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Abstract In this paper, we investigate the effect of higher
curvature corrections from Gauss–Bonnet gravity on the
shadow of charged black holes in both AdS and Minkowski
spacetimes. The null geodesic equations are computed in
d = 5 spacetime dimensions by using the directions of
symmetries and Hamilton–Jacobi equation. With the null
geodesics in hand, we then proceed to evaluate the celes-
tial coordinates (α, β) and the radius Rs of the black hole
shadow and represent it graphically. The effects of charge Q
of the black hole and the Gauss–Bonnet parameter γ on the
radius of the shadow Rs is studied in detail. It is observed
that the Gauss–Bonnet parameter γ affects the radius of the
black hole shadow Rs differently for the AdS black hole
spacetime in comparison to the black hole spacetime which
is asymptotically flat. In particular the radius of the black hole
shadow increases with increase in the Gauss–Bonnet param-
eter in case of the AdS black hole spacetime and decreases
in case of the asymptotically flat black hole spacetime. We
then introduce a plasma background in order to observe the
change in the silhouette of the black hole shadow due to a
change in the refractive index of the plasma medium. Finally,
we study the effect of the Gauss–Bonnet parameter γ on the
energy emission rate of the black hole which depends on the
black hole shadow radius and represent the results graphi-
cally.

1 Introduction

The study of black holes has been a matter of great inter-
est ever since the existence of such objects were predicted
from Einstein’s general theory of relativity. The gravitational
attraction of black holes is so intense that objects moving
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around it within a critical radius rc falls into it. This phenom-
ena is known as strong gravitational lensing. If the objects
moving around black holes are photons coming from an illu-
minated source behind the black hole, then it casts a shadow
in a plane which can be seen by an observer at infinity.
The first study of black hole shadow was by Bardeen [1].
The shadow of spherically symmetric black holes are circu-
lar [2,3], whereas the shadows of spinning black holes are
deformed [4,5]. The calculation of angular radius in case
of Schwarzschild black holes was carried out in [1] and two
observable parameters were introduced in [6] which triggered
the investigation of shadow of black holes in a wide vari-
ety of cases, namely, Reissner–Nordstrom, Kerr–Newman,
Kerr–Sen, Kerr–Taub-NUT, Kerr–Newman NUT, non-Kerr,
braneworld, regular and higher dimensional black holes [7–
17], to name a few. The event horizon telescope EHT [18]
which is a Earth-sized millimeter-wave interferometer span-
ning the earth is an ongoing project devised to gather data of
the supermassive black holes of the Milky Way galaxy and
our nearby galaxy. The EHT group published their recent
results this year of the image of M87 [19] which enabled us
to see the first ever image of black hole, from which the mass
and spin of the black hole were calculated.

Although primarily the interest lies in studying black hole
shadows, yet there has been study of shadows even for worm-
holes [20] and intense research is going on in this area in the
hope of getting some possible observable predictions.

The concept of working with higher curvature gravity
has been of great interest recently due to its occurrence
in the effective low energy action of superstring theories.
Now according to gauge/gravity correspondence, the higher
derivative curvature terms are viewed as the corrections com-
ing from the large N expansion of conformal field theories
living on the boundary of the asymptotically AdS spacetime
in the strong coupling limit. The simplest of the higher curva-
ture gravity is the Gauss–Bonnet (GB) gravity with parameter
γ measuring the effect of higher curvature. The GB term in
the Lagrangian is topologically invariant in d = 4 space-
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time dimensions. Hence to consider the dynamical effect of
GB gravity we must work in dimensions d � 5. A study
of black hole shadow in higher dimension may give some
insights into the nature of black holes in higher dimensions.
In a recent paper [21], the structure of black hole shadows
were investigated in (4 + 1) dimensions in the context of
holography. Such studies indeed provide a good motivation
to look at black hole shadows for Gauss–Bonnet black holes
in 5-dimensions.

Shadow in case of Gauss–Bonnet gravity has been stud-
ied in [22,23] considering spin and in higher dimensions.
Our work investigates the shadow of charged Gauss–Bonnet
gravity in d = 5-dimensions without spin for asymptoti-
cally AdS and Minkowski spaces. We also look at the black
hole shadow of these black holes in a plasma medium and
investigate the effects of various parameters on the shadow
radius. We then proceed to investigate the energy emission
rate of these black holes which depends on the radius of
the black hole shadow. The paper is arranged as follows. In
Sect. 1, we introduce the charged GB black hole. In Sect. 2.1,
we determine the null geodesics in (4 + 1) dimensions and
the corresponding shadow parameters in Sect. 3 and plot the
graphs. In Sect. 4, we study the shadow in the presence of a
plasma background. In Sect. 5, we observe how the shadow
changes with the GB parameter γ and charge Q. In Sect. 6,
we study the variation of energy emission rate with the fre-
quency ω. We conclude in Sect. 7. For our calculations we
consider G = c = h̄ = 1.

