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Abstract The global dynamics of a cosmological model
based on Hořava–Lifshitz gravity in the presence of curvature
is described by using the qualitative theory of differential
equations.

1 Introduction

In recent years Hořava [1] proposed a spacetime asymmet-
ric gravitational theory similar to Lifshitz’s scalar field the-
ory, also known as Hořava–Lifshitz gravity. This theory has
inspired a great deal of research for its applications in cos-
mology and black hole physics (see [2–18] or the review
articles [19,20] and the references therein).

With or without detailed-balance condition, few
researchers have published several papers on Hořava–Lifshitz
gravity through phase space analysis, see for instance [3–
7,17]. Among these papers there are also some of them
about the case of non-zero space curvature k. When the terms
related to k are dominant, Friedmann solution will be gener-
ated. On the contrary, when the effective Hořava radiation
dominates, the corresponding cosmology gives a solution
of “radiation-dominated like” [6]. According to whether the
cosmological constant � is zero in flat (k = 0) and non-flat
(k �= 0) universe, Leon et al. [3–5,14] divided the Hořava–
Lifshitz gravity into four cases: (1) k = 0,� = 0; (2)
k = 0,� �= 0; (3) k �= 0,� = 0; (4) k �= 0,� �= 0,
and analyzed these phase spaces. More precisely, they either
studied the global dynamics of the planar case of Hořava–
Lifshitz gravity with exponential potential by using the two-
dimensional Poincaré compactification, or discussed only
local dynamics of this cosmological model with power-
law potential but without investigate the dynamics close to
infinity. The three-dimensional global dynamics of Hořava–
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Lifshitz cosmology with k = 0 and � = 0 was studied in
[7].

In this paper we will investigate the global dynamics
of the Hořava–Lifshitz scalar field cosmology under the
Friedmann–Lemaître–Robertson–Walker background space-
time in the presence of curvature and no cosmological con-
stant term, i.e., k �= 0 and � = 0.

2 The cosmological equations

To describe the cosmological equations in this section we
first give a brief review of the Hořava–Lifshitz gravitational
theory as was proposed in [1]. In one common version of
this theory [5,21], its field content can be given by a spatial
scalar N , and a spatial vector Ni . They are the ‘lapse’ and
‘shift’ variables usually found in general relativity. Then the
full metric can be written as

ds2 = −N 2dt2 + gi j (dx
i + Nidt)(dx j + N jdt),

Ni = gi j N
j , (1)

where gi j (i, j = 1, 2, 3) is the spatial metric. The scal-
ing transformation of the coordinates is in the form of
t → l3t, xi → lxi , under which both N and gi j are invari-
ant, but Ni is scaled to Ni → l−2Ni .

Based on the detailed-balance condition [1], the full grav-
itational action of Hořava–Lifshitz is represented by

Sg =
∫

dtd3x
√
gN

{
2

κ2

(
Ki j K

i j − λK 2
)

− κ2

2w4Ci jC
i j

+μκ2

2w2

εi jm√
g
Ril∇ j R

l
k − μ2κ2

8
Ri j R

i j

− μ2κ2

8(3λ − 1)

(
1 − 4λ

4
R2 + �R − 3�2

)}
, (2)
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with the Cotton tensor Ci j = εi jm∇k

(
4R j

i − Rδ
j
i

)
/(4

√
g)

and the extrinsic curvature Ki j = (ġi j−∇i N j−∇ j Ni )/(2N ).
The standard general covariant antisymmetric tensor is rep-
resented by εi jm/

√
g, and the indices are to raise and lower

with the metric gi j . Besides λ is a dimensionless constant,
μ, κ and w are also constants.

For the potential V (φ), we consider the gravitational
action term as follows

S =
∫

dtd3x
√
gN

(
3λ − 1

4

φ̇2

N 2 − V (φ)

)
, (3)

and the metric Ni = 0, gi j = a2(t)γi j , γi j dxi dx j =
r2d	2

2 +dr2/(1 − kr2), here a(t) is the dimensionless scale
factor for the expanding universe, γi j is a constant curvature
metric of maximally symmetric. The curvature k = 1, 0,−1
corresponding to the closed, flat, and open space, respec-
tively.

