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Abstract A novel method for extending the frequency
frontier in gravitational wave observations is proposed. It
is shown that gravitational waves can excite a magnon.
Thus, gravitational waves can be probed by a graviton–
magnon detector which measures resonance fluorescence of
magnons. Searching for gravitational waves with a wave
length λ by using a ferromagnetic sample with a dimension
l, the sensitivity of the graviton–magnon detector reaches
spectral densities, around 5.4 × 10−22 × ( l

λ/2π
)−2 [Hz−1/2]

at 14 GHz and 8.6×10−21 × ( l
λ/2π

)−2 [Hz−1/2] at 8.2 GHz,
respectively.

1 Introduction

In 2015, the gravitational wave interferometer detector
LIGO [1] opened up full-blown multi-messenger astronomy
and cosmology, where electromagnetic waves, gravitational
waves, neutrinos, and cosmic rays are utilized to explore the
universe. In future, as the history of electromagnetic wave
astronomy tells us, multi-frequency gravitational wave obser-
vations will be required to boost the multi-messenger astron-
omy and cosmology.

The purpose of this letter is to present a novel idea for
extending the frequency frontier in gravitational wave obser-
vations and to report the first limit on GHz gravitational
waves. As we will see below, there are experimental and
theoretical motivations to probe GHz gravitational waves.

It is useful to review the current status of gravitational
wave observations [2]. It should be stressed that there exists
a lowest measurable frequency. Indeed, the lowest frequency
we can measure is around 10−18 Hz below which the wave
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length of gravitational waves exceeds the current Hubble
horizon. Measuring the temperature anisotropy and the B-
mode polarization of the cosmic microwave background
[3,4], we can probe gravitational waves with frequencies
between 10−18 and 10−16 Hz. Astrometry of extragalactic
radio sources is sensitive to gravitational waves with fre-
quencies between 10−16 and 10−9 Hz [5,6]. The pulsar tim-
ing arrays, like EPTA [7,8], IPTA [9] and NANOGrav [10],
observe the gravitational waves in the frequency band from
10−9 Hz to 10−7 Hz. Doppler tracking of a space craft, which
uses a measurement similar to the pulsar timing arrays, can
search for gravitational waves in the frequency band from
10−7 to 10−3 Hz [11]. The space interferometers LISA [12]
and DECIGO [13] can cover the range between 10−3 and 10
Hz. The interferometer detectors LIGO [14], Virgo [15], and
KAGRA [16] with km size arm lengths can search for gravi-
tational waves with frequencies from 10 Hz to 1 kHz. In this
frequency band, resonant bar experiments [17] are comple-
mentary to the interferometers [18]. Furthermore, interfer-
ometers can be used to measure gravitational waves with the
frequencies between 1 kHz and 100 MHz. In fact, recently,
the limit on gravitational waves at MHz was reported [19].
To the best of our knowledge, the measurement of 100 MHz
gravitational waves with a 0.75 m arm length interferometer
[20] is the highest frequency gravitational wave experiment
to date. Thus, the frequency range higher than 100 MHz is
remaining to be explored. Given this experimental situation,
GHz experiments are desired to extend the frequency frontier.

Theoretically, GHz gravitational waves are interesting
from various points of view. As is well known, inflation
can produce primordial gravitational waves. Among the fea-
tures of primordial gravitational waves, the most clear sig-
nature is the break of the spectrum determined by the energy
scale of the inflation, which may locate at around GHz
[17]. Moreover, at the end of inflation or just after infla-
tion, there may be a high frequency peak of gravitational
waves [21,22]. Remarkably, there is a chance to observe
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the non-classical nature of primordial gravitational waves
with frequency between MHz and GHz [23]. On the other
hand, there are many astrophysical sources producing high
frequency gravitational waves [24]. Among them, primor-
dial black holes are the most interesting ones because they
give a hint of the information loss problem. Exotic signals
from extra dimensions may exist in the GHz band [25,26].
Hence, GHz gravitational waves could be a window to the
extra dimensions [27]. Thus, it is worth investigating GHz
gravitational waves to understand the astrophysical process,
the early universe, and quantum gravity.