2 Charged AdS black holes in Gauss–Bonnet gravity

We start by writing down the Einstein–Hilbert action with a
negative cosmological constant and Maxwell electrodynam-
ics in Gauss–Bonnet gravity in d spacetime dimensions. This
reads [24]

S = 1

16πG

∫
dd x

√−g

[
(d − 1)(d − 2)

l2
+ R

+ γ

(
R2 − 4RabR

ab + Rabcd R
abcd

)
−4πGFabF

ab
]

Fab = ∂a Ab − ∂b Aa (1)

where γ ≥ 0, is the Gauss–Bonnet parameter with dimen-
sions of (length)2 and � = − (d−1)(d−2)

2l2
; l denotes the AdS

radius, Fab is the Maxwell field strength tensor and Aa cor-
responds to the potential of the electromagnetic field. The
field equations obtained from this action reads [24]

Rab − 1

2
gabR = (d − 1)(d − 2)

2l2
gab

+8πG

(
FagF

g
b − 1

4
gabFgh F

gh
)

+γ

[
1

2
gab

(
R2 − 4Rcd R

cd + Rcdef R
cde f

)

−2RRab + 4RacR
c
b + 4Rcd R

c d
a b − 2RacdeR

cde
b

]
. (2)

Assuming a spherically symmetric metric of the form

ds2 = − f (r)dt2 + dr2

f (r)
+ r2hi j dx

i dx j (3)

where hi j dxi dx j represents the line element of the (d − 2)-
dimensional hypersurface, one obtains the metric coefficient
f (r) to be [25]

f (r) = 1 + r2

2γ̃

⎛
⎝1 −

√
1 − 4γ̃

l2

√
1 + m

rd−1 − q2

r2d−4

⎞
⎠ (4)

where γ̃ = (d − 3)(d − 4)γ and m, q are related to the
gravitational mass M and charge Q as

M =
(d − 2)	k

(
1 − 4γ̃

l2

)

64πGγ̃
m, 	k = 2π

(
d−1

2

)



( d−1

2

) (5)

Q =

√√√√π(d − 2)(d − 3)
(

1 − 4γ̃

l2

)

2γ̃G
q . (6)

In the limit γ̃ → 0, Eq. (4) simplifies to

f (r) = 1+r2

l2
− 16πGM

(d − 2)	k

1

rd−3 + GQ2

2π(d − 2)(d − 3)

1

r2d−6

(7)

which gives the Reissner–Nordstrom AdS black hole solu-
tion in d-dimensional spacetime. From the expression of
f (r) in Eq. (4), we see that γ is constrained since one must
have (1 − 4γ̃

l2
) ≥ 0, which gives γ ≤ l2

4(d−3)(d−4)
. Further,

since we look for stable black holes, the stability condi-
tion imposes a constraint on the Gauss–Bonnet parameter,
namely, γ̃

l2
≥ 1

36 [24]. Hence the permissible range for γ in
AdS5 black hole spacetime is

0.01388 ≤ γ ≤ 0.125. (8)

2.1 Geodesics in d = 5 Gauss–Bonnet black hole

In order to find the shape of the silhouette of the shadow we
first need to determine the geodesic equations traced by the
photons around the black hole. To develop the formalism, we
assume a test particle with rest mass m0 moving around the
black hole. The symmetry directions simplify the problem of
finding the geodesics by determining the constants of motion
associated with the direction of symmetries. The way to pro-
ceed is as follows. Let kμ be the vector along the direction of
symmetry and uμ = dxμ

dλ
be a tangent vector along a curve
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xμ = xμ(λ), where λ is the affine parameter. Then by using
the Killing equation, it is easy to show that

kμuμ = constant (9)

if the trajectory xμ is a geodesic [26].
We once again write down the metric of the charged

Gauss–Bonnet AdS black hole in d = 5 spacetime dimen-
sions. This reads

ds2 = − f (r)dt2 + dr2

f (r)
+ r2dθ2 + r2 sin2 θdφ2 + r2 cos2 θdψ2

(10)

where f (r) in d = 5 spacetime dimensions is given by

f (r) = 1 +
r2

(
1 −

√
1 − 8γ

l2
+ 64γ M

3πr4 − 2γ Q2

3πr6

)

4γ
. (11)

Since the metric coefficients are time independent, there-
fore there is a timelike Killing vector kμ = (1,0,0,0,0) Eq.
(9) then gives

k0u0 = u0 = −E . (12)

The negative sign is taken for convenience. The constant E
can be identified as the relativistic energy per unit mass of the
particle as observed by a stationary observer at infinity. The
other symmetry directions are φ and ψ since the metric coef-
ficients are independent of these coordinates. Hence setting
kμ = (0,0,0,1,0) for the φ direction and kμ = (0,0,0,0,1)

for the ψ direction, we obtain

k3u3 = u3 = Lφ (13)

k4u4 = u4 = Lψ. (14)

The constants Lφ and Lψ can be identified to be the angu-
lar momentum per unit mass of the particle as seen by a
stationary observer at infinity.

