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Abstract The possible existence of naked singularities,
hypothetical astrophysical objects, characterized by a gravi-
tational singularity without an event horizon is still an open
problem in present day astrophysics. From an observational
point of view distinguishing between astrophysical black
holes and naked singularities also represents a major chal-
lenge. One possible way of differentiating naked singular-
ities from black holes is through the comparative study of
thin accretion disks properties around these different types
of compact objects. In the present paper we continue the
comparative investigation of accretion disk properties around
axially-symmetric rotating geometries in Brans–Dicke the-
ory in the presence of a massless scalar field. The solution
of the field equations contains the Kerr metric as a particular
case, and, depending on the numerical values of the model
parameter γ , has also solutions corresponding to non-trivial
black holes and naked singularities, respectively. Due to the
differences in the exterior geometries between black holes
and Brans–Dicke–Kerr naked singularities, the thermody-
namic and electromagnetic properties of the disks (energy
flux, temperature distribution and equilibrium radiation spec-
trum) are different for these two classes of compact objects,
consequently giving clear observational signatures that could
discriminate between black holes and naked singularities.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 The Kerr solution in the Brans–Dicke theory . . . . 5

a e-mail: s.shahidi@du.ac.ir
b e-mail: tiberiu.harko@astro.ro (corresponding author)
c e-mail: kovacsz2013@yahoo.com

3 Motion of test particles in stable orbits around rotat-
ing compact objects . . . . . . . . . . . . . . . . . 6
3.1 The general formalism . . . . . . . . . . . . . 6
3.2 Circular motions in the equatorial plane of the

Brans–Dicke–Kerr naked singularity . . . . . . 7
4 Electromagnetic effects in accretion disks gravitating

around compact objects . . . . . . . . . . . . . . . 8
5 Observational signatures of Brans–Dicke–Kerr type

geometries . . . . . . . . . . . . . . . . . . . . . . 9
5.1 Electromagnetic properties of the disk . . . . . 9

5.1.1 The energy flux profiles . . . . . . . . . 9
5.1.2 Temperature distribution . . . . . . . . . 11
5.1.3 The luminosity of the disk . . . . . . . . 12

5.2 Eddington luminosity of the disk . . . . . . . . 14
6 Discussions and final remarks . . . . . . . . . . . . 16
References . . . . . . . . . . . . . . . . . . . . . . . . 19

1 Introduction

The full understanding of the nature and possible structure of
massive objects with mass functions greater than 3–4M� is
still an open problem for present day theoretical astrophysics.
The standard assumption about such objects is that they must
be black holes, that is, objects whose surface is covered by an
event horizon. Black holes result from the collapse of the stel-
lar matter, when the gravitational effects cannot be counter-
balanced by the baryonic pressure [1]. However, this scenario
may not be the only alternative to the gravitational collapse.
For example, quark stars in the Color–Flavor–Locked (CFL)
phase can have masses in the range of 3.8M� and 6M�,
respectively, and thus they may be possible stellar mass black
hole candidates [2]. On the other hand it may be possible that
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during the gravitational collapse the vacuum breaks down,
leading to the formation of gravastars, hypothetic objects that
can be described by the Schwarzschild metric, but without a
Schwarzschild horizon, while their inside region consists of a
de Sitter type core [3–6]. Bosons stars [7] could also represent
an alternative for the standard black hole picture. The detec-
tion of the gravitational wave events [8–10] strongly points
towards black hole – black hole merger events, that could
lead to the measurability of the properties of binary black
holes using gravitational waves. For recent discussions on
the present situation in black hole physics, and of the pos-
sible alternatives to black holes see [11,12], and references
therein. It was also argued that giving an observational proof
for the existence of a black-hole horizon by using electro-
magnetic waves is essentially impossible [13].

From a theoretical point of view the investigation of the
final fate of matter, after the gravitational collapse of an ini-
tially regular distribution of matter, represents one of the most
important problems in general relativity. The first fundamen-
tal question would be to determine under what kind of initial
conditions the gravitational collapse ends in the formation of
a black hole. However, it turns out that the final state of the
gravitational collapse is not necessarily always a black hole,
and, depending on the initial conditions, a naked singularity
can also form as the end state of the collapse [14–18]. For
reviews of the naked singularity problem see [20,21]. Hence
one must also answer to the question if physically realistic
collapse solutions of the Einstein gravitational equations that
lead to the formation of naked singularities do correspond
to some natural objects, observable by astronomical meth-
ods. If found, such compact astrophysical bodies would be
counterexamples of the cosmic censorship hypothesis, pro-
posed by Roger Penrose [22], and which conjectures that in
asymptotically flat space-time event horizons always cover
curvature singularities.

We can formulate the cosmic censorship conjecture either
in a strong sense (in a physically appropriate geometry naked
singularities cannot exist), or in a weak sense (even if such
singularities do exist they are securely covered by an event
horizon, and hence they cannot communicate with far-away
observers). Since Penrose’ s proposal, there have been many
attempts to prove the conjecture (see [23] and references
therein for the early works in this field). But so far no proof
of the conjecture has been presented. Still the analysis of the
cosmic censorship conjecture is a very active field of research
[24–57].

In [24] it was suggested that the advanced Laser Inter-
ferometer Gravitational-wave Observatory would be able to
detect violations of the cosmic censorship conjecture and
of the no-hair theorem, since they limit the spin-to-mass-
squared ratio of a Kerr black hole, and for a non-rotating
black hole suggests a particular value for the tidal Love num-
ber. The behavior of massless scalar fields in the exterior

of Reissner–Nordström-de Sitter black holes was studied in
[39]. Their decay rates are governed by quasinormal modes of
the black hole, and a detailed description of the linear scalar
perturbations of the black holes was given. Moreover, it was
conjectured that the Strong Cosmic Censorship is violated in
the near extremal regimes. In [40] the suggestion that cosmic
censorship in four-dimensional Einstein–Maxwell–� the-
ory would be removed if charged particles (with sufficient
charge) were present was investigated. The strong cosmic
censorship hypothesis may be violated by nearly extremal
Reissner–Nordström-de Sitter black holes, since perturba-
tions of such a black hole decay sufficiently rapidly so that
the perturbed spacetime can be extended across the Cauchy
horizon as a weak solution of the equations of motion.

The question of whether the introduction of a charged
scalar field can save the strong cosmic censorship, which
is violated by near-extremal Reissner–Nordström–de Sitter
black holes, was investigated in [46]. Even so, there is always
a neighborhood of extremality in which strong cosmic cen-
sorship is violated by perturbations arising from smooth
initial data. Counterexamples to cosmic censorship were
discussed in [47]. The nonlinear Einstein–Maxwell-scalar
field equations with a positive cosmological constant, under
spherical symmetry, were solved numerically in [49], and
it was found that mass inflation does not occur in the near
extremal regime, indicating that nonlinear effects cannot save
the Strong Cosmic Censorship Conjecture. For other recent
investigations of the weak and strong cosmic censorship con-
jecture see [50–57].

The stability of the naked singularities in General Relativ-
ity has also been intensively investigated. In [58] it was shown
that the negative mass Schwarzschild spacetime, which has
a naked singularity, is perturbatively unstable. This result
was obtained by introducing a modification of the Regge–
Wheeler–Zerilli approach to black hole perturbations, and by
showing the existence of exact exponentially growing solu-
tions to the linearized Einstein’s equations. Super-extremal
black hole space-times (either with charge larger than mass
or angular momentum larger than mass), which contain
naked singularities, are unstable under linearized perturba-
tions [59]. The evolution of the gravitational perturbations
in a non globally hyperbolic background was considered in
[60], leading to the completion of the proof of the linear insta-
bility of the Schwarzschild naked singularity. This result was
also supported by the numerical solutions of the linearized
gravitational field equations. The exterior static region of a
Reissner–Nordström black hole is stable [61]. On the other
hand the interior static region is unstable under linear gravita-
tional perturbations [61], with the field perturbations generi-
cally exciting a mode that grows exponentially in time. This
result provides support to the strong cosmic censorship con-
jecture [61].
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The possible existence of unstable axisymmetric modes in
Kerr space times was investigated in [62] by showing the exis-
tence of exponentially growing solutions of the Teukolsky
equation. Thus it follows that the stationary region beyond a
Kerr black hole inner horizon is unstable under gravitational
linear perturbations, and a Kerr space-time with angular
momentum larger than its square mass, which has a naked sin-
gularity, is unstable. The gravitational-wave emission from
the quasi-circular, extreme mass ratio inspiral of compact
objects of mass m0 into massive objects of mass M >> m0

whose external metric is identical to the Schwarzschild met-
ric, except for the absence of an event horizon, was studied
in [63], under the assumption that such an object is a nonro-
tating thin-shell gravastar. For small values of the gravastar
compactness the radiated power carries the signature of the
microscopic properties of the physical surface that replaces
the event horizon. In [64] it was shown that both the interior
region of a Kerr black hole r < M − √

M2 − a2 and the
a2 > M2 Kerr naked singularity admit unstable solutions of
the Teukolsky equation for any value of the spin weight. The
existence of the unstable modes is related to the so-called
time machine region, where the axial Killing vector field is
timelike, and the Teukolsky equation changes its character
from hyperbolic to elliptic.

Hence, presently, despite the large number of studies in
the field, the validity of the cosmic censorship conjectures
are still a matter of debate, with many examples and coun-
terexamples trying to provide support to its validity, or to
unsubstantiate it. One important direction of research would
be to try to confirm/infirm its soundness by using observa-
tional methods. In this context the possible detection of a
naked singularity would give the final proof of the invalidity
of the cosmic censorship conjecture. Such a possibility may
be offered by the study of accretion phenomena.

