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Abstract In this work we present the Karmarkar condition
in terms of the structure scalars obtained from the orthogonal
decomposition of the Riemann tensor. This new expression
becomes an algebraic relation among the physical variables,
and not a differential equation between the metric coeffi-
cients. By using the Karmarkar scalar condition we imple-
ment a method to obtain all possible embedding class I static
spherical solutions, provided the energy density profile is
given. We also analyse the dynamic adiabatic case and show
the incompatibility of the Karmarkar condition with several
commonly assumed simplifications to the study of gravita-
tional collapse. Finally, we consider the dissipative dynamic
Karmarkar collapse and find a new solution family.

1 Introduction

General Relativity is living unprecedented times, witnessing
the transformation of exotic objects – such as black holes
– and feeble phenomena – like gravitational waves – from
mathematical curiosities to observable physical entities.

There are many notable attempts to explore the properties
of physically viable solutions (numeric & analytic) describ-
ing either static, stationary, or collapsing relativistic compact
objects. All known exact solutions have been obtained by
imposing some restrictions, such as symmetry conditions on
the metric, the algebraic structure of the Riemann tensor, new
coupled field equations, meaningful equations of state for the
matter variables, or selecting particular initial and boundary
conditions, to mention the most common strategies.

Einstein’s covariant mathematical description of gravi-
tation contrasts with solution obtained which are strongly
dependent on the coordinate basis. It is not always easy
to understand the qualitative features that these coordinate-
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prone solutions might possess, and the analysis of their gen-
eral properties could reveal unforeseen features of the theory.
Thus it is useful to study the general properties through a
coordinate independent formalism.

We have recently implemented a tetrad formalism by an
orthogonal splitting of the Riemann tensor. We introduced
a full set of equations equivalent to the Einstein system and
applied it to the spherical case, showing that it is possible to
obtain relevant information from self-gravitating systems [1,
2]. This formalism provides coordinate-free results expressed
in terms of structure scalars closely related to the kinematical
and physical properties of the fluid.

In this short paper, we shall explore the consequences of
imposing the well-known Karmarkar condition [3], which
implies that a curved four-dimensional metric can be embed-
ded into a five-dimensional pseudo-Euclidean space-time.
The Karmarkar condition provides a geometric relation
between the metric functions and their derivatives; thus, one
can choose one of the metric functions and generate the other.
In the case of an isotropic static fluid sphere – Pascalian
matter distribution – the Karmarkar condition leads to either
a Schwarzschild – homogeneous conformally-flat bounded
solution – or a Kohler–Chao solution – a non-conformally
flat unbounded solution [4]. However, for static anisotropic
matter configurations, it provides a geometrical mechanism
for implementing equations of state relating the radial and
the tangential pressures.

As pointed out by Ivanov [5], the Karmarkar initial embed-
ding motivation changes into a geometical method that gener-
ates matter configurations that may represent compact astro-
physical objects. As shown in Fig. 1 Karmarkar’s condition
has experimented a recent boom, with more than 70 publi-
cations in the last 3 years, most of them devoted in describ-
ing anisotropic compact objects. There are many interesting
models of possible compact objects, depending on the vari-
ety of the metric function selected as input: rational func-
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Fig. 1 A search in the astrophysics data system (https://ui.adsabs.
harvard.edu/) for “Karmarkar Condition” OR “embedding class one”
OR “embedding class 1” from 1948 to 2019 gives 131 publications
(left plate). Most of them are recent and devoted to describing compact

objects with anisotropic equations of state. On the right plate, the publi-
cations are grouped, attending to the commonly cited references in each
paper

tions [6–12], polynomials [13–17], trigonometric [18–21]
and hyperbolic functions [22–24]. Recently, there have been
some explorations of the consequences of the Karmarkar con-
ditions on stellar structure models in modified theories of
gravity [25,26].

In the next section, we briefly describe the scalar for-
malism we use. Following, in Sect. 3, we study the static
and dynamic (adiabatic and dissipative scenarios) Karmarkar
solutions. For the static case, we implement an algorithm to
generate any Karmarkar spherical static anisotropic solution
given the energy density profile. Regarding the dynamic adi-
abatic assumption, we show how restrictive the Karmarkar
condition may be, and for the corresponding dissipative envi-
ronment, we found a new family of dynamical radiating Kar-
markar line-elements. Finally, our last section wraps-up some
remarks and conclusions.

2 The structure scalar strategy and the general
formalism

As we mentioned above, the strategy we shall follow is to
formulate two independent sets of equations, – expressed in
terms of scalar functions, which contain the same information
as the Einstein system.

Let us choose an orthogonal unitary tetrad:

e(0)
α = Vα, e(1)

α = Kα, e(2)
α = Lα and e(3)

α = Sα. (1)

As usual, η(a)(b) = gαβeα
(a)e

β

(b), with a = 0, 1, 2, 3, i.e.
latin indices label different vectors of the tetrad. Thus, the
tetrad satisfies the standard relations:

VαV
α = −KαK

α = −LαL
α = −SαS

α = −1,

VαK
α = VαL

α = VαS
α = KαL

α = KαS
α = SαL

α = 0.

