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Abstract It is now established that, contrary to com-
mon belief, (electro-)vacuum Brans–Dicke gravity does not
reduce to general relativity (GR) for large values of the
Brans–Dicke coupling ω. Since the essence of experimen-
tal tests of scalar–tensor gravity consists of providing lower
bounds on ω, in light of the misguided assumption of the
equivalence between the limit ω → ∞ and the GR limit
of Brans–Dicke gravity, the parametrized post-Newtonian
(PPN) formalism on which these tests are based could be
in jeopardy. We show that, in the linearized approximation
used by the PPN formalism, the anomaly in the limit to gen-
eral relativity disappears. However, it survives to second (and
higher) order and in strong gravity. In other words, while
the weak gravity regime cannot tell apart GR and ω → ∞
Brans–Dicke gravity, when higher order terms in the PPN
analysis of Brans–Dicke gravity are included, the latter never
reduces to the one of GR in this limit. This fact is relevant
for experiments aiming to test second order light deflection
and Shapiro time delay.

1 Introduction

Deviations from Einstein’s theory of gravity, general relativ-
ity (GR), appear in virtually all attempts to introduce quan-
tum corrections to gravity [1–8] (for recent overviews of GR
and the challenges it faces, see, e.g., [9–11]). In addition
to these deviations (in the form of extra fields, higher order
terms in the field equations, and non-minimal couplings to
the curvature), compelling motivation to investigate alterna-
tives to GR comes from the 1998 discovery that the current
expansion of the universe is accelerated. Within the standard
Λ-Cold Dark Matter (ΛCDM) model of cosmology based
on GR, one needs to introduce a completely ad hoc dark
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energy with a very exotic equation of state to explain the cos-
mic acceleration [12]. A popular alternative to dark energy
consists of modifying gravity at large scales. Many modifi-
cations of GR have been proposed, the most studied being
f (R) gravity [13,14]. This is a class of theories in which the
Einstein–Hilbert Lagrangian density R (the Ricci scalar of
spacetime) is promoted to a non-linear function f (R). It turns
out [15–17] that this class of theories reduces to a Brans–
Dicke theory with Brans–Dicke scalar φ = f ′(R), vanish-
ing Brans–Dicke coupling parameter ω, and the complicated
potential V (φ) = R f ′(R)− f (R)

∣
∣
R=R(φ)

(see Refs. [15–17]
for reviews and [18] for extensions of f (R) gravity).

Brans–Dicke theory, originally introduced in Refs. [19–
21] to account for Mach’s principle, has been generalized to
the wider class of scalar–tensor theories [22–24] described
by the action (we follow the notation of Ref. [25] and use
units in which Newton’s constant G and the speed of light c
are unity)

SST = 1

16π

∫

d4x
√−g

[

φR − ω(φ)

φ
∇cφ∇cφ − V (φ)

]

+S(m) , (1)

where the Brans–Dicke scalar φ corresponds approximately
to the inverse of the gravitational coupling strength Geff , ω

is the Brans–Dicke coupling, and V (φ) is a potential for φ,
which gives a range to this field. S(m) is the matter action.
Besides containing the cosmologically motivated class of
f (R) theories, scalar–tensor gravity, which adds only a (mas-
sive) scalar degree of freedom φ � G−1

eff to the massless spin
two graviton of GR, constitutes a minimal modification of
GR and is the prototype of the alternative theory of gravity
[26–28]. The field equations are [21–24]

Rab − 1

2
gabR = 8π

φ
T (m)
ab + ω

φ2

(

∇aφ∇bφ − 1

2
gab∇cφ∇cφ

)

+ 1

φ
(∇a∇bφ − gab�φ) − V

2φ
gab , (2)
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�φ = 1

2ω + 3

(

8πT (m)

φ
+ φ

dV

dφ

−2V − dω

dφ
∇cφ∇cφ

)

, (3)

where Rab is the Ricci tensor and ∇a is the covariant deriva-
tive of the spacetime metric gab, while T (m) ≡ gcdT (m)

cd

is the trace of the matter energy-momentum tensor T (m)
ab =

− 2√−g
δS(m)

δgab
.