The geodesic equations along the directions of symmetry
can now be obtained using these constants of motion. This
can be done as follows. Note that

u0 = g0νuν = g00u0 = E

f (r)
(15)

u3 = g3νuν = g33u3 = Lφ

r2 sin2 θ
(16)

u4 = g4νuν = g44u4 = Lψ

r2 cos2 θ
(17)

where in the last equality of the above equations we have
used the contravariant components of the metric (10). The
above equations finally give

dt

dλ
= E

f (r)
(18)

dφ

dλ
= Lφ

r2 sin2 θ
(19)

dψ

dλ
= Lψ

r2 cos2 θ
. (20)

The other two geodesic equations can be derived from the
Hamilton–Jacobi equation

∂S

∂λ
+ 1

2
gμσ ∂S

∂xμ

∂S

∂xσ
= 0. (21)

In order to solve the Hamilton–Jacobi equation, we
assume an ansatz of the form [27]

S = 1

2
m2

0λ − Et + Lφφ + Lψψ + Sr (r) + Sθ (θ) (22)

where Sr (r) and Sθ (θ) are functions of r and θ respectively,
λ is the affine parameter and m0 is the rest mass of the test
particle. Substituting Eq. (22) in Eq. (21), we obtain
(

∂Sθ

∂θ

)2

+ L2
φ cot2 θ + L2

ψ tan2 θ

+1

2
m2

0 − r2E2

f (r)
+ r2 f (r)

(
∂Sr
∂r

)2

+ L2
φ + L2

ψ = 0

(23)

which on rearranging becomes
(

∂Sθ

∂θ

)2

+ L2
φ cot2 θ + L2

ψ tan2 θ

+1

2
m2

0 = r2E2

f (r)
− r2 f (r)

(
∂Sr
∂r

)2

− L2
φ − L2

ψ = κ

(24)

where κ is the separation constant.
Now using the relation pθ = ∂S

∂θ
= ∂Sθ

∂θ
, we obtain

∂Sθ

∂θ
= r2 ∂θ

∂λ
(25)

where we used the fact that pθ = ∂L
∂θ̇

with L being the
Lagrangian of the particle (moving in a curved background)
given by

L = 1

2
gμν ẋ

μ ẋν, ẋμ ≡ dxμ

dλ
. (26)

Similarly, using the relation pr = ∂S
∂r = ∂Sr

∂r , we obtain

∂Sr
∂r

= r2 ∂r

∂λ
. (27)

Using the relations (25, 27) in Eq. (24) and settingm0 = 0
to determine the null geodesics (since the rest mass of the
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photon is equal to zero), we obtain

r2
(
dθ

dλ

)
= √

�(θ) (28)

r2
(
dr

dλ

)
= √

R(r) (29)

where

R(r) = r4E2 −
(
L2 + κ

)
r2 f (r) (30)

�(θ) = κ − L2
φ cot2 θ − L2

ψ tan2 θ (31)

and κ is called the Carter constant. It is to be noted that Eqs.
(28, 29) are the geodesic equations corresponding to θ and r
respectively.

Equation (29) can be cast in the following familiar form

(
dr

dλ

)2

+ Veff (r) = 0 (32)

where Vef f is the effective radial potential given by

Vef f (r) = f (r)

r2

(
κ + L2

)
− E2

L2 ≡ L2
φ + L2

ψ. (33)

In order to find the unstable circular orbits we impose the
conditions

Vef f (r)
∣∣∣
r=rp

= 0,
∂Vef f (r)

∂r

∣∣∣
r=rp

= 0 (34)

and check whether Vef f (r) is a maxima at r = rp, that is

∂2Vef f (r)

∂r2

∣∣∣
r=rp

< 0 (35)

where rp is the radius of the photon sphere.
Now using Eq. (33), the condition Vef f (r = rp) = 0 leads

to

rp
2/ f (rp) = η + (ξ2

1 + ξ2
2 )

≡ η + ξ2, ξ2 ≡ ξ2
1 + ξ2

2 (36)

where we have used the definitions of Chandrasekhar con-
stants η, ξ1 and ξ2 [27]

η = κ

E2 , ξ1 = Lφ

E
, ξ2 = Lψ

E
. (37)

The boundary condition
∂Vef f (r)