Most astrophysical objects growth by mass accretion. The
almost universal presence of interstellar matter generally
leads to the formation around compact objects of accretion
disks. The emission of the radiation from the disk is deter-
mined by the external gravitational potentials of the central
massive object, which in turn are essentially determined by
its nature – neutron star, quark star, black hole, or naked sin-
gularity, for example. Hence the astrophysical observations
of the emission spectra from accretion disks may lead to the
possibility of directly testing the physical and astrophysi-
cal properties of the compact general relativistic objects that
have generated the disk via their gravitational field. Modified
gravity theories, like for example, f (R) gravity, brane world
models, or Horava–Lifshitz theory can be constrained and
tested, using thin accretion disk properties [67–71]. Worm-
hole geometries indicate significant differences in their disk
accretion emission properties [72–74]. Gravastars can also be
differentiated from ordinary black holes by using their accre-
tion disk properties [74], while the electromagnetic proper-

ties of accretion disks around static (non-rotating) and rotat-
ing neutron, quark, fermion and boson stars have been ana-
lyzed in [75–86].

The possibility that naked singularities may be observa-
tionally distinguishable from their black hole counterparts
by using the properties of the electromagnetic emissions of
their thin disks was first proposed in [87]. The specific astro-
physical and astronomical signatures of the naked singulari-
ties have attracted have been extensively investigated in the
literature. In [88] it was shown that a slowly evolving grav-
itationally collapsing perfect fluid cloud can asymptotically
reach a static spherically symmetric equilibrium configura-
tion with a naked singularity at the center. The disk around
the naked singularity is much more luminous than the one
around the corresponding black hole, with the disk around the
naked singularity having a spectrum with a high frequency
power law segment that carries a major fraction of the total
luminosity. Ultra-high-energy collisions of particles falling
freely from rest at infinity can occur in the field of near-
extreme Kehagias–Sfetsos naked singularities, with the effi-
ciency of the escaping created ultrarelativistic particles and
the energy efficiency of the collisional process relative to
distant observers significantly lowered due to the large grav-
itational redshift [89]. The lensing properties of the super-
massive Galactic center of the Milky Way Galaxy, described
as a naked singularity, were considered in [90]. The obser-
vational properties of the Kehagias–Sfetsos naked singulari-
ties were further investigated in [91–93], respectively. Tidal
forces in naked singularity and black hole backgrounds were
considered in [94], and the Roche limits were computed.
The redshift and properties of the shadow depend crucially
on whether the final outcome of the complete gravitational
collapse is a black hole or a naked singularity [95]. Photons
traveling from past to future null infinity through a collaps-
ing object could provide an observational signature capable
of differentiating between the formation of a globally naked
singularity and the formation of an event horizon [96]. The
efficiency of the Keplerian accretion disks for all braneworld
Kerr–Newman spacetimes was determined in [97]. The pre-
cession of the spin of a test gyroscope due to the frame drag-
ging by the central spinning body may be an important test for
the existence of Kerr naked singularities. For Kerr black hole,
the precession frequency becomes arbitrarily high, blowing
up as the event horizon is approached, while in the case of
a naked singularity, this frequency remains always finite and
well behaved [98,99]. The periastron precession for a spin-
ning test particle moving in nearly circular orbits around
naked singularities was investigated in [100].

To distinguish a rotating Kiselev black hole from a naked
singularity the critical values of the quintessential and spin
parameters were studied in [101]. Using the spin precessions
one can differentiate black holes from naked singularities.
The possibility of discriminating black holes and naked sin-
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gularities with iron line spectroscopy was investigated, for the
case of the Janis–Newman–Winicour metric, in [102]. The
iron line shapes in the reflection spectrum of a disk around
a Janis–Newman–Winicour singularity were compared with
the iron line shapes expected in the spectrum of a Kerr black
hole. It turns out that Janis–Newman–Winicour singulari-
ties cannot mimic fast-rotating Kerr black holes, observed
at a low or moderate inclination angle. The properties of
spherical photon orbits in the field of Kerr naked singularities
confined to constant Boyer–Lindquist radii were studied in
[103]. The possibility of distinguishing rotating naked singu-
larities from Kerr-like wormholes by their deflection angles
of massive particles was investigated in [104]. The compar-
ison of the shadows cast by Schwarzschild black holes with
those produced by two classes of naked singularities that
result from gravitational collapse of spherically symmetric
matter was performed in [105]. The possibility of differenti-
ating a Kerr-like black hole and a naked singularity in perfect
fluid dark matter via precession frequencies was considered
in [106]. Circular orbits in Kerr–Taub-NUT spacetime and
their implications for accreting black holes and naked singu-
larities were analyzed in [107]. The optical appearance and
the apparent radiation flux of a geometrically thin and opti-
cally thick accretion disk around the static Janis–Newman–
Winicour naked singularity was studied in [108]. It was found
that for the Janis–Newman–Winicour solution the accretion
disk appears smaller, while its emission is characterized by
a higher peak of the radiation flux. Images of thin accretion
disks around black holes and two classes of naked singularity
spacetimes were comparatively studied in [109]. The images
obtained from naked singularity models significantly differ
from those of black holes. The possibility that M87* might
be a superspinar, that is, an object described by the Kerr solu-
tion and spinning so rapidly that it violates the Kerr bound
by having |a∗| > 1, was investigated in [110]. It was found
that within certain regions of parameter space, the inferred
circularity and size of the shadow of M87* do not exclude
this possibility.

A numerical algorithm for ray tracing in the external
spacetimes of spinning compact objects characterized by
arbitrary quadrupole moments was presented in [111]. These
objects correspond to non-Kerr vacuum solutions, and they
can be used to test the no-hair theorem in conjunction
with observations of accreting black holes. Allowing for the
quadrupole moment of the spacetime to take arbitrary values
leads to observable effects in the profiles of relativistic broad-
ened fluorescent iron lines from geometrically thin accretion
disks. The effects induced by external magnetic fields on
the observed thermal spectra and iron line profiles of thin
accretion disks formed around Kerr black holes and naked
singularities were considered in [111]. A numerical scheme
able to calculate thermal spectra of magnetized Page-Thorne
accretion disks formed around rotating black holes and naked

singularities was developed, which can also be used to probe
the cosmic censorship conjecture. Two different magnetic
field configurations, uniform and dipolar, respectively, were
considered. Observed synthetic line profiles of the 6.4 keV
fluorescent iron line were also obtained.

In [113] it was shown that external magnetic fields produce
observable modifications on the thermal energy spectrum and
the fluorescent iron line profile. Comparison of the theoreti-
cal models with observational data can be used to probe the
cosmic censorship conjecture. By using a ray-tracing algo-
rithm to calculate the light curves and power spectra of hot
spots on the disk one can prove that the emission from a
hot spot orbiting near the innermost stable circular orbit of
a naked singularity in a dipolar magnetic field can be signif-
icantly harder than the emission of the same hot spot in the
absence of such a magnetic field.

As pointed out in [114], the (conformally related) Krori-
Bhattacharjee spacetime, used in [87] to study the accretion
disk properties of naked singularities, is not a vacuum Brans–
Dicke solution of the gravitational field equations (see also
[115]). However, a rotating solution that generalizes the Kerr
metric for a minimally coupled scalar field in the framework
of the Brans–Dicke theory does exist, and it was obtained
in [116]. In the conformal frame this solution reduces to the
Kerr metric for a specific value of the model parameter γ ,
while for other values it describes naked singularity and black
hole geometries, respectively.

It is the goal of the present paper to investigate the elec-
tromagnetic emission properties of thin disks in the Kerr–
Brans–Dicke geometry obtained in [116]. More exactly, we
would like to consider some observational possibilities that
may distinguish naked singularities from different types of
black holes. One such observational possibility is offered by
the study of the properties of the thin accretion disks that form
around rotating compact general relativistic objects. In the
present approach we restrict our analysis to the cases of naked
singularities and black holes, respectively. To achieve our
objectives we consider a comparative study of the geometri-
cal and physical properties of thin accretion disks around the
rotating naked singularity, and rotating black holes, obtained
as a solution of the field equations of the Brans–Dicke theory
in [116], in the presence of a scalar field. This solution con-
tains as a particular case the Kerr metric of general relativity.
We will analyze the basic physical parameters describing the
thin accretion disks, including the electromagnetic energy
flux, the temperature distribution on the surface of the disk,
and the spectrum of the emitted equilibrium radiation.

Since the exterior geometries of the naked singularities
and black holes are distinct, the corresponding differences do
determine significant deviations in the thermodynamic and
electromagnetic properties of the disks (energy flux, tem-
perature distribution and equilibrium radiation spectrum) for
different classes of compact objects. Thus the observations
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of the electromagnetic signals from accretion disks may pro-
vide some clear observational signatures that may allow to
discriminate, at least in principle, black holes from naked
singularities, and between different types of black holes. On
the other hand we would like to point out that the possible
detection of the naked singularities by using the electromag-
netic properties of the accretion disks is an indirect method,
which must be considered together with direct methods of
observation of the “surface” of the considered naked singu-
larity/black hole/naked candidates. An alternative method to
discriminate between different types of compact objects is
represented by their lensing properties.

The present paper is organized as follows. The rotating
vacuum solution in the Brans–Dicke theory, and its geometry
is presented in Sect. 2. In Sect. 3 we present the main physi-
cal parameters (specific energy, the specific angular momen-
tum, and angular velocity) describing the motion of massive
test particles in stable circular orbits in arbitrary stationary
and axisymmetric geometries. We review the properties of
standard thin accretion disks in Sect. 4. The observational
properties of thin accretion disks formed around the Kerr–
Brans–Dicke type compact objects (energy flux, temperature
distribution, radiation spectrum and Eddington luminosity)
are discussed in Sect. 5. We discuss and conclude our results
in Sect. 6.

2 The Kerr solution in the Brans–Dicke theory

The action of the Brans–Dicke theory, in which Newton’s
gravitational constant is a variable function determined by a
scalar field φ so that G = 1/φ, is given by [116]

S = 1

16π

∫ [
ϕR − ω

ϕ
gαβ∇αϕ∇βϕ

− V (ϕ) + Lm

]√−gd4x, (1)

where ω is the dimensionless Brans–Dicke parameter, V (ϕ)

is the scalar field potential, and Lm is the matter action. By
varying the action with respect to the components of the met-
ric tensor and of the scalar field we obtain the Brans–Dicke
field equations as

Gμν = 8π

φ
Tμν + ω

ϕ2

[
∇μϕ∇νφ − 1

2
gμν∇αϕ∇αϕ

]

+ 1

ϕ

[∇μ∇νφ − gμν�ϕ
]
, (2)

�φ = 8π

2ω + 3
T (m), (3)

where we have assumed that the scalar field potential van-
ishes, Tμν = − (

2/
√−g

)
δ
(√−gLm

)
/δgμν is the matter

energy-momentum tensor, and T (m) = Tμ
μ , respectively.