For simplicity we normalize κ2 and N to the number one,
then the cosmological equations can be described as

H2 = 4V (φ) + (3λ − 1)φ̇2

24(3λ − 1)

− μ2�2a4 − 2μ2�ka2 + μ2k2

16a4(3λ − 1)2 ,

Ḣ + 3

2
H2 = 4V (φ) − (3λ − 1)φ̇2

16(3λ − 1)

+ 3μ2�2a4 − 2μ2�ka2 + μ2k2

32a4(3λ − 1)2 ,

φ̈ + 3H φ̇ + 2V ′(φ)

3λ − 1
= 0,

(4)

where H = ȧ/a is the Hubble parameter.
Note that the cosmological constant term is neglected in

the present paper, i.e., � = 0, so system (4) reduces to

H2 = φ̇2

24
+ V (φ)

6(3λ − 1)
− μ2k2

16a4(3λ − 1)2 ,

Ḣ + φ̇2

8
= μ2k2

8a4(3λ − 1)2 , (5)

φ̈ + 3H φ̇ + 2V ′(φ)

3λ − 1
= 0.

For simplicity the dimensionless transformation of the fol-
lowing variables [4,5] is given as

x = φ̇

2
√

6H
, y =

√
V (φ)√

6H
√

3λ − 1
, z = μ

4(3λ − 1)a2H
,

s = −V ′(φ)

V (φ)
, f (s) ≡ V ′′(φ)

V (φ)
− V ′(φ)2

V (φ)2 . (6)

Since the usual scalar field potential V (φ) admits multiple
representations, the potential function f (s) also has various
mathematical expressions (see the papers [4,17,22,23] and
the references therein). In this paper we will investigate the

monomial potential V (φ) = (μφ)2n/2n with a positive con-
stant μ and a natural number n. Thus the power-law poten-
tial is f (s) = −s2/(2n), and we obtain ds/dt = √

6xs2/n.
Furthermore it can be followed from the first three transfor-
mations in Eq. (6) and the first two equations in system (5)
that x2 + y2 − z2 = 1 and 3x2 − 2z2 = −H ′/H . There-
fore the cosmological equations are reduced to the following
autonomous dynamical system

dx

dt
= x

(
3x2 − 2z2 − 3

)
+ √

6s
(

1 − x2 + z2
)

,

dz

dt
= z

(
3x2 − 2z2 − 2

)
, (7)

ds

dt
=

√
6

n
xs2.

Our study will fully describes the global dynamics of sys-
tem (7) in the region G = {

(x, z, s) ∈ R
3 : x2 − z2 ≤ 1

}
of

physical interest adding its boundary at infinity. It should be
noted from the derivation of system (7) that the space cur-
vature k is implicit in the variables x and z. More details of
system (7) can be found from Eqs. (113)–(115) of [4] or Eqs.
(44)–(46) of [14].

3 Phase portraits on the invariant planes and surface

In order to study the local phase portraits of the finite and
infinite equilibrium points, and the global phase portraits of
system (7) in the region G, which is the meaningful region
for cosmology, see again [4] or [14]. We start discussing the
phase portraits on its invariant planes and surface

z = 0, s = 0, x2 − z2 = 1.

3.1 The invariant plane z = 0

On this plane system (7) becomes

dx

dt
=

(
x2 − 1

) (
3x − √

6s
)

,

ds

dt
=

√
6

n
xs2. (8)

The phase portraits of system (8) in the strip z = 0 and
x2 − z2 ≤ 1, i.e., in z = 0, −1 ≤ x ≤ 1, it has been
studied in [7], and the phase portraits is shown in Fig. 1, where
the hyperbolic equilibrium point e0 = (0, 0) is a saddle,
both the semi-hyperbolic equilibrium points e1 = (1, 0) and
e2 = (−1, 0) are saddle-nodes.

In order to describe the dark energy or dark matter in
the Hořava–Lifshitz universe more clearly, we introduce the
density parameters of dark energy and dark matter (see [3,5]
for more details): 	DE = −k2z2−u2, 	M = x2+y2, as well
as the corresponding equation-of-state parameters: ωDE =
(k2z2 − 3u2)/(3k2z2 + 3u2), ωM = (x2 − y2)/(x2 + y2).
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x

s

Fig. 1 The phase portraits of the invariant plane z = 0 in the region
−1 ≤ x ≤ 1

Table 1 Equilibrium points and their characteristics on the invariant
plane z = 0 for all s ∈ R

Equilibrium
points

x s Stability ωM 	DE ωDE

e0 0 0 Unstable −1 0 Arbitrary

e1 1 0 Semi-hyperbolic 1 0 Arbitrary

e2 −1 0 Semi-hyperbolic 1 0 Arbitrary

Therefore the equilibrium points and their characteristics on
this invariant plane can be summarized in Table 1.