∂r

∣∣∣
r=rp

= 0 leads to

r f ′(r)
∣∣∣
r=rp

− 2 f (r = rp) = 0. (38)

Now using f (r) from Eq. (11) and it’s first derivative f ′(r)
given by

f ′(r) = 1√
1 − 8γ

l2
+ 64γ M

3πr4 − 2γ Q2

3πr6

×
⎡
⎣ r

2γ

⎛
⎝

√
1 − 8γ

l2
+ 64γ M

3πr4 − 2γ Q2

3πr6

⎞
⎠ − r2

2γ
+ 4r

l2
− Q2

6πr5

⎤
⎦

(39)

we have from Eq. (38)

144π2
(

1 − 8γ

l2

)
r8
p +

(
3072πγ M − 4096M2

)
r4
p

−
(

96πγ Q2 − 384MQ2
)
r2
p − 9Q2 = 0 . (40)

Substituting r2
p = x , the above equation simplifies to a

fourth order equation in x given by

144π2
(

1 − 8γ

l2

)
x4 +

(
3072πγ M − 4096M2

)
x2

−
(

96πγ Q2 − 384MQ2
)
x − 9Q2 = 0 . (41)

This equation can in principle be solved to obtain an exact
solution. In the limit Q → 0 the solution reads

x = 8
√

4l2M2 − 3πγ l2M

3π
√
l2 − 8γ

(42)

which in turn gives

rp =
√√√√8

√
4l2M2 − 3πγ l2M

3π
√
l2 − 8γ

. (43)

However, for Q �= 0, we solve Eq. (41) numerically. We
set the values of mass M , AdS radius l and GB parameter γ

and then numerically solve the equation for different values
of charge Q to get the value of the photon sphere radius rp.

To find the photon sphere radius rp in asymptotically flat
spacetime, we take the limit l → ∞ which simplifies Eq.
(41) to the form

144π2x4 +
(

3072πγ M − 4096M2
)
x2

−
(

96πγ Q2 − 384MQ2
)
x − 9Q2 = 0. (44)

Once again the solution looks simple in form when the
charge Q = 0 and reads

rp =
√

8
√

4M2 − 3πγ M

3π
. (45)

The solution in Eq. (43) reduces to Eq. (45) if we take the
limit l → ∞. For the Q �= 0 case, we once again solve Eq.
(44) numerically. These results are displayed in Table 1.
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Table 1 Radius of the black hole shadow Rs , photon radius rp for two
values of charge Q = 0, 1 with varying values of the GB parameter γ

and M = 1

γ Q rp Rs

AdS black hole (l = 1)

0.04 0 1.39975 2.00449

1 1.38123 1.98767

0.06 0 1.47698 2.12972

1 1.4588 2.11347

0.08 0 1.59651 2.31911

1 1.57907 2.30379

0.1 0 1.82177 2.66738

1 1.80591 2.65369

Asymptotically flat black hole (l = ∞)

0.0 0 1.3029 1.8426

1 1.28429 1.82518

0.1 0 1.21829 1.78379

1 1.19385 1.76286

0.2 0 1.11106 1.71234

1 1.07415 1.68495

Fig. 1 Basic diagram for celestial coordinates [30]

3 Constructing the black hole shadow

To obtain the shadow of the black hole, the first step is to write
down the celestial coordinates which are shown in Fig. 1. In
(4 + 1) dimensions, the celestial coordinates read [17]

α = lim
r→∞ −

(
r2 sin θ

dφ

dr
+ r2 cos θ

dψ

dr

)

β = lim
r→∞

(
r2 sin θ

dθ

dr

)
(46)

where α denotes the apparent perpendicular distance of the
shadow from the axis of symmetry (z-axis), β denotes the
apparent perpendicular distance of the shadow from it’s pro-
jection on the equatorial plane, r0 is the distance of the
observer from the black hole and θ is the angle of inclination

between the observer’s line of sight and the axis of symme-
try of the black hole. The celestial coordinates (α, β) lie in a
plane which passes through the black hole and is perpendic-
ular to the line joining the black hole and the observer. This
plane is known as the celestial plane. Using the geodesic
equations given in Eqs. (18) and (29), we obtain the values
of dφ

dr ,
dψ
dr and dθ

dr as given below

dφ

dr
= Lφ csc2 θ

r2

√
E2 − f (r)

r2

(
κ + L2

φ + L2
ψ

) (47)

dψ

dr
= Lφ sec2 θ

r2

√
E2 − f (r)

r2

(
κ + L2

φ + L2
ψ

) (48)

dθ

dr
= 1

r2

√√√√√ κ − L2
φcot

2θ − L2
ψ tan2 θ

E2 − f (r)
r2

(
κ + L2

φ + L2
ψ

) . (49)

Using the above relations in the expressions of celestial
coordinates (α, β) and taking the limit r → ∞ we get