Scalar–tensor gravity in the Jordan frame (gab, φ), can
be reformulated in the Einstein conformal frame (g̃ab, φ̃) as
follows [21]. Perform the conformal transformation of the
metric tensor

gab → g̃ab ≡ φ gab , (4)

and the scalar field redefinition

dφ̃ =
√ |2ω + 3|

16π

dφ

φ
. (5)

Since we restrict ourselves to Brans–Dicke theory with con-
stant ω, we have the non-linear scalar field redefinition

φ → φ̃ =
√ |2ω + 3|

16π
ln

(
φ

φ0

)

, (6)

where φ0 is an integration constant and ω 	= −3/2. Both φ

and gab depend on the parameter ω, therefore the Einstein
frame metric g̃ab in general depends on the parameter ω (the
same is true, in general, for the Einstein frame scalar φ̃).

Using the Einstein frame variables (g̃ab, φ̃), the Brans–
Dicke action (1) (with ω = const.) is rewritten as

SBD =
∫

d4x
√−g̃

[

R̃

16π
− 1

2
g̃ab∇a φ̃∇bφ̃ −U (φ̃) + L(m)

φ2(φ̃)

]

,

(7)

where

U (φ̃) = V (φ)

16πφ2

∣
∣
∣
∣
φ=φ(φ̃)

, (8)

where we denote Einstein frame quantities with a tilde. For-
mally, this is the Einstein–Hilbert action of GR with a matter
scalar field with canonical kinetic energy density, but this
scalar φ̃ now couples non-minimally to matter. In the Ein-
stein frame, the Brans–Dicke field equations become

R̃ab − 1

2
g̃ab R̃ = 8π

(

e
−

√
64π

|2ω+3| φ̃
T (m)
ab + ∇̃a φ̃∇̃bφ̃

−1

2
g̃ab g̃

cd∇̃cφ̃∇̃d φ̃ −U (φ̃) g̃ab

)

, (9)

g̃ab∇̃a∇̃bφ̃ − dU

dφ̃

+8
√

π

|2ω + 3| e
−

√
64π

|2ω+3| φ̃ L(m) = 0. (10)

From now on we restrict to vacuum Brans–Dicke theory and
set T (m)

ab = 0. The explicit coupling between Einstein frame
scalar φ̃ and matter then disappears and the Einstein frame
action (7) is formally the Einstein–Hilbert action and the
Einstein frame pair (g̃ab, φ̃) is formally a scalar field solution
of the Einstein equations even though it has been generated
by the original Jordan frame spacetime (gab, φ).

2 ω → ∞ vs. GR limit

In practice, Brans–Dicke theory with ω = const. is used to
approximate all scalar–tensor theories in experimental tests
of gravity in the weak field regime [26–28] (this situation can
be different in strong gravity when scalarization is involved,
but we are not concerned with this type of situation here). It
is clear that Brans–Dicke gravity reduces to GR if φ becomes
constant. Precisely, the GR limit of Brans–Dicke gravity is
understood as the limit in which Brans–Dicke gravity cou-
pled to matter reduces to GR sourced by the same type of
matter.

The belief that φ does so in the limit ω → ∞ is stan-
dard textbook material (e.g., [29]). However, the asymptotics
of φ in this limit are important. While in most cases these
asymptotics are φ = φ∞ + O(1/ω), where φ∞ is a con-
stant [29], many analytic solutions of the Brans–Dicke field
equations have been discovered over the years for which
φ = φ∞ + O(1/

√|ω|), which do not go over to the cor-
responding GR solutions with the same form of matter [30–
37].1 Far from being limited to a few maverick solutions, this
problem has later been shown to affect the entire electrovac-
uum ( i.e., T (m) = 0) theory [43] and a formal explanation
has been given for this “anomalous” behaviour [43–45].

Deviations from GR are well constrained experimentally
in the Solar System, where gravity is weak, and to some
extent also outside of it [26–28,46,47]. Assuming the Brans–
Dicke field to be long-ranged, the best limits on scalar–tensor
gravity arise from the Cassini probe and are |ω| > 40,000
[48]. In general, experiments provide a lower bound on |ω|,
constraining this parameter to be large (unless φ becomes so
massive and short-ranged to escape this limit, as in viable
f (R) models [15–17]).

