ2, (3.26)

where

� = r2 − 2Mr

1 + �
+ a2, A = [

r2 + (1 + �)a2]2

−�(1 + �)2a2 sin2 θ. (3.27)

If � → 0, it recovers the usual Kerr metric. When a → 0, it
becomes

ds2 = −
(

1 − 2M

r

)
dt2 + 1 + �

1 − 2M/r
dr2 + r2dθ2

+r2 sin2 θdϕ2, (3.28)

which is the same as that in Ref. [16]. The metric (3.26) rep-
resents a purely radial Lorentz-violating black hole solution
with rotating angular momentum a. It is singular at ρ2 = 0
and at � = 0. The solution of ρ2 = 0 is a ring shape physi-
cal singularity at the equatorial plane of the center of rotating
black hole with radius a. Its event horizons and ergosphere
locate at

r± = M ±
√
M2 − a2(1 + �),

rergo± = M ±
√
M2 − a2(1 + �) cos2 θ, (3.29)

where ± signs correspond to outer and inner horizon/
ergosphere, respectively. It is easy to see that there exists
a black hole if and only if

|a| ≤ M√
1 + �

. (3.30)

Its Hawking temperature can be obtained from its surface
gravity [24]

T = κ

2π
, κ = −1

2
lim
r→r+

√−1

X

dX

dr
, X ≡ gtt − g2

tϕ

gϕϕ

.

(3.31)

Inserting corresponding metric components in Eq. (3.26),
one get

T =
√

1 + ��′(r+)

4π [r2+ + (1 + �)a2]
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Fig. 1 The left panel describes the effective potential. The right one shows the radius rc of the equatorial circular orbit

= r+ − M

2π
√

1 + �
[
r2+ + (1 + �)a2

] . (3.32)

4 Black hole shadow

In this section, we study some observational signatures on
the Lorentz-violating parameter � by analyzing black hole
shadow with the metric (3.26), and try to find some deviation
from GR and some similarities to other LV black holes.

We introduce two conserved parameters ξ and η by

ξ = Lz

E
, η = Q

E2 , (4.1)

where E, Lz and Q are the energy, axial component of the
angular momentum and Carter constant, respectively. Then
the null geodesics in the bumblebee rotating black hole space-
time are given by

ρ2 dr

dλ
= ±√

R, ρ2 dθ

dλ
= ±√

�,

(1 + �)�ρ2 dt

dλ
= A − 2

√
1 + �Mraξ,

(1 + �)�
dφ

dλ
= 2

√
1 + �Mra + ξ

sin2 θ
(ρ2 − 2Mr),

(4.2)

where λ is the affine parameter and,

R(r) = [X (r) − aξ ]2 − �[η + (ξ − √
1 + �a)2],

�(θ) = η + (1 + �)a2 cos2 θ − ξ2 cot2 θ, (4.3)

with X (r) = [r2 + (1 + �)a2]/√1 + �. The radial motion in
Eqs. (4.2) can be written in the form

(
ρ2 dr

dλ

)2 + Vef f = 0, (4.4)

which is similar to the equation of motion of a classical par-
ticle. The effective potential is

Vef f = − r4

1 + �
+

(η + ξ2

1 + �
− a2

)
r2

−2M
[( ξ√

1 + �
− a

)2 + η

1 + �

]
r + a2η, (4.5)

which has the limit Vef f (0) = 0, Vef f (r → ∞) → −∞.
We plot the Vef f against r in Fig. 1 with η = 0, a/M = 0.5
and ξ = ξc + 0.2.

Figure 1 shows that the photon starting from infinity will
meet a turning point, and then turns back to infinity. When
ξ = ξc, this turning point is an unstable spherical orbit which
gives the boundary of the shadow [25]. Figure 1 also shows
that the deviation from GR (Kerr): when LV constant � > 0,
the turning point shifts to the left; when � < 0, it shifts to the
right. These shifts are similar to those of the Einstein-aether
black hole [26], which is also a LV black hole.

The unstable spherical orbit on the equatorial plane is
given by the following equations

θ = π

2
, R(r) = 0,

dR

dr
= 0,

d2R

dr2 < 0, η = 0, (4.6)

which give the radius of the unstable orbit as

r±
c = 2M(1 + cos 2θ),

θ = 1

3
arccos[∓√

1 + �a/M],
ξc = 6M cos θ − √

1 + �a, (4.7)

where the upper sign is to direct orbits and the lower sign
to retrograde orbits. We plot the equatorial circular orbit rc
against a in Fig. 1. It shows that the rc decreases with � > 0,
and increases with � < 0, which are similar to those of the
noncommutative black hole [25].

For more generic orbits θ �= π/2 and η �= 0, the solution
of Eq. (4.6), r = rs , gives the r−constant orbit, which is also

123
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Fig. 2 The shapes of the shadow with a/M = 0.79, θ = π/2. The
black solid line is for Kerr black hole shadow

called spherical orbit. And the both conserved parameters of
the spherical orbits can be written as

ξs = r2
s (3M − rs) − (1 + �)a2(M + rs)√

1 + �a(rs − M)
,

ηs = r3
s [4(1 + �)Ma2 − rs(rs − 3M)2]

(1 + �)a2(rs − M)2 . (4.8)

Nextly, the two celestial coordinates, which are used to
describe the shape of the shadow that an observers seen in
the sky, can be given by

α = −ξs csc θ, β =
√

ηs + a2 cos2 θ − ξ2
s cot2 θ. (4.9)

We show the shapes of the shadow in Fig. 2.
The Fig. 2 shows that the distortion of the shadow when

this LV black hole rotates fast a/M = 0.79. With the increase
of the LV parameter �, its left endpoint moves to the right
obviously, and then the right endpoint moves to the right
slightly. As for Kerr black hole, the similarly distortion occurs
till a/M > 0.98. So this is the effect of the LV parameter on
the black hole shadow, i.e., accelerating the appearance of
shadow distortion. If this LV parameter � is not very small,
the derivation of black hole shadow from Kerr black hole
may be observed in the near future black hole shadow image
events.

