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Abstract I reexamine the phenomena of the chromomag-
netic gluon condensation in Yang–Mills theory. The exten-
sion of the Heisenberg–Euler Lagrangian to the Yang–Mills
theory allows to calculate the effective action, the energy-
momentum tensor and demonstrate that the energy density
curve crosses the zero energy level of the perturbative vacuum
state at nonzero angle and continuously enters to the nega-
tive energy density region. At the crossing point and further
down the effective coupling constant is small and demon-
strate that the true vacuum state of the Yang–Mills theory is
below the perturbative vacuum state and is described by the
nonzero chromomagnetic gluon condensate. The renormali-
sation group analyses allows to express the energy momen-
tum tensor, its trace and the vacuum magnetic permeabilities
in QED and QCD in terms of effective coupling constant and
Callan–Symanzik beta function. In the vacuum the energy-
momentum tensor is proportional to the space-time metric,
and it induces a negative contribution to the effective cosmo-
logical constant.

1 Introduction

In this article we shall analyse the effective action in QED
and QCD by using the perturbative loop expansion and renor-
malisation group equations and discuss the physical conse-
quences which can be derived from their explicit expressions.
We shall reexamine the phenomena of the chromomagnetic
gluon condensation in Yang–Mills (YM) theory and will
present the derivation of the new results. The Heisenberg–
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Euler Lagrangian in QED [1–6] is a sum of the one loop
diagrams with a vacuum electron-positron pair circulating in
the loop and the gluons and quarks in case of QCD [7–16].
The effective action �[A] has the following representation:

� =
∫

Ldx =
∑
n

∫
dx1 . . . dxn�

(n)a1...an
μ1...μn

(x1, . . . , xn)

× Aa1
μ1

(x1) . . . Aan
μn

(xn) = S + W (1) + W (2) + · · · ,

(1.1)

where L is the effective Lagrangian, �(n) is a one-particle
irreducible (1PI) vertex function, Aa

μ(x) ≡ 〈0|Aa
μ(x)|0〉

is the vacuum expectation value of the field operator and
W (n), n = 1, 2, . . . represent the terms of the loop expan-
sion.

We shall consider the limit of massless electrons and
quarks and demonstrate that the proper time integral in the
Heisenberg–Euler Lagrangian can be calculated explicitly by
using covariant renormalisation condition [12,15,16]

∂L
∂F |

t= 1
2 ln

(
2e2 |F |

μ4

)
=G=0

= −1, (1.2)

where F = 1
4G

a
μνG

a
μν is the Lorentz and gauge invariant

form of the YM field strength tensor Ga
μν and μ2 is the renor-

malisation scale parameter. In the massless limit the QED
effective Lagrangian has the exact logarithmic dependence
as a function of the invariant F (see Fig. 1):

Le = −F + e2F
24π2

[
ln

(
2e2F
μ4

)
− 1

]
,

F = �H2 − �E2

2
, G = �E �H = 0, (1.3)

where �H and �E are magnetic and electric fields. This
expression should be compared with the one-loop effective
Lagrangian in pure SU(N) gauge field theory, which has the
form [12,15] (see Fig. 2):
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Lg = −F − 11N

96π2 g
2F

(
ln

2g2F
μ4 − 1

)
,

F = �H2
a − �E2

a

2
> 0, G = �Ea �Ha = 0. (1.4)

From (1.3) it follows that the corresponding quark contribu-
tion considered in the chiral limit is

Lq = −F + N f

48π2 g
2F

[
ln

(
2g2F
μ4

)
− 1

]
, (1.5)

where N f is the number of quark flavours.
The effective Lagrangian technique allows to calculate

the magnetic induction �B of the vacuum defined through the
derivative of the effective Lagrangian [12]:

�Ba = − ∂L
∂ �Ha

= μvac �Ha . (1.6)

From (1.3), (1.4) and (1.5) it follows that in QED the vacuum
responds to the background magnetic field as diamagnet and
in QCD as paramagnet with the magnetic permeabilities of
the following form [12]:

μQED

= 1 − e2

24π2 log

(
e2 �H2

μ4

)
< 1, diamagnetic, (1.7)

μQCD

= 1 + g2

96π2 (11N − 2N f ) log
g2 �H2

a

μ4 > 1,

paramagnetic, N >
2

11
N f . (1.8)

The diamagnetism of the QED vacuum (1.7) means that it
repels the magnetic fields by forming induced magnetic field
in the direction opposite to that of the applied magnetic field.
This phenomenon is similar to the Landau orbital diamag-
netism of free electron gas when the counteracting field is
formed when the electron trajectories are curved due to the
Lorentz force [87]. The paramagnetism of the QCD vac-
uum (1.8) means that it amplifies the applied chromomag-
netic field by generating induced chromomagnetic field in
the direction of the applied field. In QCD the large polarisa-
tion of the gluon spins is responsible for the amplification of
the background field. This phenomenon is similar to the Pauli
paramagnetism, an effect associated with the polarisation of
the electron spins [86].

The effective Lagrangian approach allows to calculate the
quantum-mechanical corrections to the energy momentum
tensor by using the formula derived by Schwinger in [5]:

Tμν =
(
FμλFνλ − gμν

1

4
F2

λρ

)
∂L
∂F

− gμν

(
L − F ∂L

∂F − G ∂L
∂G

)
. (1.9)

Fig. 1 The graph shows the qualitative behaviour of the QED vacuum
energy density ε( �H2) (1.3), (2.19) and of the effective coupling constant
ē2( �H2) (4.3) as the functions of the background magnetic field. The

effective coupling constant is singular at �H0
2
, the “Moscow zero” [90,

91]

In case of the Heisenberg–Euler effective Lagrangian Sch-
winger presented the expression for the Tμν in the fine struc-
ture constant α = e2/4π expansion:

Tμν = T M
μν

(
1 − 16

45m4 α2F
)

+gμν

2

45m4 α2
(

4F2 + 7G2
)

+ · · · (1.10)

with its nonzero trace

T = Tμμ = 8

45m4 α2
(

4F2 + 7G2
)

+ · · · (1.11)

In massless QED using the one-loop expression (1.3) for Tμν

one can get

Tμν = T M
μν

[
1 − e2

24π2 ln
2e2F
μ4

]
+ gμν

e2

24π2 F , G = 0.