The Solar System experiments probe gravity in vacuo, the
situation in which the ω → ∞ limit is anomalous. Therefore,
how can experiments constraining the deviations from GR in
the field of the Sun and forcing |ω| to be large, apply to
a theory that does not reduce to GR in this limit? Can the
parametrized post-Newtonian (PPN) approximation, which
constitutes the basis for analyzing these experiments [26–

1 Similar anomalies are occasionally reported for instances of Brans–
Dicke solutions with non-conformal matter [38–42].

123



Eur. Phys. J. C (2020) 80 :132 Page 3 of 6 132

28,49–51], still discriminate between GR and Brans–Dicke
gravity in the large ω regime?

This question is crucially important for experimental tests
of scalar–tensor gravity, but it has not been posed in the liter-
ature thus far. Here we provide an answer: the exact (strong
gravity) electrovacuum theory definitely does not reduce to
GR as ω → ∞. In this limit, a (canonical, minimally cou-
pled) scalar field survives in the limit of the field equations
and acts as a matter source [52,53]. However, the PPN analy-
sis is limited to the weak field expansion of these field equa-
tions and, in this regime, the offending terms disappear from
these equations, in which the dominant terms introduced by
the scalar degree of freedom φ conform, instead, to the usual
PPN analysis. This simplification occurs only to first order in
the deviations of the metric and Brans–Dicke scalar from the
Minkowski background, and are bound to reappear to second
order and, of course, in any exact (strong gravity) electrovac-
uum solution of the theory. This fact is of interest for future
experiments testing light deflection and Shapiro time delay
to second order [54–57].

Now to the technical details. It is clear that, if the Brans–
Dicke scalar becomes constant, Brans–Dicke gravity reduces
to GR and therefore one should recover φ → const. as ω →
∞. The rate at which φ approaches a constant is important.
The gradient ∇φ decays as |ω| becomes larger,

∇aφ = φ0

√

16π

|2ω + 3| exp

(√

16π

|2ω + 3| φ̃

)

∇̃a φ̃. (11)

Consider the Jordan frame field equations and, in particular,
the term which appears in their right hand side

Aab ≡ ω

φ2

(

∇aφ∇bφ − 1

2
gab ∇cφ∇cφ

)

. (12)

In the literature, the failure of Jordan frame Brans–Dicke the-
ory to reproduce the expected GR limit (which corresponds
to φ = const. and to the vanishing of the right hand side
of the vacuum field equations) has been reognized to fol-
low from the fact that, when the asymptotics is given by
φ = φ∞ +O(1/

√|ω|), the tensor Aab does not vanish in the
ω → ∞ limit but remains of order unity [30–36,43]. It is
easy to see that, when Eq. (11) is true, the tensor Aab reads

Aab = ω

φ2 φ2
0 e

2
√

16π
|2ω+3| φ̃ 16π

|2ω + 3|
(

∇a φ̃∇bφ̃

−1

2
gabg

cd ∇cφ̃∇d φ̃
)

(13)

= 16π sign(ω)

∣
∣
∣
∣

ω

2ω + 3

∣
∣
∣
∣

(
φ0

φ

)2

e
2
√

16π
|2ω+3|

(

∇a φ̃∇bφ̃

−1

2

g̃ab
φ

φ g̃cd∇cφ̃∇d φ̃
)

(14)

for all values of the parameter ω. Now, in the limit ω → ∞
in which φ → φ0, one obtains

Aab → A(∞)
ab = 8π sign(ω)

(

∇̃a φ̃∇̃bφ̃ − 1

2
g̃ab g̃

cd ∇̃cφ̃∇̃d φ̃

)

.

(15)

The Einstein frame metric g̃(∞)
ab solves the Einstein equations

with the scalar field φ̃ as the only matter source. This field
has canonical stress–energy tensor A(∞)

ab , which is obtained
as the limit of the Jordan frame stress–energy tensor, as

8π T̃ab[φ̃]
∣
∣
∣
Einstein frame

= A(∞)
ab

∣
∣
∣
Jordan frame limit

(16)

For ω > 0, this Einstein frame scalar couples minimally to
the curvature and has canonical kinetic energy density. One
obtains the same metric tensor by considering two candi-
dates for a GR limit of Brans–Dicke theory: the ω → ∞
limit of the Einstein frame metric and the ω → ∞ limit
of the Jordan frame metric, which coincide apart from an
irrelevant positive multiplicative constant φ∞. However, this
metric g̃(∞)

ab = g(∞)
ab obtained with these two different meth-

ods is not a solution of the vacuum Einstein equations (this
would require instead A(∞)

ab to vanish identically). Instead,

g̃(∞)
ab = g(∞)

ab solves the coupled Einstein–Klein–Gordon
equations and, therefore, vacuum Brans–Dicke theory does
not reproduce vacuum GR in the limit, as it should be for a
correct “limit to GR”.