3.2 The invariant plane s = 0

On this plane system (7) becomes

dx

dt
= x

(
3x2 − 2z2 − 3

)
,
dz

dt
= z

(
3x2 − 2z2 − 2

)
, (9)

which has three equilibrium points e0 = (0, 0), e1 = (1, 0)

and e2 = (−1, 0). Here e0 is a hyperbolic stable node with
eigenvalues −3 and −2, both e1 and e2 are unstable hyper-
bolic nodes with eigenvalues 6 and 1.

x

z

Fig. 2 The phase portrait on the invariant plane s = 0 restricted to the
region x2 − z2 ≤ 1

On the local chart U1 (see Chapter 5 of [24] for more
details on the Poincaré compactification) system (9) becomes

du

dt
= uv2,

dv

dt
= v

(
−3 + 2u2 + 3v2

)
. (10)

Since this system vanishes at v = 0, all the points at infin-
ity are equilibrium points. Taking the transformation with
respect to time dτ = vdt yields

du

dτ
= uv,

dv

dτ
= −3 + 2u2 + 3v2. (11)

This system has two hyperbolic points at infinity, e3 =
(−√

6/2, 0) and e4 = (
√

6/2, 0), both of them are unsta-
ble hyperbolic saddle points with eigenvalues ±√

6.
On the local chart U2 system (9) writes

du

dt
= −uv2,

dv

dt
= v

(
2 − 3u2 + 2v2

)
. (12)

Rescaling the time of system (12) by letting dτ = vdt we
obtain

du

dτ
= −uv,

dv

dτ
= 2 − 3u2 + 2v2. (13)

In view of (0, 0) is not an equilibrium point of system (13),
we will not continue to study other infinite equilibrium points
of system (13) because they have been studied in local chart
U1.

Therefore the global phase portraits of system (9) can be
found in Fig. 2. In addition, similar to the previous section,
the equilibrium points on this invariant plane and their char-
acteristics are shown in Table 2.
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Table 2 Equilibrium points and their characteristics on the invariant
plane s = 0

Equilibrium
points

x z Stability ωM 	DE ωDE

e0 0 0 Stable −1 0 Arbitrary

e1 1 0 Unstable 1 0 Arbitrary

e2 −1 0 Unstable 1 0 Arbitrary

e3 ∞ ∞ Unstable – −∞ Arbitrary

e4 ∞ ∞ Unstable – −∞ Arbitrary

3.3 The invariant surface x2 − z2 = 1

First we prove that the surface x2 − z2 = 1 is invariant under
the flow of system (7). If l = l(x, z, s) = x2 − z2 − 1, then
in order that the surface x2 − z2 = 1 be invariant we must
have

∂l

∂x
ẋ + ∂l

∂z
ż + ∂l

∂s
ṡ = Kl,

for some polynomial K , and this is the case with K =
2(3x2 − 2z2 − √

6xs).
On the surface x2 − z2 = 1 system (7) can be written as

dx

dt
= x

(
x2 − 1

)
,
ds

dt
=

√
6

n
xs2. (14)

Then except for all the points on x = 0 which are equilibrium
points, system (14) also admits two finite equilibrium points
e1 = (1, 0) and e2 = (−1, 0). By using Theorem 2.19 of
[24], we can find that both e1 and e2 are semi-hyperbolic
saddle-nodes.

On the local chart U1 system (14) becomes

du

dt
= u

(√
6

n
u + v2 − 1

)
,
dv

dt
= v

(
v2 − 1

)
. (15)

It has two infinite equilibrium points e5 = (0, 0) and e6 =
(
√

6n/6, 0), where e5 is a hyperbolic stable node with eigen-
values −1 of multiplicity two, and e6 is a hyperbolic unstable
saddle point with eigenvalues ±1.

On the local chart U2 system (14) writes

du

dt
= u

(
−

√
6

n
u + u2 − v2

)
,
dv

dt
= −

√
6

n
uv. (16)

Let dτ = udt we obtain

du

dτ
= −

√
6

n
u + u2 − v2,

dv

dτ
= −

√
6

n
v. (17)

The origin e7 = (0, 0) on the local chart U2 is a hyperbolic
stable node with eigenvalues −√

6/n of multiplicity two.
In short the global phase portraits of system (14) is shown

in Fig. 3. Furthermore, similar to the previous Sects. 3.1 and

x

s

Fig. 3 The phase portrait of the invariant surface x2 − z2 = 1

Table 3 Equilibrium points and their characteristics on the invariant
plane x2 − z2 = 1 for all s ∈ R

Equilibrium
points

x z Stability ωM 	DE ωDE

e1 1 0 Semi-hyperbolic 1 0 Arbitrary

e2 −1 0 Semi-hyperbolic 1 0 Arbitrary

e5 ∞ ∞ Stable 1 −∞ Arbitrary

e6 ∞ ∞ Unstable 1 −∞ Arbitrary

3.2, the equilibrium points and their characteristics on this
invariant surface are collated in Table 3.