A Kerr-like rotating vacuum solution of the above field
equations of the Brans–Dicke theory was obtained in [116].
By performing a conformal transformation of the metric
gμν → g̃μν = �2gμν , with � = √

Gϕ, and by redefin-
ing the scalar field as

ϕ̃ =
√

2ω + 3

16πG
ln

(
ϕ

ϕ0

)
, (4)

where ϕ0 is the present value of the gravitational constant, it
follows that in the conformal frame the field equations can
be writtens as

Rμν = 1

2
∇μϕ̃∇νϕ̃,

�φ̃ = 0, (5)

with the solution [116]

ds2 = − f dt2 − 4Mar


sin2 θdtdφ

+
(
r2 + a2 + 2Ma2r


sin2 θ

)
sin2 θdφ2

+
(

� sin2 θ

M2

)|1−γ |


(
dr2

�
+ dθ2

)
, (6)

where γ is a constant, and where we have defined

f (r, θ) = 1 − 2Mr


, (r, θ) = r2 + a2 cos2 θ,

�(r) = r2 + a2 − 2Mr, (7)

In the solution (6), the parameter γ is related to the Brans–
Dicke parameter ω as

|1 − γ | = 4

(2ω + 3)
. (8)

Also, the scalar field ϕ̃ can be obtained as

ϕ̃ = √|1 − γ | ln

(
� sin2 θ

M2

)
. (9)

It is worth noting that the special case γ = 1 corresponds to
the Kerr black hole. The Kretchmann scalar Rμνρσ Rμνρσ of
the metric (6) can be obtained as

Rμνρσ R
μνρσ = −6

(
�

m

)−2−2|1−γ |
g(r, θ). (10)

One can see from the above relation that the Kretchmann
scalar Rμνρσ Rμνρσ diverges for  = 0. The function g(r, θ)

is a regular function with the property that for γ = 1 it has
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a form g(r, θ) ∝ �2. As a result one can see that for � = 0,
which corresponds to r = r±, with

r± = M(1 ±
√

1 − a2∗), (11)

the Kretchmann scalar diverges, and we have a curvature
singularity at r = r±. However, from the line element (6)
one can see that for 0 < γ < 2 we have a horizon at r =
r±. Hence, for 0 < γ < 1 and 1 < γ < 2 the curvature
singularity at r = r+ will be covered by the horizon r+.

As a result it follows that for −∞ < γ ≤ 0 and 2 <

γ < ∞, respectively, the metric (6) describes the spacetime
geometry of a naked singularity, with a total mass M , and an
angular momentum J = aM = a∗M2. Here a∗ = J/M2 is
the dimensionless spin parameter.

To summarize our analysis, in the case of the metric (6)
we have a naked singularity in the range −∞ < γ ≤ 0, and
2 < γ < ∞, respectively, and a non-trivial black hole in the
range 0 < γ < 1 and 1 < γ < 2.

The surface of infinite redshift is determined by the con-
dition f = 0, which defines the ergo-sphere of the rotating
geometry (6) as

rs,n = M(1 ±
√

1 − a2∗ cos2 θ) . (12)

The frame dragging frequency ω of this rotating solution
can be obtained as

ω = 2Mar

(r2 + a2) + 2Ma2r sin2 θ
, (13)

which has the same form as the frame dragging frequency of
the Kerr black hole.

3 Motion of test particles in stable orbits around
rotating compact objects

In the present Section we will briefly review the basic results
concerning the motion of massive test particles in arbi-
trary axisymmetric geometries, and then we will apply the
obtained results to the case of the metric (6), giving the ana-
logue of the Kerr metric in the Brans–Dicke theory.

3.1 The general formalism

An arbitrary axisymmetric geometry can be generally desc-
ribed by a line element of the form

ds2 = gtt c
2dt2+2gtφcdtdφ+grr dr

2+gθθdθ2 + gφφdφ2 .

(14)

In Eq. (14), due to the adopted symmetry of the spacetime,
the metric components gtt , gtφ , grr , gθθ and gφφ depend
only on r and θ . One can easily see that for the motion in
the above geometry we have two conserved quantities, the
specific energy at infinity Ẽ , and the z -component of the
specific angular momentum at infinity L̃ , respectively, which
can be obtained as [87]

gtt ṫ + gtφφ̇ = −Ẽ, (15)

gtφ ṫ + gφφφ̇ = L̃, (16)

where a dot denotes derivative with respect to the affine
parameter τ .

In the equatorial plane with θ = π/2, one can obtain the
geodesic equations as

ṫ = Ẽgφφ + L̃gtφ
g2
tφ − gtt gφφ

,

φ̇ = − Ẽgtφ + L̃gtt
g2
tφ − gtt gφφ

. (17)

and

grr ṙ
2 = Vef f

(
r, Ẽ, L̃

)
, (18)

where we have defined [87]

Vef f = −1 + Ẽ2gφφ + 2Ẽ L̃gtφ + L̃2gtt
g2
tφ − gtt gφφ

. (19)

For circular orbits in the equatorial plane, we have V (r) =
0 and V,r (r) = 0, which determine the specific energy Ẽ , the
specific angular momentum L̃ as a function of the angular
velocity � of particles as [119]

Ẽ = − gtt + gtφ�√−gtt − 2gtφ� − gφφ�2
, (20)

L̃ = gtφ + gφφ�√−gtt − 2gtφ� − gφφ�2
, (21)

� = dφ

dt
= −gtφ,r ± √

(gtφ,r )2 − gtt,r gφφ,r

gφφ,r
, (22)

where in the definition of �, the plus and minus signs corre-
spond to the direct and retrograded orbits, respectively.

Any stationary observer, moving along a world line r =
constant and θ = constant with a uniform angular velocity �,
has a four-velocity vector uμ ∝ (∂/∂t)μ+�(∂/∂φ)μ, which
lies inside the surface of the future light cone. Therefore, we
have the condition [87]

gtt + 2�gtφ + �2gφφ ≤ 0. (23)
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Fig. 1 Radii of the circular orbits around the compact general rela-
tivistic object with exterior metric given by Eq. (6) as a function of a�.
The event horizon and the ergosphere are also depicted. The dashed
lines represents direct orbits and the dotted lines represent retrograded
orbits

The above relation puts a constraint on the value of the angu-
lar velocity as �min < � < �max , where we have defined

�min = ω −
√

ω2 − gtt
gφφ

, (24)

�max = ω +
√

ω2 − gtt
gφφ

, (25)

and ω = −gtφ/gφφ is the frame dragging frequency.
The limiting case constraint of Eq. (23),

gtt + 2�gtφ + �2gφφ = 0, (26)

gives the innermost boundary of the circular orbits for par-
ticles, rph , called photon orbit. Circular orbits with Ẽ < 1
are bounded. The limiting case Ẽ = 1 gives the radius rmb

of the marginally bound circular orbit, that is, the innermost
orbits.

The marginally stable circular orbits rms around the central
object can be determined from the condition [87]

V,rr |r=rms = 1

g2
tφ − gtt gtφ

[
Ẽ2gφφ,rr + 2Ẽ L̃gtφ,rr

+L̃2gtt,rr − (g2
tφ − gtt gφφ),rr

]∣∣∣∣
r=rms

= 0.

(27)

For stable circular orbits the condition V,rr < 0 must be
satisfied. From a physical point of view we can interpret
the marginally stable orbit as the innermost boundary of the
stable circular orbits.

Fig. 2 Behavior of the second derivative of the potential of the Brans–
Dicke–Kerr object given by Eq. (27) with respect to r/M for different
values of a� = 0, 0.4, 0.7, 0.9, 1, 1.2, 1.4

3.2 Circular motions in the equatorial plane of the
Brans–Dicke–Kerr naked singularity

Inserting the metric components in the definitions of the spe-
cific energy, angular momentum and of the angular velocity
as given by Eqs. (20)–(22) into Eqs. (26) and (27), respec-
tively, we obtain a set of algebraic equations for rms , rmb

and rph . One should note that because only the grr and gθθ

components of the metric (6) are different from the metric
of the Kerr black hole, it follows that for the Brans–Dicke–
Kerr metric in the conformal frame rms , rmb, rph and r± are
the same as for the Kerr metric of standard general relativity.
Figure 1 shows the behavior of these radii as a function of
a�.

Also, the values of the second derivative of the potential
(27) have the same form as for the Kerr metric. In Fig. 2
we have plotted the behavior of V,rr (r = rms) for different
values of a�. it is worth mentioning that for a� > 1, the Kerr
geometry describes a naked singularity. In this sense we will
consider these cases in this paper to include this interesting
case.

Hence all the results on the motion of test particles in the
equatorial plane of the Kerr geometry [117–119] are also
valid in the case of the considered Kerr–Brans–Dicke geom-
etry. The expressions of the radii of the marginally stable
orbits can be obtained analytically as [118,119]

rms=GM

c2

[
3 + R(2)

ms±
√(

3 − R(1)
ms

) (
3 + R(1)

ms + 2R(2)
ms

)]
,

(28)

where R(1)
ms = 1 + 3

√
1 − a2∗

(
3
√

1 + a∗ + 3
√

1 − a∗
)
, and

R(2)
ms =

√
3a2∗ +

(
R(1)
ms

)2
, respectively. The positive sign cor-

responds to the retrograde orbits, while the negative sign
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describes the prograde (direct) motion. For a∗ = 0, from the
above expression we reobtain the expression of the radius
of the marginally stable orbits for the Schwarzschild met-
ric, rms = 6GM/c2, while a∗ = 1 gives for the direct
orbit rms = GM/c2, while for the retrograde orbit in the
Kerr geometry rms = 9GM/c2. From these considerations
it seems that for a∗ = 1 the radius of the marginally stable
orbit is located at the same radial coordinate as the horizon
itself. However, one can show that in the Kerr geometry the
radii of the marginally stable orbits are always greater than
the horizon radius [118,119].