(1.12)

The Tμν becomes proportional to the space-time metric ten-
sor gμν at the extreme magnetic field H2

0 = H2
c exp (6π/α)

and therefore induces a positive effective cosmological con-
stant (see Fig. 1).

To calculate the energy momentum tensor Tμν in pure
SU (N ) YM theory one should use the expression (1.4) and
in the case of QCD, in the limit of chiral fermions, one should
also add the quark contribution (1.5) by using the substitution
11N → b = 11N − 2N f :

Tμν =T YM
μν

[
1+ b g2

96π2 ln
2g2F
μ4

]
−gμν

b g2

96π2 F , G = 0.

(1.13)

The vacuum energy density T00 ≡ ε(F) has therefore the
following form [15]:

ε(F) = F + b g2

96π2 F
(

ln
2g2F
μ4 − 1

)
. (1.14)
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The energy density has its new minimum outside of the per-
turbative vacuum state 〈G2

μν〉 = 0, at the Lorentz and renor-
malisation group invariant field strength [15]

〈2g2F〉vac = μ4 exp

(
− 96π2

b g2(μ)

)
= 
4

QCD, (1.15)

where b = 11N − 2N f and characterises the dynamical
breaking of scaling invariance in YM theory1:

Tμμ = − b

48π2 〈2g2F〉vac.
Substituting the vacuum field intensity (1.15) into the expres-
sion for the energy momentum tensor (1.13) one can get that
in the vacuum the tensor Tμν is proportional to the space-time
metric gμν :

〈Tμν〉vac = −gμν

b

96π2 〈g2F〉vac. (1.16)

In this form the energy momentum tensor represents the rel-
ativistically invariant equation of state εvac = −Pvac, which
uniquely characterises the vacuum [17–20] with its negative
energy density εvac. The vacuum energy momentum tensor
(1.16) generates the effective cosmological constant 
e f f

Rμν − 1

2
gμνR = gμν
e f f + 8πG

c4 Tμν

= 8πG

c4 (〈Tμν〉vac + Tμν)

of the form:

εvac = c4
e f f

8πG
= − b

96π2 〈g2F〉vac = − b

192π2 
4
QCD,

(1.17)

where the chromomagnetic condensate (1.15) is < 2g2F
>vac= 
4

QCD . The magnetic permeability (1.8) in the vac-
uum state (1.15) is equal to zero:

μQCD
vac = 1 + b g2

96π2 log
〈2g2F〉vac

μ4 = 0. (1.18)

It is useful to derive the expression of the effective Lagrangian
by using the renormalisation group equation [15,16]. The
solution of the renormalisation group equation in terms of
effective coupling constant ḡ(g, t), with the boundary con-
dition ḡ(g, 0) = g, has the following form [15,16]:

∂L
∂F = − g2

ḡ2(t)
,

dḡ

dt
= β(ḡ), t = 1

2
ln(2g2F/μ4).

(1.19)

The derivative (1.19) of the effective Lagrangian has trans-
parent expression in terms of the effective coupling constant

1 The 
QCD is defined here through the covariant subtraction scheme
(1.2). The relation with other renormalisation schemes can be found in
[37].

and allows to obtain the effective Lagrangian by integration
over F in all order of the perturbative expansion:

L(F) = −μ4
∫

e2t

ḡ2(t)
dt, t = 1

2
ln(2g2F/μ4), (1.20)

and find out the expressions for the physical quantities
beyond the one-loop approximation. One can calculate dif-
ferent observables of physical interest that will include the
effective energy momentum tensor, vacuum energy density,
the magnetic permeability, the effective coupling constants
and their behaviour as a function of the external fields. In
particular, the energy momentum tensor (1.9) will take the
following form:

Tμν = −
(
GμλGνλ − gμν

1

4
G2

λρ

)
g2

ḡ2(t)

+ gμν

(∫
e2t

ḡ2(t)
dt − 1

2

e2t

ḡ2(t)

)
μ4. (1.21)

And the vacuum energy density can be expressed in terms of
the trace Tμμ:

ε = T00 = �Ha
2

2

g2

ḡ2(t)
+ 1

4
Tμμ, G = 0, (1.22)

where the trace of the energy momentum tensor Tμμ is given
by the following expression:

Tμμ = 4μ4
∫

e2tβ(ḡ(t))

ḡ(t)3 dt, t = 1

2
ln(2g2F/μ4).

(1.23)

The last formula provides all-loop expression for the con-
formal anomaly in gauge field theories.2 As far as the beta
function β̄(g) has no zeros, is negative analytical function of
the coupling constant and∫ ∞

g

dg

β(g)
< ∞, (1.24)

the minimum of the energy density curve is defined by
the extremum, where the derivative (1.19) vanishes. It fol-
lows that the value of the chromomagnetic condensate is
[15]

〈2g2F〉vac = μ4 exp

(
2

∫ ∞

g(μ)

dg

β(g)

)
. (1.25)

Considering the value of the field strength tensorF0 at which
the vacuum energy density (1.14) vanishes ε(F0) = 0,
the point F0 shown on Fig. 2, one can observe that the
effective coupling constant (1.19) at this field strength has
the value 96π2

11N−2N f
and tends to zero as N → ∞. The

energy density curve ε(F) (1.14) intersect the horizon-
tal zero energy line at the nonzero angle θ > 0 (see

2 If one considers the approximation in which ḡ(t) is field independent
ḡ(t) ≡ g then (1.23) will reduce to the one given in literature [56–60].