α = −
(
ξ1 csc θ + ξ2 sec θ

)
√

1 −
(

η+ξ2
1 +ξ2

2

)(
1−

√
1− 8γ

l2

)
4γ

;

β = ±

√√√√√√√

(
η − ξ2

1 cot2 θ − ξ2
2 tan2 θ

)

1 −
(

η+ξ2
1 +ξ2

2

)(
1−

√
1− 8γ

l2

)
4γ

. (50)

Now we choose two different values of θ which are θ =
0, π

2 . When θ = π
2 , Lψ = 0 and hence ξ1 ≡ ξ . On the other

hand, Lφ = 0 when θ = 0 which implies ξ2 ≡ ξ . In both
cases the celestial coordinates read

α = − ξ√
1 −

(
η+ξ2

)(
1−

√
1− 8γ

l2

)
4γ

;

β = ±
√√√√√

η

1 −
(

η+ξ2

)(
1−

√
1− 8γ

l2

)
4γ

. (51)

where ξ2 = ξ2
1 for θ = π

2 and ξ2 = ξ2
2 for θ = 0. Combining

the coordinatesα andβ and using Eq. (36), we get an equation
representing a circle of radius Rs in the celestial plane α−β,
given by

α2 + β2 =
(
η + ξ2

)

(
1 −

(
η+ξ2

)(
1−

√
1− 8γ

l2

)

4γ

) ≡ R2
s . (52)

The quantity Rs in Eq. (52) is the radius of the shadow
given by
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(a) (b)

Fig. 2 Black hole shadow in the celestial plane (α − β plane) for various values of the GB parameter γ with Q = 1 along with l = 1 for AdS
black hole spacetime and l = ∞ for asymptotically flat black hole spacetime

Rs =

√√√√√√√

(
η + ξ2

)

1 −
(

η+ξ2

)(
1−

√
1− 8γ

l2

)
4γ

=

√√√√√√√

(
r2
p

f (rp)

)

1 −
(

r2
p

f (r p )

)(
1−

√
1− 8γ

l2

)
4γ

(53)

where we have used Eq. (36) in the second equality.
In Table 1 we show the computed values of the black hole

shadow radius Rs and photon radius rp for different values
of charge Q of the black hole and GB parameter γ .

In Figs. 2, 3, the variation in the silhouette of the black
hole shadow for different values of the GB parameter and
charge Q = 0, 1 is shown graphically. We observe from the
figures that in case of the AdS black hole spacetime (l = 1),
an increase in the value of the GB parameter γ enlarges the
size of the black hole shadow. However, on the other hand
in the asymptotically flat black hole spacetime (l = ∞), the
size of shadow reduces with an increase in the value of the
GB parameter γ . We also observe that the presence of the
charge Q does change the radius of the black hole shadow.
In fact, the size of the radius of the shadow decreases with
increase in the charge of the black hole.

4 Shadow in presence of the plasma medium

In this section we shall study the effects of a plasma back-
ground on the black hole shadow. The motivation behind this
approach follows from the fact that in general a black hole is

surrounded by a material media which affects the geodesics
of the photons passing through it. The refractive index of
the plasma medium is given by n = n(xi , ω), where ω is
the photon frequency measured by an observer moving with
velocity uμ. The plasma background modifies the Hamilto-
nian and introduces additional terms in the geodesics equa-
tions and thus the trajectories of the particles (in this case
photons) get modified and shows a explicit frequency depen-
dent nature. The modified effective energy of the particle in
plasma medium becomes E = h̄ω = −pαuα . The relation-
ship between the 4-momentum of the photon and the plasma
frequency is given by [28]

n2 = 1 + pαuα

(pμuμ)2 . (54)

The refractive index n is related to the plasma frequency
ωp as [29]

n2 = 1 −
(ωp

ω

)2
(55)

where ωp has the form

ωp = 4πe2N (r)

me
. (56)

In the above equation e, N (r) and me represents the
charge, number density and mass of electrons in the plasma
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(a) (b)

Fig. 3 Black hole shadow in the celestial plane (α − β plane) for various values of the GB parameter γ with Q = 0 along with l = 1 for AdS
black hole spacetime and l = ∞ for asymptotically flat spacetime

medium respectively. As given in [28,29], the physically rel-
evant form of N (r) is assumed to be N0

rh
. Substituting the

given form of N (r) in the plasma frequency ωp and using
Eq. (55) we obtain the relation
(ωp

ω

)2 = k

rh
, k � 0. (57)

The refractive index n therefore takes the form

n =
√

1 − k

rh
. (58)

The power h characterizes different properties of the
plasma medium but we shall work with h = 1 which takes
into account the minimum dependence on r [29,30]. Thus
the expression of the refractive index with which we shall
work in the rest of the paper reads

n =
√

1 − k

r
. (59)

The modified form of the Hamilton–Jacobi equation in
presence of the plasma medium reads [28]

(
∂S

∂λ

)
+ 1

2

[
gμσ ∂S

∂xμ

∂S

∂xσ
− (n2 − 1)

(
∂S

∂t

√−gtt
)2

]
= 0.