If a∗ > 1 there are no singularities in the Kerr geometry,
and we have the Kerr naked singularity spacetimes, where
no horizons do exist. In these types of Kerr geometries, the
physical singularity is located at r = 0, and θ = π/2, respec-
tively. Hence the radii of the marginally stable orbits of the
Kerr naked singularities can come closer to the central sin-
gularity, which would induce a significant effect on particle
dynamics. The Kerr naked singularities have some specific
properties that could differentiate them with respect to the
Kerr black holes, like, for example, the properties of the
spherical photon stable orbits confined to constant Boyer-
Lindquist radius r that could be pure prograde/retrograde, or
with turning points in the azimuthal direction [120].

4 Electromagnetic effects in accretion disks gravitating
around compact objects

In the following we will review the basics of the thin accretion
disks theory in general relativity. Observationally, accretion
disks are common objects, and they are observed as flat-
tened astronomical structures, consisting of a rapidly rotat-
ing hot gas that slowly moves towards a central dense and
massive object. The internal stresses and the dynamical fric-
tion of the disk matter generates heat, with a small fraction
of it being converted into electromagnetic radiation that can
escape from the disk surface, leading to the cooling down
of the disk. Therefore, once detected in the radio, optical
or X-ray frequency bands, important information about the
accretion disk physics can be obtained from the study of the
electromagnetic spectrum of the disk radiation, and of its time
variability. Hence important information about the physical
processes in and near the disks can be obtained from obser-
vations. In many cases the inner edge of the disk is positioned
at the marginally stable orbit of the gravitational potential of
the central object, with the hot gas having a Keplerian motion
[65,66].

The general relativistic theory of mass accretion around
compact objects was developed by Novikov and Thorne in
[121], by extending the steady-state thin disk models intro-
duced in [122]. In the Novikov–Thorne approach, which
considered the case of the curved space-times, the equa-

torial approximation was adopted for the stationary and
axisymmetric geometry. In the equatorial approximation it is
assumed that the vertical size of the disk (defined along the
z-axis) is much smaller than its horizontal extension (defined
along the radial direction r ). Equivalently, for a thin disk, the
disk height H , equal to the maximum half thickness of the
disk, is assumed to be always much smaller than the charac-
teristic radius R of the disk, H 
 R.

From a physical point of view the thin disk is assumed to be
in hydrodynamical equilibrium, while the pressure gradient
and the vertical entropy gradient in the accreting matter are
neglected. In the following we will adopt the steady state
disk accretion model, in which the mass accretion rate Ṁ0 is
supposed to be constant in time. Moreover, all the physical
quantities describing the properties of the matter in the disk
are averaged over a characteristic time scale �t , and over the
azimuthal angle �φ = 2π .

With the use of the four dimensional conservation laws of
the rest mass, of the energy, and of the angular momentum
of the disk matter, respectively, we can obtain the structure
equations of the thin disk. The flux of the radiant energy
released by the disk surface can be expressed as [65,66]

F(r) = − Ṁ0

4π
√−g

�,r

(Ẽ − �L̃)2

∫ r

rms

(Ẽ − �L̃)L̃ ,r dr, (29)

where we have also assumed the no-torque inner boundary
conditions [65], which implies that the torque vanishes at the
inner edge of the disk, and where

√−g =
(

� sin2 θ

M2

)1−γ

(r, θ) sin θ. (30)

By supposing that in the steady-state thin disk the accret-
ing matter is in thermodynamical equilibrium, the radiation
emitted by the surface of the disk can be approximated by a
perfect black body radiation, described by the Planck distri-
bution function I (ν). Hence the energy flux can be obtained
as F(r) = σSBT 4(r), where σSB is the Stefan–Boltzmann
constant, with the observed luminosity L (ν) having a red-
shifted black body spectrum, given by [75]

L (ν) = 4πd2 I (ν) = 8πh cos i

c2

∫ r f

ri

∫ 2π

0

ν3
e rdφdr

exp (νe/T ) − 1
,

(31)

where d is the distance to the source, i is the disk inclination
angle (which in the following we will take it to be zero),
while ri and r f denote the positions of the inner and outer
edges of the disk, respectively.

In our analysis of the disk properties around Kerr–Brans–
Dicke compact objects we adopt the values ri = rms and
r f → ∞, the last condition implying that the flux generated
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by the disk surface vanishes at infinity. The frequency of the
radiation emitted by the disk is given by νe = ν(1+z), where
the redshift factor z can be obtained as [123,124]

1 + z = 1 + �r sin φ sin i√−gtt − 2�gtφ − �2gφφ

. (32)

In the case of the Schwarzschild metric ds2 = −(1 −
2M/r)dt2 + dr2/(1 − 2M/r) + r2

(
dθ2 + sin2 θdφ2

)
, by

taking into account that � = (
M/r3

)1/2
, the redshift factor

is given by [123]

1 + z = 1 + (
M/r3

)1/2
b sin φ sin i√

1 − 3M/r
, (33)

where b is the impact parameter. On the other hand the deflec-
tion angle of light at infinity φ∞ by a massive object can be
obtained as φ∞ = 2(P/Q)1/2 [K (k) − F (ζ∞, k)], where P
is the periastron distance, Q2 = (P − 2M) (P + 6M), k =
(Q−P+3M/Q)1/2, sin2 ζ∞= (Q−P+2M) / (Q−P+6M),
while K (k) and F (ζ∞, k) are the complete integral of mod-
ulus k and and the eliptic integral of modulus k and argument
ζ∞, respectively [123]. In the limit of P → 3M for the total
deviation of a light ray μ = 2φ∞ − π we obtain the approx-
imate relation b = 5.19695M + 3.4823Me−μ [123]. As one
can see from Eq. (33), in the limit r → 3M , the redshift fac-
tor takes very large values (tending to infinity), while the total
deviation of the light has finite (and relatively small) values.
Even for the minimum value rmin = 6M of the inner radius
of the disk around a Schwarzschild black hole the redshift
factor is much bigger than the deflection angle μ ≈ 4M/b.
The same qualitative results are also valid in the case of the
Kerr geometry. Generally, the factor −gtt − 2�gtφ −�2gφφ

becomes smaller when approaching the inner edge of the
disk, or the event horizon, and this leads to a significant
increase in the redshift factor, as compared to the bending
of light. Hence, by taking into account the above results,
in the following we will neglect in Eq. (31) the effects of
the gravitational light bending by the central massive object
[123,124].

An important parameter characterizing accretion disks is
the efficiency ε, indicating the capability of the central object
to convert rest mass into the radiation emitted by the disk. The
parameter ε is defined as the ratio of the rate of the energy of
the photons escaping from the disk surface to infinity, and the
energy rate at which mass-energy is transported to the central
object. If we assume that the entire emitted electromagnetic
energy can travel to infinity, then ε is determined only by the
specific energy estimated at the marginally stable orbit rms ,
so that ε = 1 − Ẽ

∣∣
r=rms

.
For a Schwarzschild black holes ε is of the order of 6%,

and this value is independent of the photon capture by the
black hole. For rapidly rotating black holes, ε is around 42%,

while by taking into account photon capture the efficiency is
40% for the Kerr geometry.

5 Observational signatures of Brans–Dicke–Kerr type
geometries

In the following we will analyze the electromagnetic emis-
sion properties of the accretion disks around Brans–Dicke–
Kerr compact objects, for which the exterior geometry is
described by Eq. (6).

5.1 Electromagnetic properties of the disk

The emission and physical properties of accretion disks are
mainly characterized by the energy flux, the temperature, and
the disk luminosity. We will consider each of these properties
for the accretion disks located in the gravitational field of the
Brans–Dicke–Kerr type compact object.

5.1.1 The energy flux profiles

In Fig. 3 we have plotted the normalized energy flux profiles,
computed from Eq. (29), for different values of parameter γ ,
and a�. Note that the expression for the energy flux differs
from the expression corresponding to the Kerr metric only
through the expression of the metric determinant, given by
Eq. (30). Moreover, the values of rms for all three types of
compact objects described by the metric (6) are the same,
and therefore in this geometry the matter cannot approach
the naked singularity. Also we have normalized the energy
flux by a factor Fmax , which is the maximum value of the disk
flux for the Schwarzschild metric with γ = 1 and a� = 0.

As for the physical parameters of the configurations we
have adopted the numerical values a� = 0 (corresponding to
the static case), a� = 0.4, a� = 0.80, a� = 0.99, correspond-
ing to the extreme rotation limit of the Kerr black hole, and
a∗ = 1.2 and a∗ = 1.4, respectively, with the last two values
describing for γ = 1 the Kerr naked singularities. The values
of γ have been chosen in three distinct ranges, to describe
three types of different astrophysical objects: the Kerr black
hole and naked singularity, corresponding to γ = 1, the
non-trivial black hole, with an event horizon, obtained for
γ = 1.2, γ = 1.4, and γ = 1.8, respectively, and the
Kerr–Brans–Dicke type naked singularity, which appears for
γ = 2.3, γ = 2.8, and γ = 3.1.

As a general result of our investigations we find that there
is a significant difference in the energy fluxes from the disks
rotating around these three types of compact objects. Inter-
estingly enough, in the cases of the static black hole, and for
a� = 0.4 and a� = 0.8, the maximum value of the flux is
obtained for the standard Kerr black hole of general relativ-
ity. The thermal energy fluxes from the disks around the non-
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Fig. 3 The log-log plot of the normalized energy flux F(r)/Fmax
with respect to r/M for a� = 0, 0.4, 0.8, 0.99, 1.2, 1.4, and
for γ = 1 (Kerr black hole for a� ≤ 1, and naked Kerr singular-

ity for a� > 1), γ = 1.2, 1.4, 1.8 (non-trivial black holes) and
γ = 2.3, 2.8, 3.1 (naked singularities), respectively. Here Fmax is
the flux of the Schwarzschild disk with γ = 1, and a� = 0, respectively

trivial Kerr–Brans–Dicke type black holes, and of the naked
singularities are significantly smaller than the Kerr flux, the
differences being of the order of three to four orders of mag-
nitude in the case of the γ = 3.1 naked singularity. However,
with increasing spin, the maximal flux is also increasing, and
tends to reach the maximal Kerr value. Another interesting
phenomenon is that for higher values of the spin, the loca-
tions of the maxima of the energy fluxes shift toward lower
radii, located closer to the inner edge of the disk. This effect is

stronger for the naked singularities of the Kerr–Brans–Dicke
type solution.