123



165 Page 4 of 19 Eur. Phys. J. C (2020) 80 :165

Fig. 2 The graph shows the qualitative behaviour of the vacuum energy
density ε(F) (1.14), (4.16). At the intersection pointF0 (6.17) the effec-
tive coupling constant is small (6.18) and the intersection angle θ is
strictly positive (6.19). The energy density curve can be continuously
extended from the point F0 deep into the negative energy density region
arbitrary close to the value of the vacuum condensate 〈F〉vac by con-
sidering a larger values of N and keeping the t’Hooft coupling constant
g2N fixed (6.20), (6.21). This demonstrate that there is a nonzero energy
gap εgap > 0 between perturbative and true vacuum states. The vac-
uum is characterised by the nonzero value of the chromomagnetic field
strength tensor (1.15), (6.8) and the energy density gap εgap = |εvac|
(1.17) [15,37]

(6.19) and Fig. 2). The energy density curve can be con-
tinuously extended from the point F0 deep into the neg-
ative energy density region arbitrary close to the value of
the vacuum condensate 〈F〉vac by considering a larger val-
ues of N and keeping the t’Hooft coupling constant g2N
small and fixed. This demonstrates that the true vacuum
of the Yang–Mills theory is below the perturbative vac-
uum, the energy density curve ε(F) is approaching the point
of zero energy density from below and that there exists a
nonzero energy gap between perturbative and true vacuum
states.

The article is organised as follows. In the Sect. 2 we
shall use gauge and renormalisation group invariant scheme
(1.2) [12,15] to renormalise the massless Heisenberg–
Euler Lagrangian and derive the exact one-loop expres-
sion for the effective Lagrangian in QED (1.3). In the
Sect. 3 we shall use the renormalisation group equations
for the effective Lagrangian to derive all loops results for
the vacuum energy density and the traces of the energy
momentum tensor. In Sects. 4 and 5 the analyses will
be extended to the Yang–Mills theory and the phenom-
ena of the chromomagnetic gluon condensation will be
reexamined. We shall present the absence of the imag-
inary part in the YM effective Lagrangian in chromo-
magnetic field and the stability of the chromomagnetic
gluon condensate by Niels Bohr theory group and by Kurt
Flory.

2 Heisenberg–Euler effective Lagrangian in massless
limit

The effective action � and the effective Lagrangian L in
gauge field theories can be represented as a sum of the one-
particle irreducible loop diagrams W (n), n = 1, 2 . . . :

� =
∫

L d4x = S + W (1) + W (2) + · · · , (2.1)

where S is the Yang–Mills or Maxwell action:

S = −1

4

∫
G2

μνd
4x . (2.2)

We shall analyse the behaviour of the effective actions in both
theories and shall consider first the Quantum Electrodynamic
in massless limit (see, in particular, [83]). The Heisenberg–
Euler Lagrangian in QED [1–6,82] is a sum of the one-loop
diagrams with a vacuum electron-positron pair running in the
loop:

W (1) =
∫

L(1)(x)d4x , (2.3)

and can be expressed through the functional determinant of
the Dirac operator [5]:

W (1) = −i T r ln(γ� + m) = i
∫ ∞

0

ds

s
Tre−i(γ�+m)s

= i

2

∫ ∞

0

ds

s
Tre−i(m2−(γ�)2)s, (2.4)

where �μ = −i∂μ − eAμ. The general expression for the
one-loop effective Lagrangian L(1) has therefore the follow-
ing form:

L(1)(x) = i

2

∫ ∞

0

ds

s
e−im2s tr(x |U (s)|x), (2.5)

where

U (s) = e−i Hs, H = −(γ�)2 = �2
μ − 1

2
eσμνFμν.

In the case of the constant electromagnetic field strength ten-
sor Fμν the matrix element of the operator (x |U (s)|x) can
be calculated exactly and has the following form [5]:

(x |U (s)|x) = − i

(4πs)2 e
−L(s)e

i
2 eσ Fs,

where

L(s) = 1

2
trln[(eFs)−1 sinh(eFs)].

The Lagrangian will take the form

L(1) = 1

32π2

∫ ∞

0

ds

s3 e
−im2se−L(s)tre

i
2 eσ Fs .
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By the rotation of the integration contour in complex plane
s© as s → −is one can get

L(1) = − 1

32π2

∫ ∞

0

ds

s3 e
−m2se−l(s)tre

1
2 eσ Fs, (2.6)

where

l(s) = 1

2
trln[(eFs)−1 sin(eFs)].

The traces in (2.6) can be evaluated by using the eigenval-
ues of the field strength tensor matrix Fμνψν = Fψμ. The
characteristic equation is

F4 + 2FF2 − G2 = 0, (2.7)

where

F = 1

4
F2

μν = 1

2
( �H2 − �E2), G = 1

4
FμνF

∗
μν = �E �H, (2.8)

and has the solutions

F2
1 = −F − (F2 + G2)1/2, F2

2 = −F + (F2 + G2)1/2.

Thus

e−l(s) = eF1s eF2s

sin(eF1s) sin(eF2s)
,

tre
1
2 eσ Fs = 4 cos(eF1s) cos(eF2s).

The Lagrangian (2.6) will take the following form [4,
5]:

L(1) = − 1

8π2

∫ ∞

0

ds

s3

e−m2s (eF1s) cos(eF1s) (eF2s) cos(eF2s)

sin(eF1s) sin(eF2s)
,

and with real eigenvalues f1 = −i F1, f2 = F2 one can
get

L(1) = − 1

8π2

∫ ∞

0

ds

s3

e−m2s (e f1s) cosh(e f1s) (e f2s) cos(e f2s)

sinh(e f1s) sin(e f2s)
, (2.9)

where

f1 = ((F2 + G2)1/2 + F)1/2,

f2 = ((F2 + G2)1/2 − F)1/2. (2.10)

In pure magnetic field configurations G = 0,F >

0 one can get f1 = (2F)1/2, f2 = 0 and in pure
electric case G = 0,F < 0, thus f1 = 0, f2 =
(−2F)1/2:

G = 0, F > 0 f1 = (2F)1/2, f2 = 0 pure magnetic

G = 0, F < 0 f1 = 0, f2 = (−2F)1/2 pure electric.