3.4 The finite equilibrium points

It is noted that system (7) admits three finite equilibrium
points p0 = (0, 0, 0) with eigenvalues {−3,−2, 0}, p1 =
(1, 0, 0) and p2 = (−1, 0, 0) with the same eigenvalues
{6, 1, 0}. Here p1 and p2 are located at the intersection of
the invariant planes z = 0, s = 0 and the invariant surface
x2 − z2 = 1, corresponding to the equilibrium points e1 and
e2 in Sects. 3.1–3.3, respectively. The origin p0 of system
(7) lies at the intersection of the invariant planes z = 0 and
s = 0, which is the same point as the equilibrium point e0

studied in Sects. 3.1 and 3.2.

4 Phase portraits on the Poincaré sphere at infinity

In order to describe the dynamics of system (7) at infinity. We
use the method of the three-dimensional Poincaré compactifi-
cation (see [25] for more details) x = 1/z3, z = z1/z3, s =
z2/z3, then the analytical vector field of system (7) on the
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Table 4 Equilibrium points on the different local charts of the Poincaré
sphere at the infinity of R3

Equilibrium points Eigenvalues

u11 = (0, 0, 0) {−3,−3, 0}

u12 =
(

−
√

6

2
, 0, 0

)
{0, 0, 0}

u13 =
(√

6

2
, 0, 0

)
{0, 0, 0}

u14 =
(

−1,

√
6

6
n, 0

)
{−1, 1,−2n}

u15 =
(

1,

√
6

6
n, 0

)
{−1, 1,−2n}

u16 =
(

0,

√
6

2

n

1 + n
, 0

) {
− 3

1 + n
,

3n

1 + n
, 3

}

ub0 = (b, 0, 0)
{
0,−3 + 2b2,−3 + 2b2

}
u31 = (0, 0, 0) {0, 0, 0}

local chart U1 becomes

dz1

dt
= z1

[
z2

3 − √
6z2

(
−1 + z2

1 + z2
3

)]
,

dz2

dt
= z2

[
−3 + 2z2

1 + 3z2
3 + √

6z2

(
1

n
+ 1 − z2

1 − z2
3

)]
,

dz3

dt
= −z3

[
z2

1

(
−2+√

6z2

)
+

(
−3+√

6z2

) (
−1 + z2

3

)]
.

(18)

In the different local charts of the Poincaré sphere, the
infinity of R3 corresponds to z3 = 0, then system (18) has
the equilibrium points listed in Table 4. Except that the equi-
librium point u31 denotes the origin of the local chart U3, the
rest equilibrium points lie in the local chart U1. Moreover
the straight line s = 0 of the local chart U1 is filled with the
equilibrium points ub0 for all b ∈ R.

For the case z3 = 0 system (18) is reduced to

dz1

dt
= −√

6z1z2

(
−1 + z2

1

)
,

dz2

dt
= z2

[
−3 + 2z2

1 + √
6z2

(
1

n
+ 1 − z2

1

)]
. (19)

After changing the of time dτ = z2dt system (19) becomes

dz1

dτ
= −√

6z1

(
−1 + z2

1

)
,

dz2

dτ
= −3 + 2z2

1 + √
6z2

(
1

n
+ 1 − z2

1

)
. (20)

Then this system has three equilibrium points ei,1, ei,2
and ei,3 with coordinates (−1,

√
6n/6), (1,

√
6n/6) and

(0,
√

6n/(2(1+n))), respectively. Here both ei,1 and ei,2 are
unstable saddle points with eigenvalues

√
6/n and −2

√
6.

ei,3 is an unstable node with eigenvalues
√

6 and
√

6(1 +

z

s

Fig. 4 The phase portrait of system (7) at infinity on local chart U1

n)/n. The phase portrait on the Poincaré sphere at infinity
on local chart U1 is shown in Fig. 4.

On the local chartU2 in view of Poincaré compactification
x = z1/z3, z = 1/z3, s = z2/z3, system (7) writes

dz1

dt
= −z1z

2
3 + √

6z2

(
1 − z2

1 + z2
3

)
,

dz2

dt
= z2

(
2 − 3z2

1 +
√

6

n
z1z2 + 2z2

3

)
, (21)

dz3

dt
= z3

(
2 − 3z2

1 + 2z2
3

)
.