The behavior of the energy fluxes show a drastic change in
the extreme rotation limit a� = 0.99, presented in the middle
right panel of Fig. 3. In this case the energy fluxes from the
disks around naked singularities and non-trivial black holes
can exceed with almost one order of magnitude the emission
of the Kerr disk. Moreover, the shift of the maximum values
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towards lower radii indicates that most of the electromagnetic
radiation comes from the inner edge of the disk.

The differences between the physical properties of the
fluxes become even more important in the case of the com-
parison of the Kerr naked singularities, corresponding to
a∗ > 1, with the Brans–Dicke–Kerr type naked singulari-
ties and non-trivial black holes, depicted in the bottom panel
of Fig. 3. The maximum of the energy flux is shifted sig-
nificantly towards the central singularity, and it is attained
for values of r/M of the order of 1, a value smaller than
the one corresponding to the case of the extremely rotating
Kerr black hole. Moreover, the maximum energy flux of the
Kerr naked singularity is smaller than the values obtained
for the Brans–Dicke–Kerr type naked singularities and non-
trivial black holes. The maximum value of the flux increases
with increasing γ , and for a∗ = 1.2 it exceeds by one
order of magnitude the maximum value of the flux for the
maximally rotating Kerr black hole with a∗ = 0.99. How-
ever, there is slight decrease in the maximum values of the
fluxes with increasing a∗, a result due to the fact that the
radii of the marginally stable orbits tend to decrease with
increasing a∗ (for a∗ = 1.20, rms = 0.6983GM/c2, while
rms = 0.8121GM/c2 for a∗ = 1.40). Another significant
difference is related to the flux distribution over the disk.
The flux decreases faster for the Brans–Dicke–Kerr singular-
ities/black holes as compared to the Kerr naked singularity
case, indicating that the main energy emission takes place in
a limited area mostly concentrated in the inner region of the
disk. This is in fact a general result valid for all the cases we
have investigated.

The result that the flux maximum is higher for the rapidly
rotating non-trivial black holes and naked singularities than
for the Kerr black holes and naked singularities, even if it
is integrated over a smaller surface area, is the direct con-
sequence of the important differences in the metric determi-
nants of the metrics, which, in the vicinity of the equato-
rial plane, characterizes the four-volume element in which
the electromagnetic radiation flux is measured. For Kerr
black holes in the equatorial approximation the expression√−g = r2 holds, but from the expression (30) of the deter-
minant of the rotating Kerr–Brans–Dicke solution we obtain

√−g =
(

�

M2

)1−γ

r2 =
(

M2

r2 + a2 − 2Mr

)γ−1

r2, γ > 1.

(34)

Hence it follows that the function
(
�/M2

)1−γ
has a smaller

value when we are approaching rms , and for large rotational
velocities. Then it turns out that the four-volume element is
much smaller for the non trivial black holes and for naked sin-
gularities as compared to the standard Kerr black hole case,

and it gives much higher values in the energy flux integral
(29) for the former types of objects, even if the geometric
properties determining �, Ẽ and L̃ are similar in the two
cases.

5.1.2 Temperature distribution

In Fig. 4 we have plotted the temperature distribution of the
radiation emitted from the disk for the same γ and a� val-
ues as in the previous case. Generally, the disk temperature
shows a similar dependence on the parameters γ and a� as
F(r) does. In the static and slowly rotating cases the disk
temperature reaches its highest values in the Kerr geome-
try. With increasing γ , and increasing a�, the temperature
profiles become much sharper, with their maxima shifting
towards the inner edge of the disk. The configurations with
lower spin generate temperature profiles similar in shape to
those obtained for the Kerr black holes, but with significant
quantitative differences with respect to the positions and val-
ues of the maximum temperatures. In the low spin limit the
disk must be cooler as compared to the typical disk temper-
atures obtained for Kerr black holes, with the same spin val-
ues. Nevertheless, in the extreme spin limit, the temperature
of the disk for the nontrivial black hole and naked singularity
configurations will exceed the Kerr values, indicating a sig-
nificant increase in the disk temperature near its inner edge,
and an accentuate sharpening of the temperature profile.

The differences in the disk temperature distributions are
even more important in the case of the comparison of the
Kerr naked singularities with a∗ > 1 and the Brans–Dicke–
Kerr type naked singularities and black holes, respectively,
presented in the bottom panels of Fig. 4. The maximum of
the disk temperature is shifted towards the central singular-
ity, and it shows a significant increase as compared to the
case of the maximally rotating Kerr black hole. The Kerr
naked singularity has the lowest maximum disk tempera-
ture, and around the inner edge of the disk the temperature
of the Brans–Dicke–Kerr disks is much higher. However, the
rate of the temperature decrease is different for the different
types of compact objects. While for the Brans–Dicke–Kerr
type objects there is a fast decrease in the disk temperature,
indicating cooler outer regions, the decrease of the disk tem-
perature for the Kerr naked singularity takes place at a lower
rate, resulting in a hotter disk at large distances from the
central singularity. The maximum temperature of the disk
slightly decreases with increasing a∗, due to the increase of
rms .

This is a distinct observational signature that may pro-
vide the observational possibility of distinguishing between
different classes of Kerr–Brans–Dicke type objects, and stan-
dard general relativistic black holes.
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Fig. 4 Log-log plot of the temperature distribution T (r) in the accre-
tion disk with respect to r/M for a� = 0, 0.4, 0.8, 0.99, 1.2, 1.4,
and for γ = 1 (Kerr black hole for a� ≤ 1, and naked Kerr singu-

larity for a� > 1), γ = 1.2, 1.4, 1.8 (non-trivial black holes) and
γ = 2.3, 2.8, 3.1 (naked singularities), respectively

5.1.3 The luminosity of the disk

In Fig. 5 we have plotted, for the same set of values
of the parameters a∗ and γ , the normalized luminosity
νL(ν)/Lmax , as a function of the frequency for different val-
ues of γ and a�, which were calculated from the luminosity
equation Eq. (31). For Lmax we have adopted the luminos-
ity of the Schwarzschild disk, with γ = 1, and a� = 0,

respectively. As expected, the same features observed in the
behavior of the energy flux distribution F(r), and of the disk
temperature in the black hole and naked singularity geome-
tries, are present in the luminosity distributions. For slow
rotations, the Kerr luminosity of the disk exceeds by almost
three orders of magnitude the luminosity of the Kerr–Brans–
Dicke naked singularities. Moreover, the maximum of the
spectra is shifted towards higher values of ν/ν0 in the disk,
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Fig. 5 Log plot of the normalized luminosity νL(ν)/Lmax with respect
to ν/ν0 for a� = 0, 0.4, 0.8, 0.99, 1.2, 1.4, and for γ = 1 (Kerr
black hole for a� ≤ 1, and naked Kerr singularity for a� > 1),
γ = 1.2, 1.4, 1.8 (non-trivial black holes) and γ = 2.3, 2.8, 3.1

(naked singularities), respectively. Here ν0 = 2 × 106Hz and Lmax is
the luminosity of the Schwarzschild disk, corresponding to γ = 1, and
a� = 0, respectively

and this effect is significant in the case of naked singular-
ities. Generally, the maximal amplitudes increase with the
increase of the spin parameter a�, that is, the accretion disks
of both black holes and naked singularities become hotter by
rotating faster. The fast rotation leads to a blueshifted sur-
face radiation, with higher intensity. Still, even in the slow

rotation case the disk spectra exhibit important differences
between black holes and naked singularities.

For fast rotation (a� = 0.99), the distribution of the lumi-
nosity completely changes, with both the luminosity of the
non-trivial black holes and of the naked singularities exceed-
ing the Kerr luminosity. In this case there is a shift with
respect to the Kerr maximum towards the outer edge of the
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disk, with the accretion disk becoming much hotter in the
areas distant with respect to the singularity. Hence the max-
imal amplitudes of the spectra of the non-trivial black holes
and naked singularities have much higher values then in the
case of the Kerr black hole disk spectra, indicating that the
spectral properties of the disks are very sensitive to the vari-
ations in the spin at high rotation speeds. Thus the relative
shifts in the cut-off frequencies and the spectral maxima for
extreme black hole and naked singularity geometries may
provide another tests for discriminating the Kerr black holes
and non-trivial black holes, and naked singularities, respec-
tively.

The behavior of the disk luminosity significantly changes
in the case of the Kerr naked singularities and of the Brans–
Dicke–Kerr naked singularities and black holes respectively,
corresponding to a∗ > 1. These cases are presented in the
bottom panel of Fig. 5. For a∗ = 1.2, the luminosity of the
Kerr naked singularity is significantly lower as compared
to the luminosity of the Brans–Dicke–Kerr naked singular-
ities/black holes. In all cases the maximum luminosity of
the disk is reached in its inner regions, with the location
of the maximum in the frequency spectrum approximately
equal to the case of the maximally rotating Kerr black hole
(around 5ν/nu0). However, the distribution of the luminos-
ity on the disk is different as compared to the maximally
rotating Kerr black hole case. The rate of decrease of the
luminosity with increasing radiation frequency is fastest for
the Kerr naked singularity, indicating a higher luminosity of
the outer regions of the disk for higher radiation frequen-
cies for Brans–Dicke–Kerr naked singularities/black holes.
An interesting situation appears in the luminosity behavior
for increasing a∗. For a∗ = 1.4 (right plot in the bottom
panel of Fig. 5) the differences in the luminosities of the
Kerr naked singularities and of the Brans–Dicke–Kerr naked
singularities/black hole become negligible, and basically a
unique spectrum describe the frequency dependence of the
luminosity of the disk. However, this spectrum differs from
the one corresponding to the maximally rotating Kerr black
hole, and the corresponding Brans–Dicke–Kerr objects, with
a much slower rate of decrease of the disk luminosity with
increasing frequencies.