(2.11)

We shall consider the QED in the massless limit and impose
the following renormalisation condition on the effective
Lagrangian introduced in [15,16]3:

∂L
∂F |

t= 1
2 ln(

2e2 |F |
μ4 )=G=0

= −1, (2.12)

where μ2 is the renormalisation scale parameter. This condi-
tion defines the renormalisation of the effective Lagrangian
in a covariant gauge Lr = Lun − Z F . In the case of pure
magnetic field (2.11) the Lagrangian L(1) has the following
form:

L(1) = − 1

8π2

∫ ∞

0

ds

s3

(e f1s) cosh(e f1s)

sinh(e f1s)
,

and diverges at the boundaries of the proper time integra-
tion region. With the use of the renormalisation condition
(2.12) one can handle both divergences [15,16]. This leads
to the following renormalisation of the Heisenberg–Euler
Lagrangian in the massless limit:

L(1) = − μ4

8π2

∫ ∞

0

ds

s3

×
(
as cosh(as)

sinh(as)
− 1 − a2s

2

(
cosh s

sinh s
− s

sinh2 s

))
,

(2.13)

where

a2 = 2e2F/μ4 = e2 �H2/μ4, G = 0. (2.14)

One can get convinced that this expression is well defined
in both limits, in the ultraviolet s → 0 and in the infrared
s → ∞ regions. One can calculate this integral exactly. The
integrals appearing in this expression can be expressed in
terms of the Riemann zeta function and its extension (see the
Appendix for details). The Lagrangian (2.13) will take the
following form:

L(1)
k = − μ4

8π2

∫ ∞

0
ds

×
(
ask−1 cosh(as)

sinh(as)
− a2sk−1 cosh s

2 sinh s
+ a2sk

2 sinh2 s

)

= − μ4

8π2

[
2a1−k − a2 + a2k

] �(k)ζ(k)

2k
,

and in the limit k → −1 we shall get

L(1) = μ4a2

4π2

[
ln a − 1

2

]
lim

k→−1

(k + 1)�(k)ζ(k)

2k

= μ4a2

24π2

[
ln a − 1

2

]
,

3 This renormalisation scheme is alternative to the standard MS and
other schemes, see, in particular [37].
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where we used the identity [73] limk→−1 (k+1)�(k)ζ(k) =
limk→−1

2k−1πkζ(1−k)
cos( πk

2 )
= 1

6 . Thus, in terms of Lorentz and

gauge invariant F = 1
4 F

2
μν , the exact expression of the one-

loop Lagrangian in massless QED is:

L(1)
el = e2F

24π2

[
ln

(
2e2F
μ4

)
− 1

]
, (2.15)

where 2F = �H2 − �E2 > 0, G = �E �H = 0 and the effective
Lagrangian will take the following form:

L = −F + e2F
24π2

[
ln

(
2e2F
μ4

)
− 1

]
. (2.16)

As it follows from this expression, the QED vacuum responds
to the background magnetic field by inducing a vacuum cur-
rent of the electron-positron pairs, which attenuates the mag-
netic field imposed on the vacuum. The magnetic induction
�B of the QED vacuum is [12]:

�B = − ∂L
∂ �H = �H

[
1 − e2

24π2 log
e2 �H2

μ4

]
= μvac �H, (2.17)

and the QED vacuum responds to the background magnetic
field as a diamagnet with the magnetic permeability of the
following form:

μvac = 1 − e2

24π2 log

(
e2 �H2

μ4

)
< 1 diamagnetic.

(2.18)

The diamagnetism of the QED vacuum means that it repels
the magnetic fields by forming induced magnetic field in the
direction opposite to that of the applied magnetic field. This
phenomenon is similar to the Landau diamagnetism of free
electron gas when the counteracting field is formed when
the electron trajectories are curved due to the Lorentz force.
This also can be seen from the vacuum energy expression
(see Fig. 1):

ε = �H2

2
− e2 �H2

48π2

[
log

(
e2 �H2

μ4

)
− 1

]
. (2.19)

In the case of pure electric field the one-loop Lagrangian has
the following form:

L(1) = − μ4

8π2

∫ ∞

0

ds

s3

×
(
bs cos(bs)

sin(bs)
− 1 − b2s

2

(
cos s

sin s
− s

sin2 s

))
,

(2.20)

where

b2 = −2e2F/μ4 = e2 �E 2/μ4, G = 0, (2.21)

and has singularities at s = sn = πn/b = μ2πn/eE . The
integration path is considered to lie above the real axis, there-
fore we shall obtain a large positive imaginary contribution
to L(1)4:

2ImL(1) = e2E2

4π3

∞∑
n=1

1

n2 = e2E2

24π
. (2.22)

The real part of the Lagrangian in the electric field is

ReL(1) = − e2 �E2

48π2

[
log

(
e2 �E2

μ4

)
− 1

]
. (2.23)

The formulas (2.16), (2.23) and (2.22) prove that the effec-
tive Lagrangian is the analytical function of the variable F
and has the general form (2.16). The corresponding energy
density takes the following form:

ε = �E2

2
− e2 �E2

48π2

[
log

(
e2 �E2

μ4

)
+ 1

]
, (2.24)

and its behaviour is similar to the one shown on Fig. 1. The
electric permeability �D = ∂L

∂ �E = ε �E , where

ε = 1 − e2

24π2 log

(
e2 �E2

μ4

)
+ i

e2

24π
. (2.25)

In the next section we shall consider the renormalisa-
tion group invariant derivation of the all-loop effective
Lagrangian (2.1) and the generalised expressions for the
magnetic induction (2.17) and permeability (2.18) as well as
the electromagnetic energy-momentum tensor and its trace.

3 Renormalisation group equation for effective
Lagrangian

Let us derive the exact expression of the effective Lagrangian
by using the renormalisation group equation [15,16]. The
effective action� is renormalisation group invariant quantity:

� =
∑
n

∫
dx1 . . . dxn�

(n)a1...an
μ1...μn

(x1, . . . , xn)A
a1
μ1

(x1)

. . . Aan
μn

(xn),

because the vertex functions and gauge fields transforms as
follows:

�(n) a1...an
r μ1...μn

= Zn/2
3 �(n) a1...an

un μ1...μn
,

Aa
μ(x)r = Z−1

3 Aa
μ(x)un, gr = Z1/2

3 gun .