(60)

4.1 Geodesics and the shadow

In order to investigate the effect of a plasma background we
need to compute the new set of celestial coordinates. We start
the analysis by computing the new set of geodesic equations
by taking into account the effect of the plasma background.
The set of null geodesics in presence of the plasma medium
reads

dt

dλ
= n2E

f (r)
(61)

dφ

dλ
= Lφ

r2 sin2 θ
(62)

dψ

dλ
= Lψ

r2 cos2 θ
(63)

r2
(dθ

dλ

)
= ±

√
�pl(θ) (64)

r2
( dr
dλ

)
= ±

√
Rpl(r) (65)

where

Rpl(r) = n2r4E2 − (L2 + κ)r2 f (r) (66)

�pl(θ) = κ − L2
φ cot2 θ − L2

ψ tan2 θ. (67)

In the derivation of the geodesic equations, we follow the
approach discussed in the previous section and also use the
Hamilton–Jacobi equation given in Eq. (60). The effective
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radial potential in presence of the plasma background reads

V pl
e f f (r) = f (r)

r2

(
κ + L2

)
− n2E2. (68)

The condition for the unstable circular orbits are given by

V pl
e f f (r)

∣∣∣∣
r=r (pl)

p

= 0,
∂V pl

e f f (r)

∂r

∣∣∣∣
r=r (pl)

p

= 0 (69)

with the condition for maximizing V pl
e f f (r) being given by

∂2V pl
e f f (r)

∂r2

∣∣∣∣
r=r (pl)

p

< 0. (70)

The first condition in Eq. (69) gives

η + ξ2 = n2(r)r2

f (r)

∣∣∣∣
r=r (pl)

p

(71)

and the second condition leads to

(
n(r)r f ′(r)−2n(r) f (r)−2n′(r)r f (r)

)∣∣∣∣
r=r (pl)

p

= 0 . (72)

On replacing f (r) and f ′(r) from Eqs. (11, 39) along with
n′(r) = k

2r2
√

1− k
r

(obtained from Eq. (59)) in Eq. (72), we

get an equation for the radius of the photon sphere which
looks too complicated and therefore we do not present it
here. Further, in this case it is not possible to obtain an exact
solution of Eq. (72) even in the limit Q → 0. So we proceed
to solve it numerically. The presence of the plasma medium
introduces an extra parameter k in Eq. (72). We consider
two values for k which are 0.2 and 0.4. We then obtain the
values for the photon sphere radius rp by numerically solving
Eq. (72). Proceeding as before, we obtain expressions for
dφ
dr ,

dψ
dr and dθ

dr which are then used to determine the celestial
coordinates (α, β) in presence of the plasma medium. The
expressions are

dφ

dr
= Lφ csc2 θ

r2
√
n2E2 − f (r)

r2 (κ + L2
φ + L2

ψ)

(73)

dψ

dr
= Lφ sec2 θ

r2
√
n2E2 − f (r)

r2 (κ + L2
φ + L2

ψ)

(74)

dθ

dr
= 1

r2

√√√√ κ − L2
φcot

2θ − L2
ψ tan2 θ

n2E2 − f (r)
r2 (κ + L2

φ + L2
ψ)

. (75)

Table 2 Radius of the black hole shadow Rs , photon sphere radius rp
with varying values of the GB parameter γ for two values of charge
Q = 0, 1 in AdS (l = 1) black hole spacetime

γ Q rp Rs

k = 0.2

0.04 0 1.26288 1.43158

1 1.24274 1.41829

0.06 0 1.31468 1.48548

1 1.2944 1.47241

0.08 0 1.39359 1.56276

1 1.37341 1.55104

0.1 0 1.53788 1.69368

1 1.51837 1.68354

k = 0.4

0.04 0 1.12849 1.06052

1 1.10497 1.04703

0.06 0 1.15842 1.0894

1 1.13371 1.07626

0.08 0 1.20383 1.13058

1 1.17771 1.11801

0.1 0 1.28534 1.19967

1 1.25751 1.18815

Table 3 Radius of the black hole shadow Rs , photon sphere radius rp
with varying values of the GB parameter γ for two values of charge
Q = 0, 1 in asymptotically flat (l = ∞) black hole spacetime