Since we want to study the infinity we take z3 = 0, rescal-
ing the time dτ = z2dt system (21) is equivalent to

dz1

dτ
= √

6
(

1 − z2
1

)
,

dz2

dτ
= 2 − 3z2

1 +
√

6

n
z1z2.

(22)

For any constant c, since (c, 0) is not the equilibrium point of
the system (22), we will not continue to discuss other infinite
equilibrium points of the system (22). Because this has been
discussed in the case U1.

On the local chartU3 the three-dimensional Poincaré com-
pactification is x = z1/z3, z = z2/z3, s = 1/z3, then sys-
tem (7) becomes

dz1

dt
= z1

[
−

√
6(1 + n)

n
z1 + 3z2

1 − 2z2
2 − 3z2

3

]

+ √
6

(
z2

2 + z2
3

)
,

dz2

dt
= z2

[
−

√
6

n
z1 + 3z2

1 − 2
(
z2

2 + z2
3

)]
,

dz3

dt
= −

√
6

n
z1z3.

(23)
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For the case z3 = 0 from system (23) we obtain

dz1

dt
= z1

[
−

√
6(1 + n)

n
z1 + 3z2

1 − 2z2
2

]
+ √

6z2
2,

dz2

dt
= z2

(
−

√
6

n
z1 + 3z2

1 − 2z2
2

)
.

(24)

It is noted that (0, 0) is a linearly zero equilibrium point, the
topological index is zero from the Poincaré–Hopf theory (see
Theorem 6.30 of [24] for more details). In order to study its
local phase portrait we shall use vertical blow-ups (see for
instance [26]) by letting w = z2/z1, then we obtain

dz1

dt
= z2

1

[√
6

(
−1

n
− 1 + w2

)
+

(
3 − 2w2

)
z1

]
,

dw

dt
= −√

6z1w
(
−1 + w2

)
.

(25)

Eliminating the common factor z1 of system (25) by changing
the time dτ = z1dt it yields

dz1

dτ
= z1

[√
6

(
−1

n
− 1 + w2

)
+

(
3 − 2w2

)
z1

]
,

dw

dτ
= −√

6w
(
−1 + w2

)
.

(26)

System (26) admits three equilibrium points ei,4 = (0,−1),
ei,5 = (0, 1) and ei,6 = (0, 0) on z1 = 0, where ei,4 and ei,5
are two hyperbolic stable nodes with eigenvalues −√

6/n
and −2

√
6, ei,6 is a hyperbolic unstable saddle point with

eigenvalues
√

6 and −√
6(1+n)/n. The local phase portraits

around ei,4, ei,5 and ei,6 are shown in Fig. 5a. Note that there
is a time rescaling dτ = z1dt between systems (25) and (26),
so the direction of the trajectories in the local phase portraits
of system (25) is opposite to that of Fig. 5a when z1 < 0,
see Fig. 5b for more details. In addition, all points on the
w axis, i.e., z1 = 0, are singularities of system (25). Thus
the local phase portraits at (0, 0) of system (24) is shown in
Fig. 5c. Then the phase portrait in the local chartU3 is shown
in Fig. 6.

In summary joining the previous information we obtain
the global phase portraits at infinity in the Poincaré sphere in
Fig. 7.

5 Phase portraits inside the Poincaré ball restricted to
x2 − z2 ≤ 1

It is noted that system (7) is invariant under the symmetries
(x, z, s) �→ (−x,−z,−s) and (x, z, s) �→ (−x, z,−s), so
it is invariant under the symmetry with respect to the origin
and to the z-axis. Now we divide the Poincaré ball restricted
to x2 − z2 ≤ 1 into the following four regions:

R1: z ≤ 0, s ≥ 0. R2: z ≤ 0, s ≤ 0.

(a) (b)

(c)

Fig. 5 In a–c there are the local phase portraits of the equilibrium
points in systems (26), (25) and (24), respectively

x

z

Fig. 6 The phase portrait of system (24), i.e., the phase portrait at
infinity in the local chart U3 of system (7)

R3: z ≥ 0, s ≥ 0. R4: z ≥ 0, s ≤ 0.

Then due to the symmetries we only need to study the phase
portraits of system (7) in the region R1.

Combining the phase portraits of the invariant surface x2−
z2 = 1 with the phase portraits of the planes z = 0, and
s = 0, together with the phase portrait at infinity, we get the
phase portraits on the boundary of the region R1 as shown
in Figs. 8, 9 and 10. Here we explain the definition of the
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z

s

x

Fig. 7 The global phase portrait at infinity in the Poincaré sphere.
The North Pole of the Poincaré ball is the equilibrium point u31. The
symmetric points of u12 and u13 with respect to the center of the sphere
are U12 and U13, respectively

z

s

x

Fig. 8 Phase portrait in the front boundary of the region R1

three-dimensional cartesian coordinate system in this paper
as follows: we regard the xz-plane as the horizontal plane in
R

3, where the direction of the z-axis is horizontal towards the
right. If the z-axis axis rotates 90◦ clockwise we get the x-
axis. The s-axis is vertical upward, and then xzs constitutes a
three-dimensional right-handed cartesian coordinate system.