4 The universal character of the electric instability of the vacuum was
discussed in the recent article [84].
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The renormalisation group equation takes the form
{

μ2 ∂

∂μ2 + β(g)
∂

∂g
+ γ (g)

∫
d4x Aa

μ(x)
δ

δAa
μ(x)

}
� = 0,

where β(g) is the Callan–Symanzik beta function, the γ (g)
is the anomalous dimension. When G = �E �H = 0 it reduces
to the form
{
μ2 ∂

∂μ2 + β(g)
∂

∂g
+ 2γ (g)F ∂

∂F
}
L = 0,

where in the covariant background gauge β = −gγ [12]. By
introducing a dimensionless quantity

M(g, t) = ∂L
∂F , t = 1

2
ln(2g2F/μ4) (3.1)

one can get
{
− ∂

∂t
+ β̄(g)

∂

∂g
+ 2γ̄ (g)

}
M(g, t) = 0, (3.2)

where

γ̄ = γ

1 − γ
, β̄ = β

1 − γ
(3.3)

and (2.12) plays the role of the boundary condition:

M(g, 0) = −1. (3.4)

From Eqs. (3.2) and (3.4) it follows that

γ̄ = −1

2

∂M(g, t)

∂t
|t=0, β̄ = 1

2
g
∂M(g, t)

∂t
|t=0. (3.5)

The solution of the renormalisation group equation (3.2) in
terms of effective coupling constant ḡ(g, t), with the bound-
ary condition ḡ(g, 0) = g, has the following form [15,16]:

∂L
∂F = − g2

ḡ2(t)
,

dḡ

dt
= β̄(ḡ). (3.6)

The behaviour of the effective Lagrangian at large fields is
similar to the behaviour of the gauge theory at large momen-
tum. It follows that M(g, t) is completely determined for
all t in terms of its first derivative (3.5) at t = 0. To define
the effective Lagrangian L one should perform additional
integration, which we shall do in the next section.

The above results allow to obtain renormalisation group
expressions for the physical quantities considered above in
one-loop approximation. Indeed, with these expressions in
hand we can calculate different observables of physical inter-
est, that will include the effective energy momentum tensor,
vacuum energy density, the magnetic permeability, the effec-
tive coupling constants and their behaviour as functions of
the external fields.

4 Massless QED

By using the one loop expression (2.16) derived above one
can calculate the derivative

M(t, e) = ∂L
∂F = −1 + e2

24π2 ln
2e2F
μ4 , G = 0, (4.1)

and the Callan–Symanzik beta function (3.5) takes the fol-
lowing form:

β̄ = 1

2
e
∂M
∂t

|t=0 = 1

24π2 e
3. (4.2)

The effective coupling constant (3.6) in the one-loop approx-
imation is

ē2( �H2) = e2

1 − e2

24π2 log
(
e2 �H2

μ4

) (4.3)

and tends to infinity at the magnetic field

e2H2
0 = μ4e

24π2

e2 . (4.4)

In order to estimate the value of the critical field one can con-
sider the mass parameter μ to be of the order of the electron
mass m. Then one can get

H2
0 =

(
m2c3

eh̄

)2

exp

(
24π2

e2/h̄c

)
= H2

c exp

(
24π2

e2/h̄c

)
,

α = e2

4π h̄c
,

where the critical field Hc is

Hc = m2c3

eh̄
≈ 4.4 1013 Gauss.

The perturbation expansion breaks down at the “Moscow
zero” shown on Fig. 1.

As far as the derivative (3.6) of the effective Lagrangian
(3.1) has transparent expression in terms of the effective cou-
pling constant (3.6) one can obtain the effective Lagrangian
by integration over F :

L(F) =
∫

∂L
∂F dF = −

∫
g2

ḡ2(t)
dF . (4.5)

By using the relation (3.1) to express the differential g2dF =
μ4e2τdτ through dτ one can represent the Lagrangian in the
form:

L(F) = −μ4
∫

e2τ

ḡ2(τ )
dτ, t = 1

2
ln(2g2F/μ4). (4.6)

In massless QED the magnetic induction (2.17) will take the
following form:

�B = − ∂L
∂ �H = − ∂L

∂F
�H = μvac �H. (4.7)
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Therefore the vacuum permeability (2.18) can be expressed
through the effective coupling constant ē2(t):

μvac = e2

ē2(t)
. (4.8)

The effective Lagrangian approach allows to calculate the
quantum-mechanical corrections to the energy momentum
tensor by using the formula derived by Schwinger in [5]:

Tμν = −gμνL + ∂L
Fμλ

Fνλ = −gμνL + FμλFνλ

∂L
∂F

+ gμν

∂L
∂G G

=
(
FμλFνλ − gμν

1

4
F2

λρ

)
∂L
∂F

− gμν

(
L − F ∂L

∂F − G ∂L
∂G

)
. (4.9)

In our case, when G = 0, we shall find all-loop expression
for Tμν by using (4.6):

Tμν = −
(
FμλFνλ − gμν

1

4
F2

λρ

)
e2

ē2(t)

+ gμν

(∫
e2t

ē2(t)
dt − 1

2

e2t

ē2(t)

)
μ4. (4.10)

And for the vacuum energy density we shall get:

ε = T00 = �H2

2

e2

ē2(t)
+ 1

4
Tμμ = μ4

∫
e2t

ē2(t)
dt, (4.11)

where the trace of the energy momentum tensor Tμμ is not
equal to zero and characterises the breaking of conformal
symmetry in massless QED:

T ≡ Tμμ =4(F ∂L
∂F − L)=4μ4

(∫
e2t

ē2(t)
dt − 1

2

e2t

ē2(t)

)
,

(4.12)

where G = 0, t = 1
2 ln(2e2F/μ4). It is also useful to

obtain the derivative of T expressed in terms of the effective
coupling constant:

∂T

∂F = 4F ∂L
∂F2 = 4F ∂M

∂F = 2
∂M
∂t

= −2
∂

∂t

e2

ē2(t)
,

and by using (3.6) we shall get

∂T

∂F = 4e2 β̄(ē)