In this letter, we propose a novel method for detecting GHz
gravitational waves with a magnon detector. First, we show
that gravitational waves excite magnons in a ferromagnetic
insulator. Furthermore, using experimental results of mea-
surement of resonance fluorescence of magnons [28,29], we
demonstrate that the sensitivity to the spectral density of grav-
itational waves are around 5.4×10−22 × ( l

λ/2π
)−2 [Hz−1/2]

at 14 GHz and 8.6×10−21 × ( l
λ/2π

)−2 [Hz−1/2] at 8.2 GHz,
respectively, where l is the dimension of the ferromagnetic
insulator and λ is the wave length of the gravitational waves.

2 Graviton–magnon resonance

The Dirac equation in curved spacetime with a metric gμν is
given by

iγ α̂eμ

α̂

(
∂μ + �μ + ieAμ

)
ψ = mψ , (1)

where γ α̂ , e, Aμ are the gamma matrices, the electronic
charge, and a vector potential, respectively. A tetrad eμ

α̂
sat-

isfies eα̂
μe

β̂
ν η

α̂β̂
= gμν . The spin connection is defined by

�μ = 1
2e

α̂
ν σ

α̂β̂

(
∂μeνβ̂ + �ν

λμe
λβ̂

)
, where σ

α̂β̂
= 1

4 [γα̂, γ
β̂
]

is a generator of the Lorentz group and �
μ
νλ is the Christoffel

symbol.
In the non-relativistic limit, one can obtain interaction

terms between a magnetic field and a spin:

Hspin � −μB
(
2δi j + hi j

)
Ŝi B j , (2)

where μB = |e|/2m, Ŝ, and B are the Bohr magneton, the
spin of the electron, and an external magnetic field, respec-
tively. hi j (� 1) describes “effective” gravitational waves.1

The second term shows that gravitational waves can interact
with the spin in the presence of external magnetic fields [31].

We now consider a ferromagnetic sample which has N
electronic spins. Such a system is well described by the

1 The discussion should be developed in the proper detector frame.
Then hi j is given by the Riemann tensor like Rik jl xk xl , where xk is the
spatial coordinate of a Fermi normal coordinate [30]. Consequently, a
suppression factor ( l

λ/2π
)2 appears when we read off the “true” gravi-

tational wave from hi j at the final result.

Heisenberg model:

Hg = −μB Bz

∑

i

[
2Ŝz(i) + hzj Ŝ

j
(i)

]
−

∑

i, j

Ji j Ŝ(i) · Ŝ( j),

(3)

where an external magnetic field Bz is applied along the z-
direction and i specifies each of the sites of the spins. The
second term represents the interactions between spins with
coupling constants Ji j .

Let us consider planar gravitational waves propagating
in the z–x plane, namely, the wave number vector of the
gravitational waves k has a direction k̂ = (sin θ, 0, cos θ).
Moreover, we assume that the wave length of the gravitational
waves is much larger than the dimension of the sample. This
is the case of cavity experiments which we utilize in the next
section. We can expand the metric perturbations in terms of

linear polarization tensors satisfying e(σ )
i j e(σ ′)

i j = δσσ ′ as

hi j (t) = h(+)(t)e(+)
i j + h(×)(t)e(×)

i j , (4)

where we used the fact that the amplitude is approximately
uniform over the sample. More explicitly, we took the repre-
sentation

h(+)(t) = h(+)

2

(
e−iwh t + eiwh t

)
, (5)

h(×)(t) = h(×)

2

(
e−i(wh t+α) + ei(wh t+α)

)
, (6)

where ωh is an angular frequency of the gravitational waves
and α represents a difference of the phases of polarizations.
Note that the polarization tensors can be explicitly con-
structed as

e(+)
i j = 1√

2

⎛

⎝
cos θ2 0 − cos θ sin θ

0 −1 0
− cos θ sin θ 0 sin θ2

⎞

⎠ , (7)

e(×)
i j = 1√

2

⎛

⎝
0 cos θ 0

cos θ 0 − sin θ

0 − sin θ 0

⎞

⎠ . (8)

In Eqs. (7) and (8), we defined the + mode as a deformation
in the y-direction.