In order to show the phase portraits more clearly, the
boundary of the region R1 is divided into six surfaces accord-
ing to the orientation towards us, the back to us and the bottom
area. See Fig. 11 for more details. It is noted that the North
Pole u31 of the Poincaré ball on the front boundary surfaces
F1 and F2 is stable, and there is an elliptic sector and a stable

z

s

x

Fig. 9 Phase portrait in the back boundary of the region R1

z

s

x

Fig. 10 Phase portrait in the bottom of the region R1

parabolic sector segment of U3 on the boundary F3, but it is
unstable on the back boundary surfaces B1 and B2.

6 Dynamics in the interior of the region R1

Note that the original system (7) admits the three finite equi-
librium points p0, p1 and p2 in the three-dimensional carte-
sian coordinate system. The dynamical behavior of the sys-
tem inside the region R1 depends on the behavior of the flow
in the following surfaces and planes

h(x, z, s) = 0, g(x, z) = 0, x = 0, z = 0, s = 0,
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Fig. 11 The six boundary
surfaces of the region R1

U13

u31

p2

U13

u31

p2

U13

u12

p1

p0

u31

u12

u14

u31

u12

u14

p1

p2

u31

p1

p0

F1

F2

F3

B1 B2

C

z

s

x

Fig. 12 There are seven subregions inside the region R1 of the Poincaré
ball

where

h(x, z, s) = x
(

3x2 − 2z2 − 3
)

+ √
6s

(
1 − x2 + z2

)
,

g(x, z) = 3x2 − 2z2 − 2.

These surfaces and planes divide the region R1 into seven
different subregions R1i , i = (1, 2, . . . , 7), see Figs. 12,
13, 14, 15, 16, 17, 18 and 19 for more details. It should be
noted that R11 and R13 represent parallel tunnels inside R1,
respectively. It is easy to verify that h > 0 in the subregions
R12, R14, R15 and R16, and h < 0 in the subregions R11, R13

and R17. Similarly, we can find that g > 0 in the subregions
R11, R12, R16 and R17, and g < 0 in the subregions R13, R14

and R15. It should be noted that the dotted and solid lines in
Figs. 13, 14, 15, 16, 17, 18 and 19 are consistent with those
in Fig. 12.

As shown in the subregion R11 (see Fig. 13) the front
surface consists of three dashed lines and one solid line con-
tained in the surface h = 0, and the surface on the back side

z

s

x

Fig. 13 The subregion R11

z

s

x

Fig. 14 The subregion R12

(opposite to the above front surface) contained in the surface
g = 0.

In Table 5 we describe the behavior of ẋ , ż and ṡ in the
seven subregions R11, . . . , R17. From this table we obtain
that the variables x and z in the subregion R11 decrease mono-
tonically, and the variable s increases monotonically, so an
orbit in the subregion R11 either crosses the boundary h = 0
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z

s

x

Fig. 15 The subregion R13

z

s

x

Fig. 16 The subregion R14

z

s

x

Fig. 17 The subregion R15

and enters into the subregion R12, or crosses the boundary
g = 0 and goes to the subregion R13, or crosses the inter-
section curve of the subregions R11, R12 and R13 into the
subregion R14 with very low probability, i.e. an orbit in the
subregion R11 will not stay in the future in this region, but
will exit through its boundaries into other subregions, and

z

s

x

Fig. 18 The subregion R16

z

s

x

Fig. 19 The subregion R17

these orbits in backwards time come from the equilibrium
point p1 in the subregion R11. This process can be simply
summarized as follows

p1 R11 R13.