ē3 . (4.13)

The integration of (4.13) over F provides the alternative
forms of (4.12):

T = 4μ4
∫ t

−∞
e2t β̄(ē(t))

ē3(t)
dt = 4μ4

∫
e2t dē(t)

ē3(t)

= −2μ4
∫

e2t d
1

ē2(t)
. (4.14)

The last two formulas (4.12) and (4.13) provide the all-loop
expressions for the conformal anomaly in QED in the mass-
less limit. If one considers the approximation in which ē(t)
is field independent ē(t) ≡ e then (4.12), (4.13) will reduce
to the expression T = 2β(g)

g F given in literature [56–59].
For the one-loop energy momentum tensor (4.9) we shall

get

Tμν =T el
μν

[
1 − e2

24π2 ln
2e2F
μ4

]
+gμν

e2

24π2 F , G=0,

(4.15)

where we used the expressions (4.1). The energy density and
the trace of the energy momentum tensor are

T00 = �H2

2

(
1 − e2 �H2

24π2 log
e2 �H2

μ4

)
+ e2

24π2

�H2

2
,

Tμμ = e2

6π2

�H2

2
(4.16)

and they represent the one-loop approximation of (4.11) and
(4.12). In the next section we shall consider the behaviour of
the effective Lagrangian in Yang–Mills theory and QCD.

5 Effective Lagrangian of Yang–Mills theory

The loop expansion of the effective action in Yang–Mills
theory has the following form:

� =
∑
n

∫
dx1 . . . dxn�

(n)a1...an
μ1...μn

(x1, . . . , xn)A
a1
μ1

(x1)

. . . Aan
μn

(xn)

= SYM + W (1) + W (2) + · · · , (5.1)

and the one-loop effective Lagrangian has the form [7–14]

W (1) = SYM (A) + i

2
Tr ln

[
δ2SYM (A)

δA δA

]

− iT r ln[∇μ(A)∇μ(A)], (5.2)

where

SYM (A) = −1

4

∫
d4x trGμνGμν,

Gμν = ∂μAν − ∂ν Aμ − ig[Aμ, Aμ]
Hμν(α) = δ2SYM (A)

δA δA
= ημν∇σ (A)∇σ (A) − 2gGμν

+ (α − 1)∇μ(A)∇ν(A),

HFP = ∇μ(A)∇μ(A). (5.3)

By using proper time representation we shall get the effective
action in the following form:
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�(A) = SYM (A) − i

2

∫ ∞

0

ds

s
Tre−i H(α)s

+ i
∫ ∞

0

ds

s
Tre−i HFPs, (5.4)

and for the effective Lagrangian the following expression:

Le f f = LYM − i

2

∫ ∞

0

ds

s
Tr(x |U (s)|x)

+ i
∫ ∞

0

ds

s
Tr(x |U0(s)|x), (5.5)

whereU (s) = e−i H(α)s, U0(s) = e−i HFP s . The Green func-
tion in the background field has the following form:

G(x, y; A) = −i
∫ ∞

0
ds (x |U (s)|y). (5.6)

As is was proven in [12,13], the Le f f is α independent func-
tional on the solutions of the YM classical equations. On the
covariantly constant gauge field solution [10–13]

Aa
μ = −1

2
Gμνxνn

a, n2 = 1, xμA
a
μ = 0 (5.7)

the matrix elements can be calculated and have the following
form [12,13]:

(x |U (s)|y) = i

(4πs)2 exp

{
− i

4
(x − y)K (s)(x − y)

+ i

2
xNy − L(s) + 2Ns

}
(5.8)

(x |U0(s)|y) = i

(4πs)2 exp

{
− i

4
(x − y)K (s)(x − y)

+ i

2
xNy − L(s)

}
, (5.9)

where the corresponding matrices are

N = igG

K (s) = N coth(Ns)

L(s) = 1

2
tr ln[(Ns) sinh(Ns)] (5.10)

and

L(1) = − 1

32π2

∫
ds

s3 Tr exp {−L(s) + 2Ns}

+ 1

16π2

∫
ds

s3 Tr exp {−L(s)}. (5.11)

By substituting the matrix elements and calculating the traces
one can get [12,13]:

L(1) = − 1

8π2

∫
ds

s3 e
−iμ2s (gF1s) (gF2s)

sinh(gF1s) sinh(gF2s)
−

− 1

4π2

∫
ds

s3 e
−iμ2s(gF1s) (gF2s)

×
[

sinh(gF1s)

sinh(gF2s)
+ sinh(gF2s)

sinh(gF1s)

]
, (5.12)

where

F2
1 = −F − (F2 + G2)1/2, F2

2 = −F + (F2 + G2)1/2.

(5.13)

The first integral here coincides, up to the coefficient 2, with
the expression of the one-loop Lagrangian in the scalar elec-
trodynamics. The doubling of this expression is associated
with the additional degrees of freedom due to the vector
bosons isospin. The second term is due to the spin contribu-
tion −2gGμν in the operator Hμν . We introduced the mass
parameter μ2 in order to control the infrared singularities and
to make the integrals convergent at infinity [12]. Still, this is
not enough to make integrals convergent at infinity. By using
the real eigenvalues

f 2
1 = F + (F2 + G2)1/2, f 2

2 = −F + (F2 + G2)1/2

(5.14)

one can observe that the second term in the square bracket
will take the form sinh(g f2s)

sin(g f1s)
and the integral diverges expo-

nentially in the infrared region at infinity. We shall choose
the integration counter in the complex plane s© so as to guar-
antee the convergence of the last integral. For that one should
rotate the integration counter in the third integral by the sub-
stitution s → −is. The same rotation of the counter can be
performed in the first integral as far it is convergent in any
way. Thus we shall get [12,13]

L(1) = 1

8π2

∫ ∞

0

ds

s3 e
−μ2s (g f1s) (g f2s)

sinh(g f1s) sin(g f2s)

+ 1

4π2

∫ ∞

0

ds

s
e−iμ2s(g f1) (g f2)

sin(g f1s)

sinh(g f2s)

− 1

4π2

∫ ∞

0

ds

s
e−μ2s(g f1) (g f2)

sin(g f2s)

sinh(g f1s)
.