γ Q rp Rs

k = 0.2

0.0 0 1.27491 1.69362

1 1.25564 1.67527

0.1 0 1.18351 1.62844

1 1.15749 1.60587

0.2 0 1.06441 1.56832

1 1.02237 1.51562

k = 0.4

0.0 0 1.23863 1.52487

1 1.21834 1.50498

0.1 0 1.13633 1.44876

1 1.1075 1.42313

0.2 0 0.995559 1.34738

1 0.941962 1.30724

Using the above relations in the expressions of the celestial
coordinates (α, β) defined earlier, we obtain

α = − ξ1 csc θ + ξ2 sec θ√
1 −

(
η+ξ2

1 +ξ2
2

)(
1−

√
1− 8γ

l2

)
4γ

;
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(a) (b)

(c) (d)

Fig. 4 Black hole shadow in the celestial plane (α −β) for varying γ with charge Q = 0 and 1 in AdS (l = 1) black hole spacetime for two values
of plasma parameter k = 0.2 and 0.4

β = ±

√√√√√√√

(
η − ξ2

1 cot2 θ − ξ2
2 tan2 θ

)

1 −
(

η+ξ2
1 +ξ2

2

)(
1−

√
1− 8γ

l2

)
4γ

. (76)

Similar to the non-plasma case, we choose two different
values of θ , namely, π

2 and 0. In both cases, the celestial

coordinates read

α = − ξ√
1 −

(
η+ξ2

)(
1−

√
1− 8γ

l2

)
4γ

;
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(a) (b)

(c) (d)

Fig. 5 Black hole shadow in the celestial plane (α −β) for varying γ with charge Q = 0 and 1 in asymptotically flat (l = ∞) black hole spacetime
for two values of plasma parameter k = 0.2 and 0.4

β = ±
√√√√√

η

1 −
(

η+ξ2

)(
1−

√
1− 8γ

l2

)
4γ

. (77)

By combining the celestial coordinates given in Eq. (77)
and using Eq. (71), we get

α2 + β2 =

⎛
⎜⎜⎝

(
n2r2

f (r)

)

1 −
(
n2r2
f (r)

)(
1−

√
1− 8γ

l2

)
4γ

⎞
⎟⎟⎠

∣∣∣∣
r=r (pl)

p

≡ R2
s (78)

where Rs is the radius of the black hole shadow in presence
of the plasma medium.
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Fig. 6 Variation of the radius of the black hole shadow Rs with the GB parameter γ for fixed Q values in AdS black hole spacetime and
asymptotically flat spacetime for k = 0.2, 0.4

In Tables 2, 3, we show the computed values of the black
hole shadow radius Rs and photon radius rp for different
values of charge Q of the black hole and GB parameter γ in
presence of the plasma medium.

In Fig. 4, the variation in the silhouette of the black hole
shadow for different values of the GB parameter γ and charge
Q = 0, 1 in the presence of the plasma background in
AdS black hole spacetime is shown graphically. We observe
that with increase in k, the shadow radius shrinks. It is also
observed that with increase in the value of the GB parameter
γ , shadow size increases, and with increase in charge Q, the
shadow radius Rs decreases.

In Fig. 5, the variation in the silhouette of the black hole
shadow for different values of the GB parameter γ and charge
Q = 0, 1 in the presence of the plasma background is shown
graphically for asymptotically flat (l = ∞) black hole space-
time. We observe that in contrast to theAdS black hole space-
time, the shadow size falls with increase in the value of the
GB parameter (γ ). Further, we observe that with increase in
k, the shadow size reduces. The shadow size also reduces
with increase in charge Q.

In the next section we proceed to discuss the variation
of the shadow radius with the GB parameter γ for a fixed

charge Q and variation of the shadow radius with charge Q
for a fixed GB parameter γ for two different values of k.

5 Dependence of shadow radius Rs on various
parameters

We start by writing down the expression of the shadow radius
Rs in the presence of the plasma background. This reads

Rs =

√√√√√√√

(
n2r2

p
f (rp)

)

1 −
(

n2r2
p

f (r p )

)(
1−

√
1− 8γ

l2

)
4γ

. (79)

This expression of Rs shows the effects of the GB parameter
γ , charge Q and the plasma parameter k on the silhouette of
the shadow in both AdS (l = 1) black hole spacetime and
asymptotically flat (l = ∞) black hole spacetime.

Figure 6 shows how the radius Rs of the shadow varies
with the GB parameter γ for fixed values of charge Q in pres-
ence of the plasma medium in both AdS black hole space-
time and asymptotically flat black hole spacetime. The plots
are constructed for Q = 0, 0.5 and 1.0. For AdS (l = 1)
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Fig. 7 Variation of the radius of the black hole shadow Rs with Q for fixed γ values in AdS black hole spacetime and asymptotically flat spacetime
for k = 0.2, 0.4

black holes we found that the shadow size increase with
increase in γ for fixed Q, whereas the shadow size falls with
increase in the value of GB parameter γ in asymptotically flat
(l = ∞) spacetime. Further the shadow radius Rs reduces
with increase in plasma parameter k.