It is well known that the spin system (3) can be rewritten
by using the Holstein–Primakoff transformation [32]:
⎧
⎪⎪⎨

⎪⎪⎩

Ŝz(i) = 1
2 − Ĉ†

i Ĉi ,

Ŝ+
(i) =

√
1 − Ĉ†

i Ĉi Ĉi ,

Ŝ−
(i) = Ĉ†

i

√
1 − Ĉ†

i Ĉi ,

(9)

where the bosonic operators Ĉi and Ĉ†
i satisfy the commuta-

tion relations [Ĉi , Ĉ
†
j ] = δi j and S±

( j) = Sx( j) ± i Sy( j) are the
ladder operators. The bosonic operators describe spin waves
with dispersion relations determined by Bz and Ji j . Further-
more, provided that contributions from the surface of the
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sample are negligible, one can expand the bosonic operators
by plane waves as

Ĉi =
∑

k

e−ik·r i
√
N

ĉk, (10)

where r i is the position vector of the i spin. The excitation
of the spin waves created by ĉ†

k is called a magnon. From
now on, we only consider the uniform mode of magnons.
Then from Eq. (3), using the rotating wave approximation
and assuming ĉ†ĉ � 1, one can deduce

Hg � 2μB Bzĉ
†ĉ + gef f

(
ĉ†e−iωh t + ĉeiωh t

)
, (11)

where ĉ = ĉk=0 and

gef f = 1

4
√

2
μB Bz sin θ

√
N

×
[
cos2 θ (h(+))2 + (h(×))2

+2 cos θ sin α h(+)h(×)
]1/2

, (12)

is an effective coupling constant between gravitational waves
and a magnon. From Eq. (12), we see that the effective cou-
pling constant has gotten a factor

√
N . One can also express

Eq. (12) using the Stokes parameters as

gef f = 1

4
√

2
μB Bz sin θ

√
N

×
[

1 + cos2 θ

2
I − sin2 θ

2
Q + cos θ V

]1/2

, (13)

where the Stokes parameters for gravitational waves are
defined by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I = (h(+))2 + (h(×))2,

Q = (h(+))2 − (h(×))2,

U = 2 cos α h(+)h(×),

V = 2 sin α h(+)h(×) .

(14)

They satisfy I 2 = U 2 + Q2 + V 2. We see that the effective
coupling constant depends on the polarizations. Note that the
Stokes parameters Q and U transform as
(
Q′

U ′

)
=

(
cos 4� sin 4�

− sin 4� cos 4�

) (
Q

U

)
(15)

where � is the rotation angle around k.
The second term in Eq. (11) shows that planar gravitational

waves induce the resonant spin precessions if the angular
frequency of the gravitational waves is near the Lamor fre-
quency, 2μB Bz . It is worth noting that the situation is similar
to the resonant bar experiments [17] where planar gravita-
tional waves excite phonons in a bar detector.

In the next section, utilizing the graviton–magnon reso-
nance, we will give upper limits on GHz gravitational waves.

3 Limits on GHz gravitational waves

In the previous section, we showed that planar gravitational
waves can induce resonant spin precession of electrons. It is
our observation that the same resonance is caused by coher-
ent oscillation of the axion dark matter [33]. Recently, mea-
surements of resonance fluorescence of magnons induced
by the axion dark matter was conducted and upper bounds
on an axion–electron coupling constant have been obtained
[28,29]. The point is that we can utilize these experimental
results to give the upper bounds on the amplitude of GHz
gravitational waves.

Actually, the interaction hamiltonian which describes an
axion–magnon resonance is given by

Ha = g̃e f f
(
ĉ†e−imat + ĉeimat

)
, (16)

where g̃e f f is an effective coupling constant between an
axion and a magnon. Notice that the axion oscillates with
a frequency determined by the axion mass ma . One can
see that this form is the same as the interaction term in
Eq. (11). Through the hamiltonian (16), g̃e f f is related to
an axion–electron coupling constant in [28,29]. Then the
axion–electron coupling constant can be converted to g̃e f f
by using parameters, such as the energy density of the axion
dark matter, which are explicitly given in [28,29]. There-
fore constraints on g̃e f f (95% C.L.) can be read from the
constraints on the axion–electron coupling constant given in
[28] and [29], respectively, as follows:

g̃e f f <

{
3.5 × 10−12 eV,

3.1 × 10−11 eV .
(17)

It is easy to convert the above constraints to those on the
amplitude of gravitational waves appearing in the effective
coupling constant (13). Indeed, we can read off the exter-
nal magnetic field Bz and the number of electrons N as
(Bz, N ) = (0.5 T, 5.6 × 1019) from [28] and (Bz, N ) =
(0.3 T, 9.2 × 1019) from [29], respectively. The external
magnetic field Bz determines the frequency of gravitational
waves we can detect. Therefore, using Eqs. (13), (17) and the
above parameters, one can put upper limits on gravitational
waves at frequencies determined by Bz . Since [28] and [29]
focused on the direction of Cygnus and set the external mag-
netic fields to be perpendicular to it, we probe continuous
gravitational waves coming from Cygnus with θ = π