(5.15)

The integrals are still diverging in the ultraviolet region at
the s = 0. In order to renormalise the Lagrangian we have
to identify the ultraviolet divergences in the above integrals.
These are

(g f1s) (g f2s)

sinh(g f1s) sin(g f2s)
= 1 − g2

6
( f 2

1 − f 2
2 )s2 + O(s4)

f1 f2
sin(g f1s)

sinh(g f2s)
= f 2

1 + O(s2)

f1 f2
sin(g f2s)

sinh(g f1s)
= f 2

2 + O(s2).

Subtracting these terms, which are quadratic in the field
strength tensor, we shall get the renormalised effective
Lagrangian [12]:
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L(1) = 1

8π2

∫ ∞

0

ds

s3 e
−μ2s

×
(

(g f1s) (g f2s)

sinh(g f1s) sin(g f2s)
−1+ 1

6
(gs)2( f 2

1 − f 2
2 )

)

+ g2

4π2

∫ ∞

0

ds

s
e−iμ2s

(
f1 f 2

sin(g f1s)

sinh(g f2s)
− f 2

1

)

− g2

4π2

∫ ∞

0

ds

s
e−μ2s

(
f1 f2

sin(g f2s)

sinh(g f1s)
− f 2

2

)
.

(5.16)

Now the integrals are convergent in both regions, in the
infrared and in the ultraviolet. First let us consider a pure
chromomagnetic field:

G = 0, F = �Ha
2 − �Ea2

2
> 0, f 2

1 = 2F , f 2
2 = 0.

The Lagrangian (5.16) will take the form

L(1) = + 1

8π2

∫ ∞
0

ds

s3 e
−μ2s

(
g f1s

sinh(g f1s)
−1+ 1

6
(gs)2 f 2

1

)

+ g2

4π2

∫ ∞
0

ds

s
e−iμ2s

(
f1 sin(g f1s)

gs
− f 2

1

)
. (5.17)

At strong chromomagnetic fields g2 �H2
a ≥ μ4 the asymptotic

behaviour of the real part is [12]


L(1) ≈ + g2

48π2

�H2
a

2
ln

g2 �H2
a

μ4 − g2

4π2

�H2
a

2
ln

g2 �H2
a

μ4

= − 11g2

48π2

�H2
a

2
ln

g2 �H2
a

μ4 , (5.18)

where the first term represents the diamagnetism, which
counteracts to the external field caused by the quantum cur-
rent induced by the charged vector bosons in the vacuum
and the second term represents the paramagnetism, an effect
associated with the polarisation of the gluon spins, which, as
one can see, dominates the asymptotic behaviour [12]. The
imaginary part of the effective Lagrangian (5.17) in back-
ground chromomagnetic field in our regularisation scheme
vanishes [12]:

�L(1) = − g f1
4π2

∫ ∞

0

ds

s2 sin(μ2s) sin(g f1s)

+ g2 f 2
1

4π2

∫ ∞

0

ds

s
sin(μ2s)

= − g f1
4π2

π

2
g f1 + g2 f 2

1

4π2

π

2
= −g2 f 2

1

8π
+ g2 f 2

1

8π
= 0,

(5.19)

where f1 =
√

�Ha
2 = H. A similar conclusion was derived

in [50] by using alternative regularisation. The significance
of the absence/presence of the imaginary part in the effec-
tive Lagrangian connected with the fact that it defines the

quantum-mechanical stability of a given field configuration.
The above conclusion on the absence of the imaginary part is
not conclusive due to the tachyonic eigenmode in the opera-
tor (5.3) [35,36,97], and we shall discuss the stability of the
background field configurations in the subsequent Sect. 8.
Here we shall refer to the articles of Leutwyler [46,47] and
Flory [48,49], where they come to the same conclusion that
there is no imaginary part in the effective Lagrangian in
chromomagnetic field. Leutwyler was considering the self-
dual chromomagnetic background field configurations and
demonstrated that there is no imaginary part in the effec-
tive Lagrangian [46,47] and that the real part of the effective
Lagrangian has the form identical to (6.4). Flory included the
quartic self-interaction of eigenmodes and also came to the
same conclusion [52]. The physical reason behind this uni-
versality lies in the fact that even when the background field
depends on space-time coordinates the part of the effective
Lagrangian L̄(F ,G) which depends only on the field strength
tensor but not of its covariant derivatives has a universal form
[12,15,16]. In other words, as far as the wavelength of the
fluctuating fields is very long, the effective action is not sen-
sitive to the fine structure of the fluctuating fields.

Let us now consider pure chromoelectric fields G =
0,F < 0 and f 2

1 = 0, f 2
2 = −2F :

L(1) = 1

8π2

∫ ∞

0

ds

s3

(
(g f2s)

sin(g f2s)
− 1 + 1

3
(gs)2F

)

− g2

4π2

∫ ∞

0

ds

s

(
f2

sin(g f2s)

gs
− f 2

2

)
.

The Lagrangian has singularities on the real axis at sn =
nπ/eE , and the integration path is considered to lie above
the real axis [12,13]:

2ImL(1) = (gE)2

4π3

∞∑
n=1

(−1)n+1

n2 = g2E2

48π
(5.20)

This is the probability per unit time and per unit volume
that gluons are created by the chromoelectric field. Due to
the masslessness of QCD gluons the above formula does not
contain the Sauter–Schwinger exponentially small tunnelling
factor exp (−π m2c3

eh̄E ) and even a weak chromoelectric field
will break down creating a cloud of soft gluons from the
vacuum neutralising the imposed colour electric field. While
the exact results for the imaginary part of the effective action
(5.20) depend on the details of the background field, it was
argued in [84,85] that the threshold singularity is universal.
The physical reason for this universality lies in the fact that
the onset of pair production is dominated by the long-range
fluctuations of the particles created from the vacuum and
becomes insensitive to the details of the field profile [84,85].