With the above tetrad (1) we shall also define the correspond-
ing directional derivative operators

f • = V α∂α f ; f † = K α∂α f and f ∗ = Lα∂α f. (2)

The first set can be considered purely geometrical and
emerges from the projection of the Riemann tensor along the
tetrad [27], i.e.

2Vα;[β;γ ] = Rδαβγ V
δ, 2Kα;[β;γ ] = Rδαβγ K

δ,

2Lα;[β;γ ] = Rδαβγ L
δ and 2Sα;[β;γ ] = Rδαβγ S

δ; (3)

where e(a)
α;βγ

are the second covariant derivatives of each
tetrad (6) vector indicated with a = 0, 1, 2, 3.

The second set emerges from the Bianchi identities:

Rαβ[γ δ;μ] = Rαβγ δ;μ + Rαβμγ ;δ + Rαβδμ;γ = 0. (4)

2.1 The tetrad, the source and the kinematical variables

To proceed with the above objective we shall restrict to a
spherically symmetric line element given by

ds2 = −A(r, t)2dt2 + B(r, t)2dr2

+R(r, t)2(dθ2 + sin2(θ)dφ2), (5)

where the coordinates are: x0 = t , x1 = r , x2 = θ .
In this case the tetrad is:

Vα = (−A, 0, 0, 0) , Kα = (0, B, 0, 0),

Lα = (0, 0, R, 0) , Sα = (0, 0, 0, R sin(θ)), (6)

and their covariant derivatives can be written as:

Vα;β = −a1KαVβ + σ1KαKβ + σ2(LαLβ + SαSβ),

Kα;β = −a1VαVβ + σ1VαKβ + J1(LαLβ + SαSβ),

Lα;β = σ2VαLβ − J1KαLβ + J2SαSβ and

Sα;β = σ2VαSβ − J1KαSβ − J2LαSβ. (7)
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Where: J1, J2, σ1, σ2 and a1 are expressed in terms of the
metric functions and their derivatives as:

J1 = 1

B

R′

R
, J2 = 1

R
cot(θ), σ1 = 1

A

Ḃ

B
,

σ2 = 1

A

Ṙ

R
and a1 = 1

B

A′

A
, (8)

with primes and dots representing respectively, radial and
time derivatives.

As we mentioned before we shall take as our source a
bounded, spherically symmetric, locally anisotropic, dissipa-
tive, collapsing matter configuration, described by a general
energy momentum tensor, written in the “canonical” form,
as:

Tαβ = (ρ + P)VαVβ + Pgαβ + �αβ + FαVβ + FβVα. (9)

It is immediately seen that the physical variables can be
defined – in the Eckart frame where fluid elements are at rest
– as:

ρ = TαβV
αV β, Fα = −ρVα − TαβV

β,

P = 1

3
hαβTαβ and �αβ = hμ

αh
ν
β

(
Tμν − Phμν

)
, (10)

with hμν = gμν + VνVμ.
As can be seen from the condition FμVμ = 0, and the

symmetry of the problem, Einstein’s equations imply T03 =
0, thus:

Fμ = FKμ ⇔ Fμ =
(

0,
F
B

, 0, 0

)
. (11)

Clearly ρ is the energy density (the eigenvalue of Tαβ for
eigenvector V α), Fα represents the energy flux four vec-
tor; P corresponds to the isotropic pressure, and �αβ is the
anisotropic tensor, which can be expressed as

�αβ = �1

(
KαKβ − hαβ

3

)
, (12)

with

�1 = (
2K αK β + LαLβ

)
Tαβ. (13)

Finally, we shall express the kinematical variables (the four-
acceleration, the expansion scalar and the shear tensor) for a
self-gravitating fluid as:

aα = V βVα;β = aKα =
(

0,
A′

A
, 0, 0

)
, (14)

� = V α
;α = 1

A

(
Ḃ

B
+ 2Ṙ

R

)
, (15)

σ = 1

A

(
Ḃ

B
− Ṙ

R

)
. (16)

2.2 The splitting of the Riemann tensor and structure
scalars

In this section we shall introduce a set of scalar functions –
the structure scalars – obtained from the orthogonal splitting
of the Riemann tensor (see [28–30]) which has proven to be
very useful in expressing the Einstein Equations.