R12

R14

The front boundary of R12 (see Fig. 14), i.e. the surface
containing the equilibrium points u12, u14, u31 and p1, is
contained in the invariant surface x2 − z2 = 1 (x > 0). The
surface on the back side of R12 that contains the equilibrium
points p1 and u31 consists of two parts: the upper part surface
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Table 5 Dynamical behavior in
seven different subregions

Subregions Corresponding region Increase or decrease

R11 h < 0, g > 0, x > 0, z < 0, s > 0 ẋ < 0, ż < 0, ṡ > 0

R12 h > 0, g > 0, x > 0, z < 0, s > 0 ẋ > 0, ż < 0, ṡ > 0

R13 h < 0, g < 0, x > 0, z < 0, s > 0 ẋ < 0, ż > 0, ṡ > 0

R14 h > 0, g < 0, x > 0, z < 0, s > 0 ẋ > 0, ż > 0, ṡ > 0

R15 h > 0, g < 0, x > 0, z < 0, s > 0 ẋ > 0, ż > 0, ṡ < 0

R16 h > 0, g > 0, x > 0, z < 0, s > 0 ẋ > 0, ż < 0, ṡ < 0

R17 h < 0, g > 0, x > 0, z < 0, s > 0 ẋ < 0, ż < 0, ṡ < 0

containing the infinite equilibrium point u31 is the intersec-
tion of the subregions R12 and R14, which is contained in
the surface g = 0, and the lower part surface containing
the finite equilibrium point p1, is the intersection of subre-
gions R11 and R12 that is contained in the surface h = 0.
The equilibrium points in the subregion R12 are the finite
equilibrium point p1, the infinite equilibrium points on the
Poincaré sphere at s = 0 and the equilibrium point u14 at
infinity. However an orbit in the subregion R12 does not start
from these infinite equilibrium points at s = 0 or return to
these points, but it comes from the finite equilibrium point
p1 or from the subregions R11 and R14 which have common
boundaries with the subregion R12. This is due to the fact that
the variable z is decreasing monotonically and the variables
x and s are increasing monotonically inside the subregion
R12 according to Table 5. Moreover a trajectory in the subre-
gion R12 will tend to the equilibrium point u14 at infinity. In
summary, this dynamic behavior process can be represented
as

R12 u14.R11

p1

R14

In the subregion R13 (see Fig. 15) the front surface com-
posed of three dashed lines and one solid line is contained
in the surface g = 0, and its opposite surface is contained
in the surface h = 0. From Table 5 an orbit in the subregion
R13 may only comes from the equilibrium points locate at
the infinity on s = 0 in R13, or it comes from the subregions
R11. Then the orbit passes through the intersection of sub-
regions R13 and R14 (contained in the surface h = 0) and
enters the subregion R14, or tends to the infinite equilibrium
point u31, i.e., lies in the North Pole of the Poincaré sphere.
So we obtain the following dynamics

R13

u31

R14.

s = 0 in R13

R11

In subregion R14 (see Fig. 16) the front triangular surface
is contained in g = 0, and its opposite triangular surface
is on the back side, which is included in the plane x = 0.
According to Table 5 an orbit of the subregion R14 may come
from the infinite equilibrium points on x = 0, or come from
the subregion R13 through the surface h = 0, or from subre-
gion R15 traversing plane x = 0, then go through the surface
g = 0 into the subregion R12, or directly goes to the infi-
nite equilibrium point u31 at the North Pole of the Poincaré
sphere. This can be represented as

R14

R12

u31.

R13

R15

x = 0 in R14

It can be noted from Fig. 17 that the surface on the left of
subregion R15 (consisting of two dashed lines and one solid
line) is contained in plane x = 0, and the opposite surface to
it is included in the surface g = 0. According to Table 5 an
orbit in the subregion R15 can only come from the adjacent
subregion R16, and then either enter into the subregion R14

adjacent to it, or directly tend to the finite equilibrium point
p0 located at the center of the Poincaré ball. This dynamics
can be denoted as
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R16 R15

R14

p0.

We observe that the curved surfaces of the left and right
sides of the subregion R16 (see Fig. 18) are contained in the
surfaces g = 0 and h = 0, respectively. It is known from
Table 5 that an orbit in the subregion R16 can only come
from the subregion R17 and crossing the surface g = 0, it
enters into the subregion R15. Thus we get that

R16 R15.R17

The left and right surfaces of subregion R17 (see Fig. 19)
are included in the surface h = 0 and in the invariant surface
x2 − z2 = 1 (x < 0), respectively. According to Table 5, it is
known that all three variables in subregion R17 are decreas-
ing monotonically, so an orbit in this subregion must come
from the infinite equilibrium point u31 located at the North
Pole of Poincaré sphere and eventually tends to the infinite
equilibrium point U13 in the invariant plane s = 0. Then we
have that

R17 U13.u31

The dynamic behavior of the orbits inside the seven sub-
regions of R1 discussed above can be summarized as