5.2 Eddington luminosity of the disk

For the case of a boson star, an interesting effect, involv-
ing the Eddington luminosity, was discussed in [125]. The
Eddington luminosity, representing from a physical point of
view the limiting luminosity that can be obtained from the
equality of the attractive gravitational force and of the repul-
sive radiation force, is given by

LEdd = 4πMmp

σT
= 1.3 × 1038

(
M

M�

)
erg/s. (35)

On the other hand since the mass distribution of the bosonic
field forming a boson star has a radial distance dependent
mass distribution, with M = M(r), it follows that for bosonic
systems the Eddington luminosity becomes a spatial coordi-
nate dependent quantity, so that LEdd(r) ∝ M(r).

A similar effect occurs for the case of the Kerr–Brans–
Dicke solutions considered in the present study. One can
associate to the Brans–Dicke scalar field, described by
its energy-momentum tensor, a mass distribution MEdd(r)
along the equatorial plane of the disk, given by

MEdd(r)
(ϕ) = −4π

∫ r

rs
T ϕ0

0 r
2dr = 2π

∫
grrϕ,rϕ,r r

2dr.

(36)

Then the Eddington luminosity of the scalar field can be
obtained as

L(ϕ)
Edd(r) = 4πMEdd(r)mp

σT
= 1.3 × 1038 MEdd(r)

M�
erg

s
.

(37)

Using Eq. (36), we obtain the Eddington luminosity asso-
ciated to the Kerr–Brans–Dicke scalar field as

L(ϕ)
Edd(ρ) = 32π2mp

σT
M

∫ ρ

ρms

|1 − γ |(1 − ρ)2dρ

(a2
� + ρ2 − 2ρ)1+|1−γ |

= 1.3 × 1040 M

M�
l(ϕ)
Edd , (38)

where ρ = r/M , and

l(ϕ)
Edd(ρ) =

∫ ρ

ρms

|1 − γ |(1 − ρ)2dρ

(a2
� + ρ2 − 2ρ)1+|1−γ | . (39)

In Fig. 6 we have plotted l(ϕ)
Edd(ρ) as a function of ρ =

r/M .
There is a significant difference in the Eddington lumi-

nosity associated to the scalar fields giving birth to black
holes and naked singularities, respectively. The luminos-
ity l(ϕ)

Edd(ρ) is higher for black holes as compared to
the naked singularities, and it has a strong dependence
on a�. There is an initial very rapid increase in the
Eddington luminosity generated near the marginally sta-
ble orbit rms/M , followed by a plateau phase, in which
l(ϕ)
Edd(ρ) is almost constant. The maximum plateau val-

ues of l(ϕ)
Edd(ρ) depend strongly of the type of the cen-

tral object (black hole or naked singularity), and they are
higher for black holes. The Eddington luminosity of Brans–
Dicke–Kerr type scalar field increases with increasing spin
a�, and it extends to very high distances from the central
object.
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Fig. 6 Log–Log plot of the normalized Eddington luminosity l(ϕ)
Edd (ρ) with respect to r/M for a� = 0, 0.4, 0.8, 0.99, 1.2, 1.4, and for γ =

1.2, 1.4, 1.8 (non-trivial black holes) and γ = 2.3, 2.8, 3.1 (naked singularities), respectively

The differences in the behavior of the Eddington luminos-
ity between different Brans–Dicke–Kerr type objects become
even more significant for a∗ > 1, as one can see from the bot-
tom panels of Fig. 6. The Eddington luminosity still increases
with increasing γ , but their numerical values are generally
smaller than for the a∗ = 0.99 case. l(ϕ)

Edd(ρ) increases very
rapidly near rms with increasing r/M , and shows a com-
plex behavior at the inner edge of the disk. For larger val-
ues of γ , corresponding to naked singularities, it reaches
very quickly a plateau phase, becoming a constant at around
r/M ≈ 5. For smaller values of γ (describing the non-

trivial black hole solutions) the plateau phase appears at
much higher radii, with l(ϕ)

Edd(ρ) slowly increasing along the

disk. The maximum values of l(ϕ)
Edd(ρ) tend to decrease with

increasing a∗ and γ . Hence there is a significant decrease in
the Eddington luminosity of Brans–Dicke–Kerr naked sin-
gularities as compared to the one of the non-trivial black
holes.
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6 Discussions and final remarks

In the present paper we have presented a comparative anal-
ysis of the properties of the accretion disks that could form
around black holes, massive objects possessing an event hori-
zon, and naked singularities, hypothetical theoretical gen-
eral relativistic objects, characterized by the absence of an
event horizon, and a central singularity, respectively. For our
study we have considered a rotating solution of the Einstein
– massless scalar field equations [116], which has the advan-
tage of containing in a single metric form three distinct types
of objects, corresponding to different choices of the model
parameter γ . For γ = 1 the solution reduces to the standard
Kerr black hole of general relativity. Naked singularity type
solutions are obtained in the range γ ∈ (2,∞), while for
γ ∈ (0, 1) and γ ∈ (1, 2) we obtain non-trivial black hole
solutions, characterized by the presence of an event horizon,
and with physical and geometrical properties different from
the Kerr black hole properties. As a first step in any study
on accretion disk properties one must investigate the motion
of the massive test particles in the gravitational potential of
the central massive object. The characteristics of the motion
depend on the values of the mass, spin parameter, and model
parameter, respectively. The positions of the marginally sta-
ble orbits, photon orbits and of the marginally bound orbits
are determined by the gtt , gφφ and gtφ components of the met-
ric tensor, which in the case of the Brans–Dicke–Kerr solu-
tion coincide with their standard general relativistic coun-
terparts. Hence the geometric characteristics of disks in the
scalar field Brans–Dicke–Kerr geometry are the same as in
general relativity, and all the marginally stable orbits that are
located outside the naked singularities and the black holes.
Therefore the particles in the disk cannot reach, and be in
direct contact with the singularity in an equilibrium configu-
ration. The frame dragging properties of Brans–Dicke–Kerr
naked singularity are also identical with the Kerr and non-
trivial black hole cases. Moreover, the conversion efficiency
of the accreting mass into radiation of naked singularities
and black holes in the Brans–Dicke–Kerr is identical to the
standard Kerr case, and none of the considered objects could
provide a larger mass – radiation conversion efficiency than
the Kerr black holes.

However, the above points do not imply that the disk prop-
erties for the different types of black holes and the naked
singularities of the Brans–Dicke–Kerr theory are identical.
Due to the differences in the expression of the determinant
of the metric tensor the main physical properties of the disk
are dependent of the exterior geometry of the central object.
In all covariant general relativistic formulations of disk mod-
els the thermodynamic quantities are obtained by integrating
over the invariant four volume element. The behavior of the
volume element depends on the type of the central object
(black hole or naked singularity), and near the inner edge of

the disk it gives the dominant contribution to the emitted flux,
and the temperature and spectrum. Therefore, the properties
of the disk radiation are significantly different for black holes
and naked singularities. Generally, even that on a qualitative
level there are many similarities between the Kerr or non-
trivial black hole disks, and the naked singularity disks, the
thermodynamic/electromagnetic properties of the naked sin-
gularities could differ significantly quantitatively (by several
orders of magnitude) from the non-trivial or Kerr black hole
disks.

In our investigations of the black hole and naked singu-
larity properties we have used the thin disk model, which
is an obviously idealized physical model, built upon several
simplifying physical and geometrical assumptions [65,87].
In particular, the self-gravity of the disk is neglected, and
it is assumed that the disk is located in the central plane of
the massive object. The most important assumption is that
the disk is geometrically thin, and one can neglect its verti-
cal size. Any change in the parameters of the central object
during a small time interval �t is neglected, but this time
interval is considered to be large enough for measuring the
total inward energy and mass flows at any point in the disk.
From a mathematical point of view we have assumed that
the energy-momentum tensor of the disk matter can be alge-
braically decomposed with respect to its four-velocity. More-
over, in our approach the averaged dynamics of the baryons
over the azimuthal angle and �t is given by the circular
geodesic motion in the equatorial plane. From a physical
point of view we have assumed that the heat flow within the
disk in the radial direction is negligible, and it is important
only in the vertical direction. The energy is carried to the
disk surface by thermal photons, and the photons are emitted
on average only in the vertical direction. Finally, we have
neglected the energy of the photons emitted vertically from
the disk surface when studying the momentum and energy
transport between the different regions of the disk. Once any
of the above conditions are not satisfied, the thin disk model
cannot be applied anymore. Nevertheless, since in the present
model at the inner edge of the disk the variation of the vol-
ume element gives the dominant contribution to the flux,
temperature, and spectrum of the disk, it turns out that this
contribution is much larger than the effects on the thermody-
namical parameters of the disk that could result from some
theoretically improved disk models.

The possibility of distinguishing black holes and naked
singularities via their accretion disk properties was inves-
tigated in detail in [111–113], respectively. A basic differ-
ence between the present approach and the investigations in
[112,113] is that in these papers the authors consider mag-
netized accretion disks in the Kerr geometry only [112,113],
while in our study we consider a different geometry, and the
effects of the magnetic field are ignored. The presence of
the magnetic fields strongly affects the orbital motion of the
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particles, which influences the emitted flux through the mod-
ification of the innermost stable orbits. An interesting partic-
ularity of the Kerr–Brans–Dicke metric, used in the present
study, is that the particle motion in the disk is the same as
in the standard Kerr metric. In [113] the authors consider
emission from hot spots on the disk, and they show that the
emission from a hot spot orbiting near the innermost stable
circular orbit of a naked singularity in a dipolar magnetic
field is significantly harder than the emission of the same
hot spot in the absence of such a magnetic field. To obtain
the geodesics of photons between a plane placed at the posi-
tion of the observer and the surface of the disk a ray-tracing
technique is developed for this specific problem.