Following [28], we can express the splitting of the Rie-
mann tensor as:

Rαβμν = 2VμV[αYβ] ν + 2hα[νXμ]β + 2VνV[βYα]μ
+hβν(X0 hαμ − Xαμ) + hβμ(Xαν − X0 hαν)

+2V[ν Zγ
μ]εαβγ + 2V[β Zγ

α] εμνγ , (17)

with εμνγ = ηφμνγ V φ , and ηφμνγ the Levi-Civita 4-tensor.
The corresponding Ricci contraction for the above Riemann
tensor can also be written as:

Rαμ = Y0 VαVμ − Xαμ − Yαμ + X0 hαμ

+ZνβεμνβVα + VμZ
νβεανβ; (18)

where the quantities: Yαβ , Xαβ and Zαβ can be expressed as

Yαβ = 1

3
Y0 hαβ + Y1

[
KαKβ − 1

3
hαβ

]
,

Xαβ = 1

3
X0 hαβ + X1

[
KαKβ − 1

3
hαβ

]
and (19)

Zαβ = Z (LαSβ − Lβ Sα), (20)

with

Y0 = 4π(ρ + 3P), Y1 = E1 − 4π�1,

X0 = 8πρ, X1 = −(E1 + 4π�1) and Z = 4πF , (21)

and the electric part of the Weyl tensor is written as

Eαβ = CανβδV
νV δ = E1

[
KαKβ − 1

3
hαβ

]
. (22)

2.3 Projections of Riemann tensor

From the above system (3), by using the covariant derivative
of equations (7) and the projections of the orthogonal splitting
of the Riemann tensor, we obtain the first set of independent
equations, for the spherical case, in terms of J1, J2, σ1, σ2,
and a1, (defined in (8)) and their directional derivatives, i.e.

σ •
1 − a†

1 − a2
1 + σ 2

1 = −1

3
(Y0 + 2Y1), (23)

σ •
2 + σ 2

2 − a1 J1 = 1

3
(Y1 − Y0), (24)

σ
†
2 + J1(σ2 − σ1) = −Z , (25)

J •
1 + J1σ2 − a1σ2 = −Z , (26)

J †
1 + J 2

1 − σ1σ2 = 1

3
(X1 − X0), (27)

J •
2 + J2σ2 = 0, (28)
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J †
2 + J1 J2 = 0 and (29)

J 2
1 − 1

R2 − σ 2
2 = −1

3
(X0 + 2X1). (30)

2.4 Equations from Bianchi identities

The second set of equations for the spherical case, emerge
from the independent Bianchi identities (4), and can be writ-
ten as:

a1[−X0 + X1 − Y0 + Y1] + 3J1Y1 + 3Z•

+6Zσ1 + 3Zσ2 − Y †
0 + Y †

1 = 0, (31)

X•
0 − X•

1 − 6a1Z − 3J1Z + [Y0 − Y1 − X1] σ1

+ [Y0 + 2Y1 − X1] σ2 + X0[σ1 + σ2] − 3Z† = 0, (32)

X•
0 + 2X•

1 + 2X0σ2 − 6J1Z

+[4X1 + 2Y0 − 2Y1]σ2 = 0, and (33)

X†
0 + 2X†

1 + 6J1X1 + 6Zσ2 = 0. (34)

3 Karmarkar condition

As it is well-known, a four-dimensional curved space-time
can be embedded in a five-dimensional pseudo-Euclidean
space whenever it satisfies the Karmarkar condition which
can be stated as [3]:

R0303R1212 − R0101R2323 − R0313R0212 = 0, (35)

and provides a geometrical mechanism to implement equa-
tions of state relating the radial and the tangential pressures.

3.1 Differential Karmarkar conditions

When considering a line element (5), Karmarkar’s condition
(35) leads to

[
B2(Ṙ2 + A2))AA′′ − (R′)2A2 + ((R′)2A2 − B2(Ṙ2 + A2)

]
B B̈

+ [
ṘB2 Ȧ − R̈B2A + R′A′A2] AR′′

+B2A2(Ṙ′)2 − (2Ḃ R′A + 2ṘB A′)AB Ṙ′

+(R′B ′A2 + ṘB2 Ḃ)B R̈ + (AḂ − B Ȧ)AḂ(R′)2

+Ṙ AB(A′ Ḃ − ȦB ′)R′ − ((B ′AA′ − B(A′)2)Ṙ2

+A(B ′A′A2 − B2 Ḃ Ȧ))B = 0, (36)

as shown in reference [31], for the particular case of A(r, t) =
Ã(r), B(r, t) = B̃(r) f (t) and R(r, t) = r B̃(r) f (t).

If we examine a much simpler metric like

ds2 = −eν(r,t)dt2 + eλ(r,t)dr2 + r2(dθ2 + sin2(θ)dφ2) ,

(37)

the Karmarkar condition (35) can be written as

2ν′′eν −
(
(ν′)2 + 2ν′′) e(ν−λ) − ν′eν

(
λ′ − ν′)

− (
eλ − 2

)
λ̇2 + ν̇λ̇

(
eλ − 1

) − 2λ̈
(
eλ − 1

) = 0. (38)

Which, in the static case, leads to the differential equation

2ν′′

ν′ + ν′ = λ′eλ

eλ − 1
, (39)

the most common expression for the Karmarkar condition
examined in the literature (see references [6] through [24]).