3 PPN analysis and Brans–Dicke anomaly

It is well known that the only stationary, spherically symmet-
ric, asymptotically flat black hole solution of Brans–Dicke
gravity with V (φ) = 0 is the Schwarzschild metric [58–61].
If one assumes the absence of an event horizon, however,
the most general static, spherically symmetric, asymptoti-
cally flat solution of the vacuum Brans–Dicke field equations
with vanishing potential is parametrized by three continuous
real parameters (α0, β0, γ ) (see, e.g., [62,63] and references
therein). In detail, for γ 	= 0 the general solution reads

ds2
γ 	=0 = −e(α0+β0)/r dt2 + e(β0−α0)/r

(
γ /r

sinh(γ /r)

)4

dr2

+e(β0−α0)/r
(

γ /r

sinh(γ /r)

)2

r2d
2
(2) , (17)

φ(r) = φ0 e−β0/r β0 = σ√|2 ω + 3| , (18)

where d
2
(2) ≡ dθ2 + sin2 θ dϕ2, σ denotes a scalar charge,

and 4 γ 2 = α2
0 + 2 σ 2.2 If instead γ = 0, the solution is

given by the Brans class IV spacetime [62,64])

2 The last condition only holds for γ > 0 and there is no loss of
generality in choosing γ > 0 when γ 	= 0.
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ds2
(0) = −e(α0+β0)/r dt2 + e(β0−α0)/r

(

dr2 + r2d
2
(2)

)

,

(19)

φ(r) = φ0 e−β0/r . (20)

It is easy to see that, for this class of solutions, the scalar
field approaches a constant value φ∞ = φ0 in the limit ω →
∞ as

φ(r) ∼ φ0 − φ0 σ√
2|ω| r + O

(
1

|ω|
)

, (21)

which is indeed the typical behavior for which the anomaly
comes up.

Now, for ω → ∞, Eq. (17) reduces to the Fisher–Janis–
Newman–Winicour–Buchdahl–Wyman metric in the limit,
which is known to be the general static, spherical, asymptot-
ically flat solution of the Einstein field equations sourced by
a free scalar field Φ(r) = −σ/(4

√
πr), featuring a naked

singularity at its centre. Alternatively, when γ = 0 Eq. (19)
approaches the Yilmaz geometry as ω → ∞, which is again
a solution of the Einstein field equations with a scalar field
Φ(r) ∝ 1/r . In other words, as ω → ∞ the family of
general solutions of vacuum Brans–Dicke gravity discussed
above do not reduce to a general solution of the vacuum Ein-
stein field equations (namely the Minkowski space, since we
have assumed the absence of event horizons). Instead, this
family of solutions approaches two families of spacetimes
corresponding to non-vacuum solutions of the Einstein field
equations, thus breaking the equivalence between the GR
limit of Brans–Dicke gravity and the limit ω → ∞.

It is then interesting to see how the PPN analysis of
scalar–tensor theories is affected by this anomalous behavior.
Using the wisdom coming from the general static, spher-
ical, asymptotically flat non-black-hole class of solutions
of vacuum Brans–Dicke gravity one can show that, whilst
the equivalence of the two limits is not affected at the first
post-Newtonian order, an effective scalar field stress–energy
tensor survives at the next-to-leading order in the ω → ∞
limit. This, in turn, prevents the full Brans–Dicke theory from
reducing to GR in this limit.