2 (more
precisely, sin θ = 0.9 in [29]). We also assume there to be
no linear and circular polarizations, i.e., Q′ = U ′ = V = 0.
Consequently, experimental data [28] and [29] show the sen-
sitivity to the characteristic amplitude of gravitational waves
defined by hc = h(+) = h(×) to be

hc ∼
{

9.1 × 10−17 × ( l
λ/2π

)−2 at 14 GHz,

1.1 × 10−15 × ( l
λ/2π

)−2 at 8.2 GHz,
(18)
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Fig. 1 Several experimental sensitivities and constraints on high fre-
quency gravitational waves are depicted. LIGO and Virgo have a sensi-
tivity around 102 Hz [14,15]. The blue color represents an upper limit on
stochastic gravitational waves by waveguide experiment using an inter-
action between electromagnetic fields and gravitational waves [34]. The
green one is the upper limit on stochastic gravitational waves, obtained
by the 0.75 m interferometer [20]. The red color represents the sensi-
tivity of the graviton–magnon detector

respectively. Note that a suppression factor ( l
λ/2π

)2 ∼ 10−3

has appeared (see the footnote 1). In terms of the spectral den-
sity defined by Sh = h2

c/2 f and the energy density param-
eter defined by �GW = 2π2 f 2h2

c/3H2
0 (H0 is the Hubble

parameter), the sensitivities are

√
Sh ∼

{
5.4×10−22×( l

λ/2π
)−2 [Hz−1/2] at 14 GHz,

8.6×10−21×( l
λ/2π

)−2 [Hz−1/2] at 8.2 GHz .

(19)

and

h2
0�GW ∼

{
1.1 × 1023 × ( l

λ/2π
)−2 at 14 GHz,

5.3 × 1024 × ( l
λ/2π

)−2 at 8.2 GHz .
(20)

We depicted the sensitivity on the spectral density with sev-
eral other gravitational wave experiments in Fig. 1.

4 Discussion

In this letter, we focused on continuous gravitational waves
as an explicit demonstration to show the sensitivity of our
new gravitational wave detection method as summarized in
Fig. 1. Interestingly, there are several theoretical models pre-
dicting high frequency gravitational waves which are within
the scope of our method [2]. The graviton–magnon resonance
is also useful for probing stochastic gravitational waves with
almost the same sensitivity illustrated in Fig. 1. Although the
current sensitivity is still not sufficient for putting a meaning-

ful constraint on stochastic gravitational waves, it is impor-
tant to pursue the high frequency stochastic gravitational
wave search for future gravitational wave physics. Moreover,
we can probe a burst of gravitational waves of any wave form
if the duration time is smaller than the relaxation time of a
system. The situation is the same as for resonant bar detec-
tors [35,36]. For instance, in the measurements [28,29], the
relaxation time is about 0.1 µs, which is determined by the
line width of the ferromagnetic sample and the cavity. If the
duration of a burst of gravitational waves is smaller than 0.1
µs, we can detect it. Furthermore, improving the line width
of the sample and the cavity not only leads to detecting a
burst of gravitational waves but also to increasing the sen-
sitivity. As another way to improve sensitivity, a quantum
nondemolition measurement may be promising [37–39]. In
particular, although we assumed that a gravitational wave was
approximately monochromatic, there might be cases where
the approximation is not valid. In such cases, a quantum non-
demolition measurement would be useful.

5 Conclusion

Given the importance of extending the frequency frontier
in gravitational wave observations, we proposed a novel
method to detect GHz gravitational waves with the magnon
detector. Indeed, gravitational waves can excite a magnon.
Using experimental results for the axion dark matter search
[28] and [29], we showed that the sensitivity to the spec-
tral density of continuous gravitational waves reaches around
5.4×10−22×( l

λ/2π
)−2 [Hz−1/2] at 14 GHz and 8.6×10−21×

( l
λ/2π

)−2 [Hz−1/2] at 8.2 GHz, respectively. One can per-
form an all sky search of continuous gravitational waves at
the above sensitivity with the graviton–magnon detector. We
can also search for stochastic gravitational waves and a burst
of gravitational waves with almost the same sensitivity.
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