If we provide a particular λ-function – listed in Table 1 –
we can obtain the other metric coefficient ν and then inves-
tigate the type of material described by this line-element.
Thus, again, the Karmarkar condition implements a geomet-
rical method to generate anisotropic equations of state, and
has boomed a profusion of possible realistic models for com-
pact objects. Unfortunately, (35), the models generated are
coordinate dependent, and the general properties obtained
are heavily conditioned from this fact.

3.2 Scalar Karmarkar conditions

This coordinate dependence can be overcome in the tetrad
framework by projecting the Riemman tensor as

RαβμνV
αVμSβ SνRγ δσρK

γ K σ LδLρ

−RαβμνV
αVμK βK νRγ δσρL

γ Lσ SδSρ

−RαβμνV
αKμSβ SνRγ δσρV

γ Lσ K δLρ = 0 (40)

and, from Eq. (21) assuming spherical symmetry, it can be
reduced to a simple algebraic scalar relation among several
physical variables:

Y0X1 + (X0 + X1)Y1 = −3Z2. (41)

Notice that this scalar relation among the physical vari-
ables defined in Eq. (21), despite its simplicity, is valid for
any dynamic and dissipative spherical matter distribution
described by (5). In the next sections we shall use (41) to
study, both the static and dynamic (adiabatic and dissipative)
cases.

3.3 The static case

Employing the above-sketeched scalar formalism and assum-
ing the condition (41), we shall find the most general static,
spherically symmetric anisotropic Karmarkar solution.

For the line element (5) we can assume, without any loss
of generality, R = r and integrate (24) to obtain:

A = C1e
∫ B2r

3 (Y0−Y1)dr , (42)
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where C1 is a constant of integration. Next, from equation
(26) it follows at once that:

B2 = 1

1 − r2

3 (X0 + 2X1)
. (43)

Clearly, these metric elements (42) and (43) –expressed in
terms of the structure scalars X1 and Y0 − Y1–, describe any
static anisotropic matter distribution [32].

The equivalent Einstein system of Eqs. (23)–(34) can be
written, for the static case, as:

a1 J1 = 1

3
(Y0 − Y1), (44)

J †
1 + J 2

1 = 1

3
(X1 − X0), (45)

J 2
1 − 1

R2 = −1

3
(X0 + 2X1), (46)

a1[−X0 + X1 − Y0 + Y1] + 3J1Y1 = (Y0 − Y1)
†, (47)

X†
0 + 2X†

1 + 6J1X1 = 0, (48)

and the Karmarkar condition (41) takes the form of

(Y0 − Y1)X1 + (X0 + 2X1)Y1 = 0. (49)

Now, integrating equation (34) we find

X1 = 3

2r3

∫
X0r

2dr − 1

2
X0. (50)

On the other hand, by using Eqs. (44)–(46) together with
(48)–(49), Eq. (47) can be written as

(Y0 − Y1)
† =

(
J †

1

J1
+ J1 + 1

2

(X0 + 2X1)
†

X0 + 2X1

)

(Y0 − Y1)

− 1

3J1
(Y0 − Y1)

2. (51)

Now, integrating (51)

Y0 − Y1 =
√
X0 + 2X1

B( 1
3

∫
Br

√
X0 + 2X1dr + C2)

, (52)

and substituting (52) in (42) we get

A = C1

(∫
Br

3

√
X0 + 2X1dr + C2

)
, (53)

where again, C2 is a constant of integration.
Finally, the line element (5) can be rewritten as

ds2 = −C2
1

(∫
1

3

√
r2X

1 − r2

3 X
dr + C2

)2

dt2

+ 1

1 − r2

3 X
dr2 + r2(dθ2 + sin2θdφ2), (54)

which describes any Karmarkar static spherically symmetric
anisotropic fluid distribution. Notice, that for this space-time
we have defined

X = X0 + 2X1 = 3

r3

∫
X0r

2dr . (55)

Thus, all metrics will depend on a sole physical parameter:
the energy density X0 and in Table 1 (see the Appendix at the
end of the present work), we present the corresponding X0

for several metrics which appeared in the recent literature.
To illustrate this strategy, let us assume the energy density

as

X0 =
3 + r2

R2
s

(R2
s + r2)2 , (56)

then, from Eq. (55) we obtain that

X = 3

r2 + R2
s

(57)

and the line element (54) can be written as follows

ds2 = −C2
1

(
r2

2
√

3R2
s

+ C2

)2

dt2

+
(

1 + r2

R2
s

)
dr2 + r2(dθ2 + sin2θdφ2) (58)

which is the solution given in [33].

3.4 Z = 0, the dynamic adiabatic scenario

Much effort has been dedicated in developing static bounded
Karmarkar models, but very little has been done for the
dynamic case. In this section, we shall discuss the dynamic
adiabatic state, Z = 0, and explore the “compatibility” of
the Karmarkar condition with other typical restrictions used
in studying exact solutions in General Relativity.