It is generally believed that the astrophysical objects grow
via accretion, and that around most of black holes and active
galactic nuclei (AGN’s) there exist gas clouds surrounding
the central object, forming an associated accretion disk. The
gas can exist in either the atomic or the molecular state. The
disks have very different length scales, ranging from AU-
to-parsec scales in AGN’s to solar radius-to-AU scale disks
in protostellar objects [127]. The gas clouds form an opti-
cally and geometrically thick torus (or warped disk). The
disk absorbs most of the soft X-rays and the ultraviolet radi-
ation.

The temperature distribution in accretion disks depend on
the the mass accretion rate, the mass of the central black hole,
and on the location of the emission point in the accretion
disk, respectively. For stellar-mass black holes accreting at
about 10% of their Eddington limit the thermal spectrum
of the inner part of the accretion disk is in the soft X-ray
band (0.1–1 keV), while for the supermassive black holes
it is in the optical/UV band (1–10 eV) [128]. Through the
inverse Compton scattering by the hot electrons in the corona,
the thermal photons gain energy, and they convert into X-
rays, having a characteristic power-law component. The X-
ray photons illuminate the disk, generating a new, reflection
component, with strong fluorescent emission lines. Usually
the most noticeable characteristic of the reflection spectrum
is the iron Kα line, located, in the case of neutral or weakly
ionized iron, at an energy of 6.4 keV, and which for H-like
ions shifts up to 6.97 keV [128]. Accurate measurements
of the reflection spectra of the accretion disk could provide
important information about the geometry of the space-time
in the strong gravity regime, and thus test the nature of the
astrophysical black holes, as well as the possible deviations
from the Kerr geometry.

A sample of observational data from seven Active Galac-
tic Nuclei observed with Suzaku was studied in [129], by
interpreting the spectrum of the sources with a relativistic
reflection component. The results of this analysis are con-
sistent with the hypothesis that the spacetime around these
supermassive objects is described by the Kerr geometry. Con-
straints on the capabilities of X-ray reflection spectroscopy to

test the Kerr-nature of astrophysical black holes was consid-
ered in [130], via the analysis of two NuSTAR observations
of Cygnus X-1 in the soft state. It turns out that the final
measurement can strongly depend on the assumption of the
intensity profile. Moreover, it was concluded that Cygnus X-
1 is not a suitable candidate for testing General Relativity
using X-ray reflection spectroscopy. The properties a source
with an accretion disk must have in order to be able to test
General Relativity by using X-ray spectroscopy have also
been suggested. In principle, supermassive black holes are
better candidates than stellar mass black holes. The central
object must have fast rotation, with a∗ > 0.9, so that the
inner edge of the disk is located closer to the event horizon,
and the gravitational effects are stronger. There should be
no absorbers between the object and the observer, in order
to avoid the astrophysical uncertainties related to the cosmic
environment. The data must have a good energy resolution
of the iron line, and a broad energy band is necessary to
break the parameter degeneracy. The iron line must also be
prominent. The accretion luminosity must be between 5%
and 30% of the Eddington limit, and this condition must
hold in order to model the accretion disk as thin. Finally, the
corona must have a known geometry, since different coronal
geometries are possible. X-ray reflection spectroscopy could
provide precision tests of General Relativity in the future
once appropriate sources are found, and if precise theoreti-
cal models describing the radiation of each component are
developed.

The observational evidence for the existence of super mas-
sive black holes comes from several astronomical methods.
For example, the mass can be accurately determined by ana-
lyzing the orbits of stars inside the sphere of the gravitational
influence of the black hole [131]. An alternative method is
represented by the measurement of the diameter of the pho-
ton ring encircling the black hole shadow, a method applied
for the determination of the mass of M87∗ of the radio galaxy
M87 [132,133].

On the other hand the measurement of the black hole
spin is not easy, and it requires the investigation of informa-
tion coming from around the marginally stable orbits [134].
Nonetheless, presently due to the Event Horizon Telescope
(EHT), the observational analysis of such a close vicinity to
a black hole has become possible. EHT is a global very long
baseline interferometry (VLBI) array observing at 1.3 mm.
EHT observations of M87∗ have recently provided the first-
ever horizon-scale image of a black hole [132,133,135–138].
These observations show the possibility of the EHT for prob-
ing the black hole geometry by timely and spatially resolving
the electromagnetic emission coming near the event horizon
of black holes. SgrA∗ has the largest angular size of the grav-
itational radius and a mass of the order of M ∼ 4 × 106M�.
It is a black hole candidate with an extremely low lumi-
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nosity (L ∼ 10−9LEdd , and with a very low accretion rate
Ṁ ∼ 10−8M� yr−1.

The above properties and the continuum spectrum of
SgrA∗ can be explained by assuming a radiative inefficient
accretion flow [139]. EHT observations for a gas cloud inter-
mittently falling onto a black hole were simulated in [140],
where a method for spin measurement based on its relativistic
flux variation was proposed. The light curve of the infalling
gas cloud is composed of peaks formed by primary photons
that directly reach a distant observer, and by secondary ones
reaching the observer after more than one rotation around
the black hole. The black hole spin dependence is detectable
in correlated flux densities that are accurately calibrated by
baselines between sites with redundant stations.

Hence, one can obtain important astrophysical informa-
tion from the observation of the motion of the gas streams in
the gravitational field of compact objects. This information
does have fundamental theoretical implications, since the
study of the accretion and matter flow processes by compact
objects is a strong and effective indicator of their physical
nature. However, even by taking into account the significant
recent advances, up to now the observational results have val-
idated the theoretical predictions of general relativity mostly
in a qualitativeway. Despite the present day high precision of
the astronomical and astrophysical measurements, still one
cannot make a clear observational distinction between the
numerous classes of exotic/compact objects that have been
proposed within the theoretical formalism of general relativ-
ity [141].

Nevertheless, we expect that with the significant improve-
ment of the already existing imaging observational tech-
niques [132,133,135–138], it will also be possible to obtain
definite observational information about the existence of non-
trivial black holes or of naked singularities, and to differen-
tiate these important classes of compact general relativistic
objects.

The black hole solutions of the Einstein equations in vac-
uum have been extensively investigated. An important prob-
lem concerning black hole solutions is if these spacetimes
are nonlinearly stable as solutions of the gravitational field
equations. Another interesting topics is the study of scatter-
ing processes on black holes spacetimes. Both these prob-
lems can be studied with the help of Teukolsky equation
[142,143], which describe dynamical gravitational, electro-
magnetic, and neutrino-field perturbations of a rotating black
hole. The equations decouple into a single gravitational equa-
tion, a single electromagnetic equation, and a single neutrino
equation. The gravitational equation describes the dynamics
of the extremal curvature components of the metric in the
Newman–Penrose formalism. Around a black hole solution
the linearized gravitational equations can be formally decom-
posed into modes, and this decomposition makes possible to
study the so-called mode stability, that is, the existence/non-

existence for all metric or curvature components of exponen-
tially growing modes. Up to know most of the researches on
mode stability have been performed for the standard solutions
of the Einstein vacuum field equations. It would certainly be
of interest to also consider the mode stability for the Kerr–
Brans–Dicke geometry considered in the present paper.

In the present paper we have convincingly shown that the
thermodynamic and electromagnetic properties (energy flux,
temperature distribution and equilibrium radiation spectrum)
of the accretion disks that form around compact objects by
gas accretion are different for naked singularities, Kerr black
holes, and non-trivial black holes obtained as rotating solu-
tions of the Brans–Dicke theory for a massless scalar field.
We have obtained a number of observational effects that give
some clear observational signatures that could help to iden-
tify observationally and distinguish between different type
of compact objects that are the theoretical consequences of
the geometric description of gravity. More exactly, by com-
paring the energy fluxes emerging from the surface of the
gaseous thin accretion disk formed around different types of
black holes and naked singularities having similar masses,
we have found that for some (high) values of the spin param-
eter and of the model parameter γ , the maximal value of the
flux is much higher for naked singularities, and the emis-
sion region is located more closely to the inner edge of the
disk as compared to the Kerr black hole case. In fact, all
the physical, geometrical and thermodynamical properties
of the disks greatly depend on the values of γ and of the spin
parameter a�. Similar effects do appear in the behavior of the
disk temperature profiles and of the disk spectra. Thus, with
the future development of the observational techniques these
signatures may provide the possibility of clearly distinguish-
ing between rotating naked singularities, non-trivial rotating
black hole type solutions of the Brans–Dicke theory, and the
Kerr-type black holes of standard general relativity.
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49. R. Luna, M. Zilhǎo, V. Cardoso, J.L. Costa, J. Natário, Phys. Rev.

D 99, 064014 (2019)
50. D. Chen, Eur. Phys. J. C 79, 353 (2019)
51. T. Andrade, R. Emparan, D. Licht, R. Luna, J. High Energy Phys.

04, 121 (2019)
52. S. Hod, Nucl. Phys. B 941, 636 (2019)
53. W.E. East, Phys. Rev. Lett. 122, 231103 (2019)
54. D. Chen, X. Zeng, W. Yang, Nucl. Phys. B 946, 114722 (2019)
55. A. Ishibashi, K. Maeda, E. Mefford, Phys. Rev. D 100, 066008

(2019)
56. T. Andrade, R. Emparan, D. Licht, R. Luna, J. High Energy Phys.

09, 99 (2019)
57. K. Destounis, Phys. Lett. B 795, 211 (2019)
58. R.J. Gleiser, G. Dotti, Class. Quant. Gravit. 23, 5063 (2006)
59. G. Dotti, R.J. Gleiser, J. Pullin, Phys. Lett. B 644, 289 (2007)
60. G. Dotti, R.J. Gleiser, Class. Quant. Gravit. 26, 215002 (2009)
61. G. Dotti, R.J. Gleiser, Class. Quant. Gravit. 27, 185007 (2010)
62. G. Dotti, R.J. Gleiser, I.F. Ranea-Sandoval, H. Vucetich, Class.

Quant. Gravit. 25, 245012 (2008)
63. P. Pani, E. Berti, V. Cardoso, Y. Chen, R. Norte, Phys. Rev. D 81,

084011 (2010)
64. G. Dotti, R.J. Gleiser, I.F. Ranea-Sandoval, Class. Quant. Gravit.