R13 R11 p1.u31R17U13

s = 0 in R13

R16 R15 R14 R12 u14

p0 x = 0 in R14

The above flow chart shows that the orbits of system (7)
contained in the interior of the region R1 have α-limit at
the finite equilibrium point p1, and the some orbits on the
boundary of the region R1 have α-limit at the x = 0 in R14,
or s = 0 in R13. Moreover the orbits have ω-limit either at
the finite equilibrium point p0, or at the infinite equilibrium
points u14 and U13, where u14 is located on the intersec-
tion curve of the Poincaré sphere and the invariant surface
x2 − z2 = 1 (x > 0) at infinity, and U13 is located on the
intersection of the Poincaré sphere and the invariant surfaces
s = 0, x2 − z2 = 1 (x < 0) at infinity (see Fig. 12). Fur-
thermore the orbits of system (7) on the boundary of R1 also

have α-limit and ω-limit at the infinite equilibrium point u31,
i.e. the North Pole of the Poincaré sphere.

For the sake of summary, similar to the previous Sects. 3.1–
3.3, the equilibrium points on the region R1 and their char-
acteristics within this region are integrated in Table 6.

In this way the qualitative global dynamic behavior of
system (7) is described.

7 Discussion and conclusions

From a cosmological point of view, the unstable finite equi-
librium points p1 and p2 as shown in Figs. 8, 9 and 10 or
12 are consistent with the results of case 1 in the cosmolog-
ical model in [3,5], corresponding to complete dark matter
domination. It is known from the last flow chart in Sect. 6
that the physical importance of the finite equilibrium point
p0 is a late-time state of the universe if the initial condition
is not on the invariant plane z = 0 or on the invariant sur-
face x2 − z2 = 1. We also note that this late-time solution
was already obtained in the strip −√

6/2 < s <
√

6/2 for
the cosmological model with exponential potential in [3–5],
but our results hold for all values of s in the region G of the
three-dimensional space. In addition, the main differences
between the Ref. [5] and the present paper are:

1. The former specifically studied the case of exponential
potential, our research is based on a wide range of poten-
tials, and specifically considering the case of power-law
potential.

2. The former is based on the planar cosmological model,
and we are considering a three-dimensional one.

3. The former did not discussed the dynamics at infinity, but
we studied the infinite equilibrium points, and found that
the infinite equilibrium points u14 and U13 may also be
the late-time state solutions of the universe.

See the last flow chart in Sect. 6 again, the equilibrium
points u14 andU13 will be future attractors located at infinity.
When the initial conditions are inside the region R1, they can
be the late-time states of the universe. It is noted that only
u14 and U13 are studied in the region R1 because system (7)
admits two aforementioned symmetries. Thus the results of
u15 and u13 (see Fig. 7) are identical with those of u14 and
U13, respectively. It should also be noted that Fig. 5.5 in [3]
or Fig. 3 in [5] can be obtained in Fig. 7 in the present paper
when s = 0.6. Then it is easy to find that u14 corresponds
to P6 in the Fig. 5.5 in [3] for the plane case when s → 0.
However the infinite equilibrium point u14 can be the late-
time state of the universe from the above analysis, while P6

corresponds to the universe dominated by dark matter due to
the absence of � and the effect of k will decrease with the
increasing of the scale factor a(t).
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Table 6 Equilibrium points and
their characteristics in the
interior of the region R1 for all
s ∈ R

Equilibrium points x z s Stability ωM 	DE ωDE

p0 0 0 0 Stable −1 0 Arbitrary

p1 1 0 0 Unstable 1 0 Arbitrary

p2 −1 0 0 Unstable 1 0 Arbitrary

u12 ∞ ∞ 0 Unstable – −∞ Arbitrary

U13 ∞ ∞ 0 Stable – −∞ Arbitrary

u14 ∞ ∞ ∞ Stable – −∞ Arbitrary

ub0 ∞ 0 0 Unstable – 0 Arbitrary

u31 0 0 ∞ Unstable −1 0 Arbitrary

As a conclusion, based on Hořava–Lifshitz gravity in
a Friedmann–Lemaître–Robertson–Walker space–time with
non-zero curvature and without the cosmological constant
term, and combined with the Refs. [7,27], it is found that if
the universe is non-flat (i.e., k �= 0), it may also be closed,
then the finite equilibrium point p0, and the infinite equilib-
rium points u14 and U13 can be the late-time states of the
universe. Besides Eq. (6) also imply that the value of Hub-
ble parameter H tends to be zero (i.e., the final state is the
Minkowski point) in the cosmological model as time goes
on.
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15. E.N. Saridakis, Aspects of Hořava–Lifshitz cosmology. Int. J. Mod-
ern Phys. D 20(08), 1485–1504 (2011)

16. A. Tawfik, E. Abou El Dahab, FLRW cosmology with Hořava–
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