• X1 = 0, homogeneous energy density. The uniform
density spherical matter configuration is the standard
entry point in all textbooks of General Relativity and Rel-
ativistic Astrophysics [34–37]. We have recently shown
[2] that, despite its simplicity and pedagogical inter-
est, this widespread assumption is very restricted. Any
dynamic homogeneous density profile satisfying the Kar-
markar condition will lead to the Schwarzschild solu-
tion. It can be easily obtained from (34) assuming X0 =
X0(t) and establishing regularity conditions at the ori-
gin we found X1 = 0. Next, substituting this result
into (41), it leads to Y1 = 0, i.e., conformally flat per-
fect fluid solution with homogeneous energy density: the
Schwarzschild solution.

• Y1 = 0 vanishing complexity factor. Recently, L. Her-
rera introduced a new concept of complexity for self-
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gravitating systems [38]. This concept includes the influ-
ences from energy density inhomogeneities and local
anisotropy of the pressures on the active gravitational
(Tolman) mass. Assuming the vanishing complexity con-
dition,Y1 = 0, in Eq. (41) we obtain X1 = 0, and because
Y0 �= 0, we re-obtain only the Schwarzschild solution.

• E = 0, conformally flat case. If E = 0, then X1 = Y1,
and from (41) we obtain X1 = Y1 = 0, due to X0 +Y0 �=
0 because the regularity at the origin.

• �1 = 0, Pascalian isotropic fluids. Karmarkar condi-
tion (41) and the relation X1 + Y1 = −8π�1 lead to

X1 = (Y0 − X0 − 8π�1) − √
(Y0 − X0 − 8π�1)2 − 32π�1X0

2
(59)

and

Y1 = −(Y0 − X0 + 8π�1) + √
(Y0 − X0 + 8π�1)2 − 32π�1Y0

2
(60)

Now, from (59) and (60) it is clear that isotropy, �1 = 0
leads to X1 = Y1 = 0, which is again the Schwarzschild
solution.

• σ1 = σ2, shear-free and a1 = 0 geodesic fluids.
Finally, considering shear-free and geodesic conditions
in Eqs. (23) y (24), we again obtain Y1 = 0

3.5 The dissipative case: Z �= 0

A recent paper [31] develops a model of a radiating relativis-
tic sphere that satisfies the Karmarkar condition. It is the first
dynamic dissipative model obtained.

For the present case, we shall consider a shear-free fluid,
i.e.

σ1 = σ2 = σ ⇒ R = r B. (61)

From these two assumptions (Karmarkar and shear-free) we
can find two new families of dissipative solutions.

If we assume that X1 = 0, we can see immediately, from
(27) and (30) that

J †
1 + 1

R2 = 0 ⇒ R = b(t)r

1 + a(t)b2(t)r2 (62)

and from (30) that

X0 = 3σ 2 + 12a(t). (63)

Now, subtracting Eq. (33) from Eq. (32), we obtain

Y1σ = Z† + (2a1 − J1)Z . (64)

Next, by using the Karmarkar condition (41) and taking into
account (25), Eq. (64) can be written as:

X†
0

2X0
= Z†

Z
+ 2a1 − J1 ⇒ X0 = x̃0(t)Z2A4

R2 (65)

where x̃0(t) is a constant of integration.
Thus, we can identify two possible cases:

1. For the case a(t) = 0, from (26) we get Z = a1σ and by
integrating (65) we find

A = C2(t)
√
r2 + C1(t), R = b(t)r, B = b(t) (66)

which is the family of solutions shown in [31].
2. For a(t) = ã

b2(t)
, x0 = 2b2

ḃ2 and integrating (65) we find

A(t, r) =

− ḃ
√
C(−2 + ãC) + ãr4(−1 + ã2C2) + 2r2(−1 − ãC + ã2C2)√

2(1 + ãr2)

(67)

and

R(t, r) = b(t)r

1 + ãr2 , B(t, r) = b(t)

1 + ãr2 (68)

with C = 4c̃(t)
˙b(t) , where c̃(t) is a constant of integration.

The matter variables for the solution (67) and (68) are

8πρ = 6

b2(t)

(
2ã + (1 + ãr2)2

D1

)

8π� = 6r2(1 + ãr2)2

ḃ2(t)D12
(69)

Z = 2
√

3r(1 + ãr2)

b(t)ḃ(t)D1

√

2ã + (1 + ãr2)2

D1
(70)

8π Pr = Ċ(t)(1 + ãr2)(1 − ãC(t)(1 + ãr2))

b(t)D1

−
√

2(1 + ãr2)C(t)ḃ(t)

b2(t)

− 4ã

b2(t)D1
− 10 + 8ãr2 + 6ã2r2 + 4ã(−1 + ã2r4)

b2(t)D12

(71)

with

D1 = (r2 + C(t) + ãC(t)r2)(−2 − ãr2 + ãC(t)(1 + ãr2))

(72)
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4 Final remarks

It surprises the number of works published by slight varia-
tions in the metric functions. Then, after the integration of
the Karmarkar condition (39), dozens of models (see Table
1) are obtained with negligible or no discussion in their inter-
relations, remaining most of these efforts, in very descriptive
stages.