5 Summary

In this paper, we have studied the stationary, axisymmet-
ric, asymptotically flat black hole solutions of Einstein-

bumblebee theory in the 4-dimensional spacetime. In this
model, a vector field, termed bumblebee, couples to the
spacetime curvature and acquires a vacuum expectation
value, which induces Lorentz symmetry spontaneously bro-
ken. In the case of purely radial Lorentz symmetry breaking,
we have achieved a new exact rotating solution to the gravi-
tational field equations. When angular momentum a → 0, it
can recover Schwarzschild like solution [16]; when LV con-
stant � → 0, it can recover Kerr black hole solution. We then
give the positions of horizons and its Hawking temperature.

With this given black hole solution, we can find some LV
effects by astronomical observations. In order to obtain these
effects of LV constant �, we study the black hole shadow
since the first shadow image of a black hole is released by
EHT Collaboration on April 10, 2019 [2]. It shows that the
deviation from GR (Kerr black hole): when LV constant � >

0, the turning point of the effective potential shifts to the
left (or the equatorial circular orbit rc decreases); when � <

0, it shifts to the right (or the equatorial circular orbit rc
increases). These shifts are similar to those of the Einstein-
aether black hole [26], which is also a LV black hole. And
the effect of the LV parameter on the black hole shadow
is that it accelerates the appearance of shadow distortion.
These difference could be detected by the new generation of
gravitational antennas.
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Appendix A: Some quantities

In this appendix, we showed the covariant derivatives with
bαbν in Eq. (2.11) and the nonezero components of Ricci
tensor for the metric (3.3).
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∇α∇μ(bαbν) = ∂α[∇μ(bαbν)] + �α
ατ∇μ(bτbν)

−�τ
αμ∇τ (b

αbν) − �τ
αν∇μ(bαbτ )

= ∂α[∂μ(bαbν) − �τ
μνb

αbτ + �α
μτb

τbν]
+�α

ατ [∂μ(bτbν) + �τ
μρb

ρbν − �ρ
μνb

τbρ]
−�τ

αμ[∂τ (b
αbν) + �α

τ j b
j bν − � j

τνb
αb j ]

−�τ
αν[∂μb

αbτ + �α
μkb

kbτ − �k
μτb

αbk],
(A.1)

∇2(bμbν) = gατ∇α∇τ (bμbν). (A.2)

Rt t = γ11 + γ22

2�
− 1

4�̄�

[(
γ 2

1 + γ 2
2

)
(p − q)

+2γ2q2(1 − γ ) − γ p1γ1
]

+ γ q2

4q�̄�

[
−2q2(1 − γ )2 − pγ2

]
, (A.3)

Rtφ = −q (γ11 + γ22)

2�

+ q

4�̄�

[
p1γ1(2 − γ ) + 3γ2q2(1 − γ )

+(p − q)
(
γ 2

1 + γ 2
2

)]

− 1

4�̄�

{
2�̄

[
2γ2q2 − (1 − γ )q22

]

+
[
2γ q2

2 (1 − γ )2 − γ2 pq2

]}

− 1

4q�̄�
γ pq2

2 (1 − γ ), (A.4)

Rζ ζ = − p − q

2�̄
γ11 + 1

4�̄
(q2γ2 − p1γ1)

+ (p − q)2

4�̄2
γ 2

1 +
[

5�̄ − 3q

4(p − q)2 + γ 2

q

]
p2

1

�̄2

+ p(q + �̄)

4q�̄(p − q)2
q2

2 + (2�̄ − 3q)

2�̄(p − q)
p11

+ q22

2(p − q)
, (A.5)

Rθθ = − p − q

2�̄
γ22

+ 1

4�̄

(
2p + 3�̄

�̄
q2γ2 − p1γ1

)

+ (p − q)2

4�̄2
γ 2

2 + q + �̄

4�̄(p − q)2
p2

1

+ (pq + q�̄ − 3q�̄)

2q�̄(p − q)
q22 − p11

2(p − q)

+
[

2(p − q)

q
γ 3 + (p2 − 5pq + 10q2)

γ 2

q2

+2p2 − 11pq + 14q2

q(p − q)
γ

+2(p2 − 3pq + 3q2)

(p − q)2

]
q2

2

4�̄2
, (A.6)

Rφφ = q2 (γ11 + γ22)

2�

− 1

4�̄�

[
q(p + 3q − qγ )p1γ1

+(p2 + pq − 4q�̄ − 3pγ )γ2q2

−(p − q)q2
(
γ 2

1 + γ 2
2

)]

+ qγ

4�̄�
p2

1

− 1

2�
[qp11 + (p + 2q − 2γ )q22]

+ q2
2

4q�̄�
[p2γ − 2q2(1 − γ )3], (A.7)

where � = a(p − q).
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