In the weak field limit the metric and scalar field are
expanded as

gμν = ημν + hμν , (22)

gμν = ημν − hμν + 1

2
hμαh ν

α + O(h3) , (23)

φ = φ0 + ϕ + ϕ2

2
+ O(ϕ3) , (24)

where ημν is the Minkowski metric and φ0 is a constant, while
hμν and ϕ are small perturbations. From Eqs. (17) and (19)
one infers that

hμν ∼ α0 ± β0

r

in the weak field limit. Besides, since β0 ∼ σ/
√

2 |ω| for
large ω, one can conclude that

hμν ∼ α0

r
± σ√

2|ω| r as ω → ∞ , (25)

which further implies that the anomaly does not show up in
the weak field expansion of the left hand side of Eq. (2) since
this contains only positive powers of hμν and its derivatives.
However, the right hand side of Eq. (2) for V (φ) = 0 and in
vacuo has a peculiar behavior. Indeed, expanding this term
up to third order one finds

ω

φ2

(

∂μφ∂νφ − 1

2
gμν ∂αφ∂αφ

)

+ ∇μ∂νφ

φ

= ω

φ2
0

(

∂μϕ∂νϕ − 1

2
ημν ∂αϕ∂αϕ

)

+ 1

φ0

[

∂μ∂νϕ + ∂μ∂ν(ϕ
2/2)

+(

∂μhνα + ∂νhμα − ∂αhμν

)

∂αϕ
]

+O
(

ϕ3 , h∂ϕ2 , h2∂ϕ
)

. (26)

Now, assuming that we work within the scenario that leads
to the exact solutions discussed above and using the asymp-
totics (21) and (25) it is easy to see that, while at the first post-
Newtonian order the scalar field contribution disappears, to
second order in the PPN expansion the first term in the left
hand side of Eq. (26) isO(ω0) and survives the limit ω → ∞,
breaking the equivalence between these two limits.

Let us now make more quantitative predictions using the
line element (17) as an example. First, in (17) one identifies
the areal radius

R(r) = e(β0−α0)/2r γ /r

sinh(γ /r)
r . (27)

Expanding for large r , one finds

R = r + β0 − α0

2
+ 3(β0 − α0)

2 − 4γ 2

24 r
+ O

(
1

r2

)

,

(28)

that implies

dr2 �
(

1 + 3(β0 − α0)
2 − 4γ 2

12 r2

)

dR2 . (29)

Hence one can implicitly recast the line element (17) in terms
of the areal radius as

ds2
γ 	=0 = gtt dt

2 + gRR dR
2 + R2 r2d
2

(2) , (30)

with

gtt = −e(α0+β0)/r

= −
(

1 + α0 + β0

r
+ (α0 + β0)

2

2 r2

)

+ O
(

1

r3

)

, (31)
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gRR = e(β0−α0)/r
(

γ /r

sinh(γ /r)

)4

×
[

1 + 3(β0 − α0)
2 − 4γ 2

12 r2 + O
(

1

r3

)]

= 1 + β0 − α0

r
+ 3(β0 − α0)

2 − 4γ 2

4 r2 + O
(

1

r3

)

(32)

and r = r(R).3

Performing the usual PPN identifications

gtt = −(1 + 2 Ψ (r)) and gRR = 1 + 2 Φ(r) , (33)

the post-Newtonian parameter γPPN (not to be confused with
γ ) reads

γPPN = −Ψ (r)

Φ(r)

= α0 + β0

α0 − β0

(

1 + 5α2
0 − 6α0β0 + β2

0 − 4γ 2

4 (α0 − β0) r

)

+O
(

1

r2

)

. (34)

Taking the limit ω → ∞ (i.e. β0 → 0), one finds

lim
ω→∞(γPPN − 1) = 5α2

0 − 4γ 2

4 α0 r
+ O

(
1

r2

)

, (35)

which is always non-vanishing when the scalar charge σ 	= 0.

4 Conclusions

As a conclusion, the PPN analysis narrowly escapes the prob-
lem of the GR limit arising in the full theory. It is clear, how-
ever, that this problem will reappear as soon as second and
higher order terms are included in the weak field expansion
and, of course, in the full strong gravity regime. To second
order, the PPN analysis of scalar–tensor gravity is in jeopardy.
The divergence between PPN predictions and the ω → ∞
limit of Brans–Dicke theory will then be relevant. In par-
ticular, this divergence will become important in the experi-
mental determination of light deflection by the gravitational
field of the Sun to second order in the PPN expansion [54–
57]. These deviations could be obtained, in principle, with
high precision astrometry, in testing strong gravity effects
with the Event Horizon Telescope [65,66] and, potentially, in
tests based on gravitational waves [67–72]. Such strong grav-
ity effects, which look more promising for detecting scalar-
tensor gravity effects or further constraining the theory, will
be explored in future work.

3 Note that for large values of r one has R � r .
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