In this short article, we tried to explore some general con-
sequences derived from the Karmarkar condition (35). By
using a tetrad formalism in General Relativity and the orthog-
onal splitting of the Riemann tensor, we have presented it in
terms of the structure scalars. Thus the new expression (41)
becomes an algebraic relation among the physical variables,
and not a differential equation between the metric coefficients
shown in (36) and (38). Taking advantage of its simplicity,
we have studied the static, dynamic adiabatic, and dynamic
dissipative Karmarkar solutions.

For the static case, we developed a method to obtain any
spherically, static, anisotropic Karmarkar solution, parame-
terized by the energy density profile. We think it opens the
possibility to explore new anisotropic matter configurations,
starting from realistic isotropic nuclear equations of state.

Much effort has been made on static bounded Karmarkar
models, but very little considering the dynamic scenario. The
simplicity of the scalar Karmarkar condition allows us to
study the adiabatic and radiant cases efficiently. Regarding
the adiabatic dynamic matter configuration, we have shown
that combining the Karmarkar condition with several other
common simplifying assumptions, we inexorably obtain the
homogeneous Schwarzschild solution.

This raises a possible conjecture that for the spherical case,
the Karmarkar dynamic adiabatic condition is incompatible

with any other simplifying assumption. If they are combined,
we necessarily obtain the homogeneous Schwarzschild solu-
tion. This possible conjecture should be further, and carefully
explored in the future.

Finally, for the dynamic dissipative case, we recovered
a known previous solution [31] and found a new shear-free
Karmarkar radiating solution.
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Appendix

Table 1 In this table, we
present a non-exhaustive list of
two dozen static metric
functions that appeared in the
literature between 2016 and
2017. These functions used to
generate anisotropic equations
of state via the Karmarkar
differential condition (39), lead
to a surprising number of mostly
descriptive work done by small
changes, and thus obtaining
various models with negligible
or no discussion in their
interrelations

B2 X0

[6] 1 + (α−β)r2

βr2+1
(α−β)

(
αr2+3

)

(αr2+1)
2

[7] 1 + αr2

(βr2+1)
2

α
(−β2r4+αr2+2βr2+3

)

(β2r4+αr2+2βr2+1)
2

[8] 1 + α2r2

β2r4+1
α2(−β2r4+α2r2+3

)

(β2r4+α2r2+1)
2

[9] 1 + α2r2

(β2r4+1)
2

α2(−5 β4r8−2 β2r4+α2r2+3
)

(β4r8+2 β2r4+α2r2+1)
2

[10] 1 + α2r2

(β r2+1)
4

α2
(−5 β4r8−12 β3r6−6 β2r4+α2r2+4 β r2+3

)

(β4r8+4 β3r6+6 β2r4+α2r2+4 β r2+1)
2

[11] 1 + α2r2

(β2r4+1)
n

−4
((

− 3
4 +β2

(
n− 3

4

)
r4

)(
β2r4+1

)n−1/4 α2r2(
β2r4+1

))
α2

(α2r2+(β2r4+1)
n
)

2
(β2r4+1)

[12]
4
(
αr2+1

)2

(2−αr2)
2

3α
(
α2r4+αr2+12

)

4(αr2+1)
3

[13] 1 + αr2 + βr4 β2r6+2αβr4+(
α2+5β

)
r2+3α

(βr4+αr2+1)
2

[14] 1 + 64αr2
(
βr2 + 1

)2
(
64αβ3r8+192αβ2r6+192αβr4+64αr2+7βr2+3

)(
βr2+1

)
α

64
(

1
64 +αr2(βr2+1)

2
)2
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Table 1 continued
B2 X0

[15] 1 + αr2
(
βr2 + 1

)3 α
(
βr2+1

)2(
3+αβ4r10+4αβ3r8+6αβ2r6+4αβr4+(9β+α)r2

)

(αβ3r8+3αβ2r6+3αβr4+αr2+1)
2

[16] 1 + αr2
(
βr2 + 1

)n −2
((

− 3
2 +β

(
n− 3

2

)
r2

)(
βr2+1

)n− 1
2 αr2(

βr2+1
))

α

(αr2+(βr2+1)
n
)

2
(βr2+1)

[17] 1 + 4 n2αr2
(
βr2 + 1

)n−2 αn2(
βr2+1

)((
βr2+1

)−1+2 n
n2αr2+ 1

2

(
3
2 +β

(
n− 1

2

)
r2

)(
βr2+1

)n)