29, 095017 (2012)
65. D.N. Page, K.S. Thorne, Astrophys. J. 191, 499 (1974)
66. K.S. Thorne, Astrophys. J. 191, 507 (1974)
67. C.S.J. Pun, Z. Kovács, T. Harko, Phys. Rev. D 78, 024043 (2008)
68. C.S.J. Pun, Z. Kovács, T. Harko, Phys. Rev. D 78, 084015 (2008)
69. T. Harko, Z. Kovács, F.S.N. Lobo, Phys. Rev. D 80, 044021 (2009)
70. T. Harko, Z. Kovács, F.S.N. Lobo, Class. Quant. Gravit. 27,

105010 (2010)
71. T. Harko, Z. Kovács, F.S.N. Lobo, Class. Quant. Gravit. 28,

165001 (2011)
72. T. Harko, Z. Kovács, F.S.N. Lobo, Phys. Rev. D 78, 084005 (2008)
73. T. Harko, Z. Kovaács, F.S.N. Lobo, Phys. Rev. D 79, 064001

(2009)
74. T. Harko, Z. Kovács, F.S.N. Lobo, Class. Quant. Gravit. 26,

215006 (2009)
75. D. Torres, Nucl. Phys. B 626, 377 (2002)
76. Y.F. Yuan, R. Narayan, M.J. Rees, Astrophys. J. 606, 1112 (2004)
77. Z. Kovács, K.S. Cheng, T. Harko, Astron. Astrophys. 500, 621

(2009)
78. Z. Kovács, L. Gergely, P.L. Biermann, MNRAS 416, 991 (2011)
79. G.R. Mocanu, D. Grumiller, Phys. Rev. D 85, 105022 (2012)
80. S. Chen, J. Jing, Phys. Lett. B 711, 81 (2012)
81. C. Bambi, Phys. Rev. D 87, 084039 (2013)
82. C. Bambi, D. Malafarina, Phys. Rev. D 88, 064022 (2013)
83. L. Kong, Z. Li, C. Bambi, Astrophys. J. 797, 78 (2014)
84. B. Danila, T. Harko, Z. Kovács, Eur. Phys. J. C 75, 203 (2015)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1904.05363


162 Page 20 of 20 Eur. Phys. J. C (2020) 80 :162

85. K.V. Staykov, D.D. Doneva, S.S. Yazadjiev, J. Cosmol. Astropart.
Phys. 08, 061 (2016)

86. R.K. Karimov, R.N. Izmailov, A. Bhattacharya, K.K. Nandi, Eur.
Phys. J. C 78, 788 (2018)

87. Z. Kovács, T. Harko, Phys. Rev. D 82, 124047 (2010)
88. P.S. Joshi, D. Malafarina, R. Narayan, Class. Quant. Gravit. 31,

015002 (2014)
89. Z. Stuchlik, J. Schee, A. Abdujabbarov, Phys. Rev. D 89, 104048

(2014)
90. J. P. DeAndrea, K. M. Alexander, Phys. Rev. D 89, 123012 (2014),

Erratum: Phys. Rev. D 89, 129904 (2014)
91. R.S.S. Vieira, J. Schee, W. Kluzniak, Z. Stuchlik, M. Abramowicz,

Phys. Rev. D 90, 024035 (2014)
92. Z. Stuchlik, J. Schee, Class. Quant. Gravit. 31, 195013 (2014)
93. Z. Stuchlik, D. Pugliese, J. Schee, H. Kucáková, Eur. Phys. J. C

75, 451 (2015)
94. A. Goel, R. Maity, P. Roy, T. Sarkar, Phys. Rev. D 91, 104029

(2015)
95. N. Ortiz, O. Sarbach, T. Zannias, Phys. Rev. D 92, 044035 (2015)
96. N. Ortiz, O. Sarbach, T. Zannias, Class. Quant. Gravit. 32, 247001

(2015)
97. M. Blaschke, Z. Stuchlik, Phys. Rev. D 94, 086006 (2016)
98. C. Chakraborty, P. Kocherlakota, P.S. Joshi, Phys. Rev. D 95,

044006 (2017)
99. C. Chakraborty, P. Kocherlakota, M. Patil, S. Bhattacharyya, P.S.

Joshi, A. Królak, Phys. Rev. D 95, 084024 (2017)
100. S. Mukherjee, Phys. Rev. D 97, 124006 (2018)
101. M. Rizwan, M. Jamil, and A. Wang, Phys. Rev. D 98, 024015

(2018), Erratum: Phys. Rev. D 100, 029902 (2019)
102. H. Liu, M. Zhou, C. Bambi, J. Cosmol. Astropart. Phys. 08, 044

(2018)
103. D. Charbulák, Z. Stuchlik, Eur. Phys. J. C 78, 879 (2018)
104. K. Jusufi, A. Banerjee, G. Gyulchev, M. Amir, Eur. Phys. J. C 79,

28 (2019)
105. R. Shaikh, P. Kocherlakota, R. Narayan, P.S. Joshi, MNRAS 482,

52 (2019)
106. M. Rizwan, M. Jamil, K. Jusufi, Phys. Rev. D 99, 024050 (2019)
107. C. Chakraborty, S. Bhattacharyya, J. Cosmol. Astropart. Phys. 05,

034 (2019)
108. G. Gyulchev, P. Nedkova, T. Vetsov, S. Yazadjiev, Phys. Rev. D

100, 024055 (2019)
109. R. Shaikh, P.S. Joshi, J. Cosmol. Astropart. Phys. 10, 064 (2019)
110. C. Bambi, K. Freese, S. Vagnozzi, L. Visinelli, Phys. Rev. D 100,

044057 (2019)
111. D. Psaltis, T. Johannsen, Astrophys. J. 745, 1 (2012)
112. I.F. Ranea-Sandoval, F. Garcia, Astron. Astrophys. A 574, 40

(2015)

113. F. Garcia, I.F. Ranea-Sandoval, T. Johannsen, Astron. Astrophys.
A 587, 141 (2016)

114. B. Chauvineau, Phys. Rev. D 98, 088501 (2018)
115. Z. Kovács, T. Harko, S. Shahidi, Phys. Rev. D 98, 088502 (2018)
116. J. Sultana, B. Bose, Phys. Rev. D 92, 104022 (2015)
117. B. Carter, Phys. Rev. 174, 1559 (1968)
118. J.H. Bardeen, W.H. Press, S.A. Teukolsky, Astrophys. J. 178, 347

(1972)
119. M. Shibata, M. Sasaki, Phys. Rev. D 58, 104011 (1998)
120. D. Charbulák, Z. Stuchlík, Eur. Phys. J. C 78, 879 (2018)
121. I. D. Novikov, K. S. Thorne, in Black Holes, ed. C. DeWitt and

B. DeWitt, New York: Gordon and Breach (1973)
122. N.I. Shakura, R.A. Sunyaev, Astron. Astrophys. 24, 33 (1973)
123. J.P. Luminet, Astron. Astrophys. 75, 228 (1979)
124. S. Bhattacharyya, R. Misra, A.V. Thampan, Astrophys. 550, 841

(2001)
125. D. Torres, Nucl. Phys. B 626, 377 (2002)
126. D. Bini, R.T. Jantzen, L. Stella, Class. Quant. Gravit. 26, 055009

(2009)
127. H. C. Spruit, Accretion disks. In I. González Martinez-Pais, T.

Shahbaz,& J. Casares Velázquez (Eds.), Accretion Processes in
Astrophysics (Canary Islands Winter School of Astrophysics, pp.
1–44), Cambridge: Cambridge University Pres s. https://doi.org/
10.1017/CBO9781139343268.002

128. C. Bambi et al., Universe 4, 79 (2018)
129. A. Tripathi et al., Astrophys. J. 874, 135 (2019)
130. H. Liu et al., Phys. Rev. D 99, 123007 (2019)
131. R. Abuter, A. Amorim et al., Gravity Collabotion. Astron. Astro-

phys. 615, L15 (2018)
132. K. Akiyama et al., Astrophys. J. Lett. 875, L6 (2019)
133. K. Akiyama et al., Astrophys. J. Lett. 875, L1 (2019)
134. B.P. Abbott et al., Phys. Rev. Lett. 119, 141101 (2017)
135. K. Akiyama et al., Astrophys. J. Lett. 875, L5 (2019)
136. K. Akiyama et al., Astrophys. J. Lett. 875, L2 (2019)
137. K. Akiyama et al., Astrophys. J. Lett. 875, L3 (2019)
138. K. Akiyama et al., Astrophys. J. Lett. 875, L4 (2019)
139. G. Maryam, S. Maryam, Astrophys. J. 865, 93 (2018)
140. K. Moriyama, S. Mineshige, M. Honma, K. Akiyama, Astrophys.

J. 887, 227 (2019)
141. Y.F. Yuan, R. Narayan, M.J. Rees, Astrophys. J. 606, 1112 (2004)
142. S.A. Teukolsky, Astrophys. J. 185, 635 (1973)
143. S.A. Teukolsky, W.H. Press, Astrophys. J. 185, 649 (1974)

123

https://doi.org/10.1017/CBO9781139343268.002
https://doi.org/10.1017/CBO9781139343268.002

	Distinguishing Brans–Dicke–Kerr type naked singularities  and black holes with their thin disk electromagnetic radiation properties
	Abstract 
	1 Introduction
	2 The Kerr solution in the Brans–Dicke theory
	3 Motion of test particles in stable orbits around rotating compact objects
	3.1 The general formalism
	3.2 Circular motions in the equatorial plane of the Brans–Dicke–Kerr naked singularity

	4 Electromagnetic effects in accretion disks gravitating around compact objects
	5 Observational signatures of Brans–Dicke–Kerr type geometries
	5.1 Electromagnetic properties of the disk
	5.1.1 The energy flux profiles
	5.1.2 Temperature distribution
	5.1.3 The luminosity of the disk

	5.2 Eddington luminosity of the disk

	6 Discussions and final remarks
	Acknowledgements
	References