Figure 7 shows the variation of the shadow with charge
Q for fixed values of the GB parameter γ in both AdS (l =
1) black hole spacetime and asymptotically flat (l = ∞)
spacetime. It is observed that Rs falls with the increase in
charge Q. Further, Rs decreases with increase in the plasma
parameter.

6 Energy emission rate

In this section we study the energy emission rate of Gauss–
Bonnet black holes in AdS4+1 spacetime. The expression of
energy emission rate reads [31]

d2Z(ω)

dωdt
= 2π2σlim

exp
(

ω
TH

)
− 1

ω3 (80)

where Z(ω), ω , TH gives the energy, frequency and Hawking
temperature corresponding to the black hole. The Hawking

temperature in d = 5 dimensions can be obtained from Eq.
(4) to be

TH = f ′(r)
4π

∣∣∣∣
r=r+

= (4Q2r+ − 128Mr3+) + (256Mr2+ − 12Q2)

96π2r7+
(81)

where r+ is the radius of the event horizon of the black hole.
The expression for σlim , which is the limiting constant

value is expressed in d spacetime dimensions as [32,33]

σlim = π
d−2

2 Rd−2
s



( d

2

) (82)

where Rs is the radius of the shadow. In d = 5 dimensions,
σlim reads

σlim ≈ 4πR3
s

3
. (83)

The form of the energy emission rate in d = 5 dimensions
therefore becomes
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Fig. 8 Variation of energy emission rate ( d2Z
dωdt ) with frequency (ω) for fixed values of Gauss Bonnet parameter γ with Q = 0, 1 and k = 0.0, 0.2

in AdS (l = 1) black hole spacetime

d2Z(ω)

dωdt
= 8π3R3

s

3
(
exp

(
ω
TH

)
− 1

)ω3. (84)

Figures 8 and 9 show the variation of energy emission rate
d2Z(ω)
dωdt with frequency ω for fixed values of γ with charge
Q = 0, 1 and k = 0, 0.2. The plots are shown for both
AdS (l = 1) black hole spacetime and asymptotically flat
(l = ∞) black hole spacetime. We observe that the energy
emission rate decreases with increase in γ for bothAdS black
hole spacetime and asymptotically flat spacetime. The pres-
ence of the plasma medium reduces the energy emission rate
drastically in AdS black hole spacetime. The effect is com-
paratively less in case of asymptotically flat spacetime.

7 Conclusion

We now summarize our findings. In this paper we investi-
gate the shadow of charged Gauss–Bonnet black holes for
an infinitely distant observer in d = 5 spacetime dimen-

sions. We first compute the null geodesic equations in d = 5
dimensions for charged black hole in Gauss–Bonnet gravity
in both asymptotically AdS and Minkowski spacetimes. We
then obtain the celestial coordinates (α, β) by using the null
geodesics which in turn gives the radius of the shadow Rs . We
compute the values of photon radius rp and shadow radius
Rs taking into consideration the effect of various parameters
and represent them graphically. We observe the effect of the
Gauss Bonnet parameter γ on Rs which yields contrasting
results for AdS black hole and asymptotically flat black hole
spacetime. We infer from the plots that forAdS (l = 1) space-
time, the increase in γ increases Rs whereas the opposite is
observed in case of the black holes in Minkowski spacetime
(l → ∞). The charge Q also has an effect on Rs . We observe
that the shadow radius Rs decreases with increase in charge Q
in both AdS and asymptotically flat (Minkowski) spacetime.
We then introduce a plasma background in order to observe
the effect of refractive index (n) of the medium on the unsta-
ble circular photon orbits. It is observed that an increase in
the plasma parameter results in decrease in the radius of the
shadow Rs . The effect of the refractive index on the silhou-
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Fig. 9 Variation of energy emission rate ( d2Z
dωdt ) with frequency (ω) for fixed values of Gauss Bonnet parameter γ with Q = 0, 1 and k = 0.0, 0.2

in asymptotically flat (l = ∞) black hole spacetime

ette of the black hole shadow is similar in both spacetimes
(asymptotically AdS and Minkowski). Finally we compute
the energy emission rate of the charged Gauss–Bonnet black
hole and represent them graphically. We observe that the
energy emission rate decreases with increase in the value of
γ in both AdS and asymptotically flat spacetimes. We would
like to mention that one of the main motivations of this work
is to probe the signature of higher curvature correction in the
shadow of black holes which in turn also brings out possi-
bilities of looking for extra dimensions. In future we would
like to investigate the effect of the spin parameter on Gauss–
Bonnet black hole shadows.
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