(
n2αr2(βr2+1)

n+1/4 (βr2+1)
2
)2

[18] αr2 sin2
(
βr2 + δ

) αr2(
sin

(
βr2+δ

))3+4β cos
(
βr2+δ

)
r2+sin

(
βr2+δ

)

αr4(sin(βr2+δ))
3

[19] 1 + αr2 cos2
(
βr2

) r2α2(
cos

(
βr2))4−4αr2β sin

(
βr2)

cos
(
βr2)+3α

(
cos

(
βr2))2

(
αr2(cos(βr2))

2+1
)2

[20] 1 + αr2

cos4(βr2+δ)

α
(

8
(
cos

(
βr2+δ

))3
sin

(
βr2+δ

)
β r2+3

(
cos

(
βr2+δ

))4+αr2
)

(
(cos(βr2+δ))

4+αr2
)2

[21] 1 + αr2 tan
(
βr2 + δ

) 2α
(
r2(β+α/2)

(
tan

(
βr2+δ

))2+ 3
2 tan

(
βr2+δ

)+βr2
)

(1+αr2 tan(βr2+δ))
2

[22] 1 + δ r2
(
sinh

(
αr2 + β

))2 δ
((

cosh
(
αr2+β

))2
δ r2−δ r2+3

)(
sinh

(
αr2+β

))2+4 δ cosh
(
αr2+β

)
αr2 sinh

(
αr2+β

)

(
(cosh(αr2+β))

2
δ r2−δ r2+1

)2

[23]
1+2 δ r2+cosh

(
2αr2+2β

)

1+cosh(2αr2+2β)
2δ

(−4 sinh
(
2αr2+2β

)
αr2+2 δ r2+3 cosh

(
2αr2+2β

)+3
)

(1+2 δ r2+cosh(2αr2+2β))
2

[24] 1 + αr2 tanh
(
βr2 + δ

) −2α
(
r2(β−α/2)

(
tanh

(
βr2+δ

))2− 3
2 tanh

(
βr2+δ

)−βr2
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(1+αr2 tanh(βr2+δ))
2

References

1. J. Ospino, J.L. Hernández-Pastora, L.A. Núñez, An equivalent sys-
tem of einstein equations. J. Phys. Conf. Ser. 831, 012011 (2017)

2. J. Ospino, J.L. Hernández-Pastora, H. Hernández, L.A. Núñez, Are
there any models with homogeneous energy density? Gen. Relativ.
Gravit. 50(11), 146 (2018)

3. K.R. Karmarkar, Gravitational metrics of spherical symmetry and
class one. Proc. Indian Acad. Sci. Sect. A 27(1), 56 (1948)

4. Y.K. Gupta, R.S. Gupta, Nonstatic analogues of kohler-chao solu-
tion of imbedding class one. Gen. Relativ. Gravit. 18(6), 641–648
(1986)

5. B.V. Ivanov, Analytical study of anisotropic compact star models.
Eur. Phys. J. C 77, 738 (2017)

6. S.K. Maurya, Y.K. Gupta, T.T. Smitha, F. Rahaman, A new exact
anisotropic solution of embedding class one. Eur. Phys. J. A 52(7),
191 (2016)

7. K.N. Singh, N. Pant, A new analytic solution representing
anisotropic stellar objects in embedding class i. Astrophys. Space
Sci. 361, 177 (2016)

8. K.N. Singh, P. Bhar, F. Rahaman, N. Pant, M. Rahaman, Confor-
mally non-flat spacetime representing dense compact objects. Mod.
Phys. Lett. A 32(18), 1750093 (2017)

9. P. Bhar, Modelling a new class of anisotropic compact stars sat-
isfying the karmakar’s condition. Eur. Phys. J. Plus 132(6), 274
(2017)

10. P. Bhar, K.N. Singh, T. Manna, A new class of relativistic model
of compact stars of embedding class i. Int. J. Mod. Phys. D 26(09),
1750090 (2017)

11. P. Bhar, K.N. Singh, N. Sarkar, F. Rahaman, A comparative study
on generalized model of anisotropic compact star satisfying the
karmarkar condition. Eur. Phys. J. C 77(9), 596 (2017)

12. K.N. Singh, N. Pant, M. Govender, Anisotropic compact stars in
karmarkar spacetime. Chin. Phys. C 41(1), 015103 (2017)

13. K.N. Singh, P. Bhar, N. Pant, Solutions of the einstein’s field equa-
tions with anisotropic pressure compatible with cold star model.
Astrophys. Space Sci. 361, 339 (2016)

14. P. Bhar, S.K. Maurya, Y.K. Gupta, T. Manna, Modelling of
anisotropic compact stars of embedding class one. Eur. Phys. J.
A 52(10), 312 (2016)

15. K.N. Singh, N. Pradhan, N. Pant, New interior solution describing
relativistic fluid sphere. Pramana 89(2), 23 (2017)

16. K.N. Singh, N. Pant, A family of well-behaved karmarkar space-
times describing interior of relativistic stars. Eur. Phys. J. C 76(10),
524 (2016)

17. S.K. Maurya, Y.K. Gupta, S. Ray, D. Deb, Generalised model for
anisotropic compact stars. Eur. Phys. J. C 76(12), 693 (2016)

18. Ksh N Singh, N. Pant, M. Govender, Physical viability of fluid
spheres satisfying the karmarkar condition. Eur. Phys. J. C 77(2),
100 (2017)

19. K.N. Singh, N. Pant, O. Troconis, A new relativistic stellar model
with anisotropic fluid in karmarkar space-time. Ann. Phys. 377,
256–267 (2017)

20. P. Fuloria, Anisotropic compact star models in karmarkar space
time continuum. Astrophys. Space Sci. 362(12), 217 (2017)

21. K.N. Singh, M.H. Murad, N. Pant, A 4d spacetime embedded in
a 5d pseudo-euclidean space describing interior of compact stars.
Eur. Phys. J. A 53(2), 21 (2017)

22. S.K. Maurya, B.S. Ratanpal, M. Govender, Anisotropic stars for
spherically symmetric spacetimes satisfying the karmarkar condi-
tion. Ann. Phys. 382, 36–49 (2017)

23. S.K. Maurya, S.D. Maharaj, Anisotropic fluid spheres of embed-
ding class one using Karmarkar condition. Eur. Phys. J. C 77(5),
1–13 (2017)

24. S.K. Maurya, Y.K. Gupta, F. Rahaman, M. Rahaman, A. Banerjee,
Compact stars with specific mass function. Ann. Phys. 385, 532–
545 (2017)

25. D. Deb, S.V. Ketov, S.K. Maurya, M. Khlopov, P. Moraes, S. Ray,
Exploring physical features of anisotropic strange stars beyond

123



Eur. Phys. J. C (2020) 80 :166 Page 9 of 9 166

standard maximum mass limit in f(r, t) gravity. Mon. Not. R.
Astronom. Soc. 485(4), 5652–5665 (2019)

26. G. Abbas, H. Nazar, Stellar shear-free gravitational collapse with
Karmarkar condition in f(R) gravity. Int. J. Mod. Phys. A 34(33),
1950220 (2019)

27. R .M. Wald, General Relativity (University of Chicago Press,
Chicago, 2010)

28. A. García-Parrado Gómez-Lobo, Dynamical laws of superenergy
in general relativity. Class. Quantum Gravity 25(1), 015006 (2007)

29. L. Herrera, J. Ospino, A. Di Prisco, E. Fuenmayor, O. Troconis,
Structure and evolution of self-gravitating objects and the orthog-
onal splitting of the riemann tensor. Phys. Rev. D 79(6), 064025
(2009)

30. L. Herrera, A. Di Prisco, J. Ibáñez, J. Ospino, Dissipative collapse
of axially symmetric, general relativistic sources: a general frame-
work and some applications. Phys. Rev. D 89(8), 084034 (2014)

31. N.F. Naidu, M. Govender, S.D. Maharaj, Radiating star with a time-
dependent karmarkar condition. Eur. Phys. J. C 78(1), 48 (2018)

32. L. Herrera, J. Ospino, A. Di Prisco, All static spherically symmet-
ric anisotropic solutions of Einstein’s equations. Phys. Rev. D 77,
027502 (2008)

33. D.M. Pandya, V.O. Thomas. Models of compact stars on
paraboloidal spacetime satisfying karmarkar condition. arXiv
preprint arXiv:1708.06220, (2017)

34. S. Weinberg, Gravitation and Cosmology: Principles and Applica-
tions of the General Theory of Relativity (Wiley, New York, 1972)

35. S.L. Shapiro, S.A. Teukolsky, The Physics of Compact Objects
(Wiley, New York, 1983)

36. B.F. Schutz, A First Course in General Relativity (Cambridge Uni-
versity Press, Cambridge, 2009)

37. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Princeton
University Press, Princeton, 2017)

38. L. Herrera, New definition of complexity for self-gravitating fluid
distributions: the spherically symmetric, static case. Phys. Rev. D
97(4), 044010 (2018)

123

http://arxiv.org/abs/1708.06220

	Karmarkar scalar condition
	Abstract 
	1 Introduction
	2 The structure scalar strategy and the general formalism
	2.1 The tetrad, the source and the kinematical variables
	2.2 The splitting of the Riemann tensor and structure scalars
	2.3 Projections of Riemann tensor
	2.4 Equations from Bianchi identities

	3 Karmarkar condition
	3.1 Differential Karmarkar conditions
	3.2 Scalar Karmarkar conditions
	3.3 The static case
	3.4 Z = 0, the dynamic adiabatic scenario
	3.5 The dissipative case: Zneq0

	4 Final remarks
	Acknowledgements
	Appendix
	References