The infrared long wavelength gluons created from the
vacuum are strongly interacting. In the one-loop approxi-
mation the interaction between the produced gluons is not
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considered. In [33,34] the authors considered a semiclassi-
cal corrections to the production rates due to the interactions
between created pairs and suggested a mechanism of colour
neutralisation.

By considering a cylindrical non-homogeneous chromo-
electric field configurations in [32] Flory demonstrated a pos-
sible formation of a chromoelectric flux tube of a finite radius
between quark–antiquark pairs which are embedded into the
chromomagnetic gluon condensate [15] (see the next sec-
tion). The alternative mechanisms of formation of chromo-
electric and chromomagnetic flux tubes were considered in
[31] and in [30].

6 Chromomagnetic gluon condensate

Let us now apply the renormalisation condition (2.12) to
the Yang–Mills effective Lagrangian (5.16) and (5.17). This
leads to the following expression for the renormalised effec-
tive Lagrangian in chromomagnetic fields [12,15]:

L(1) = μ4

8π2

∫ ∞
0

ds

s3

(
as

sinh as
−1− a2s

2
(

1

sinh s
− s cosh s

sinh2 s
)

)

+ μ4

4π2

∫ ∞
0

ds

s3

(
as sin(as) − a2s

2
(sin s + s cos s)

)
,

(6.1)

where

a = g(2F)1/2/μ2, F = 1

4
G2

μν > 0,

G = 1

4
GμνG

∗
μν = 0. (6.2)

The Lorentz and gauge invariant field F is positive and cor-
responds to the chromomagnetic field configurations. The
proper time integration can be performed exactly by using
the integrals presented in Appendix and the one-loop SU(2)
Lagrangian in terms of Lorentz and gauge invariant field F
is

L(1) = − 11

48π2 g
2F

(
ln

2g2F
μ4 − 1

)
(6.3)

and the effective Lagrangian in SU(N) gauge theory will take
the following form [15]:

L = −F − 11N

96π2 g
2F

(
ln

2g2F
μ4 − 1

)
. (6.4)

As it follows from this expression, the QCD vacuum responds
to the background chromomagnetic field by inducing a quan-
tum current of the charged vector bosons which amplifies the
chromomagnetic field imposed on the vacuum. The chromo-
magnetic magnetic induction �Ba of the QCD vacuum is

�Ba =− ∂L
∂ �Ha

= �Ha

[
1+ g2N

96π2 log
g2 �H2

a

μ4

]
= μvac �Ha .

(6.5)

The QCD vacuum responds to the background magnetic field
as paramagnet with the magnetic permeability of the follow-
ing form [12]:

μvac = − ∂L
∂F = 1+ g2N

96π2 log
g2 �H2

a

μ4 > 1 paramagnetic.

(6.6)

The paramagnetism of the QCD vacuum means that it ampli-
fies the applied chromomagnetic field by generating induced
chromomagnetic field in the direction of the applied field.
This phenomenon is similar to the Pauli paramagnetism, an
effect associated with the polarisation of the electron spins.
In QCD the polarisation of the vector boson spins is respon-
sible for this amplification of the background field (5.18).
This also can be seen from the vacuum energy density (see
Fig. 2).

ε(F) = F + 11N

96π2 g
2F

(
ln

2g2F
μ4 − 1

)
(6.7)

with its new minimum outside of the perturbative vacuum <

F >= 0, at the renormalisation group invariant field strength
[15]

〈2g2F〉vac = μ4 exp

(
− 96π2

11Ng2(μ)

)
= 
4

QCD (6.8)

characterising the dynamical breaking of conformal symme-
try of the SU(N) gauge field theory.5 The Lorentz invariant
form of the effective action (6.7) suggests that there are many
states which have the same energy density as the covariantly
constant chromomagnetic field. In a series of articles [64–68]
the authors found and explored spatially homogeneous solu-
tions of the YM equations which are invariant with respect to
the Lorentz transformations and conveniently represent the
gauge field fluctuations in the vacuum. The average 〈. . .〉 in
(6.8) can be understood as average over these field configu-
rations (see also [55,62,69,70]).

For the energy momentum tensor (4.9) we shall get

Tμν = T YM
μν

[
1 + 11Ng2

96π2 ln
2g2F
μ4

]
− gμν

11N

96π2 g
2F ,

G = 0. (6.9)

The trace of the energy momentum tensor is not equal to
zero and characterises the breaking of conformal symmetry
in QCD:

5 The Lorentz invariant average 〈 〉 over the covariantly constant field
Gμν orientations can be performed as in [63], [15]. In [63] the invariant
measure was taken in the form dμ = d �H d �E δ(F−Fmin) δ(G2−G2

min).
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T = Tμμ = − 11N

24π2 g
2F . (6.10)

The vacuum energy density is given in (6.7): T00 = ε(F)

with its minimum at (6.8) [15]. Substituting this value into
the expression for the energy momentum tensor (6.9) we shall
get the expression which is proportional to the metric tensor
gμν :

〈Tμν〉vac = −gμν

11N

96π2 〈g2F〉vac (6.11)

and is therefore a relativistically invariant characterisation of
the vacuum with its negative energy density εvac = 〈T00〉vac
and the pressure Pvac = −εvac. This is an important result
because the vacuum state should be Lorentz invariant and
its stress tensor Tμν should be the same in all frames [17–
20]. As a result, its vacuum average value can only be of the
cosmological type 〈Tμν〉 = εvac gμν , and indeed it is.

Let us consider the behaviour of the effective Lagrangian
from the renormalisation group point of view and compare it
with the behaviour of the effective coupling constant. The
equations derived above are universally true for the non-
Abelian field as well. Thus when G = �Ea �Ha = 0 we have

M(t, g) = ∂L
∂F = − g2

ḡ2(t)
,

dḡ

dt
= β̄(ḡ). (6.12)

The vacuum magnetic permeability introduced in (2.18) will
take the following form [12]:

μvac = g2

ḡ2(t)
, G = 0. (6.13)

The Callan–Symanzik beta function can be calculated by
using (6.4):

β̄ = 1

2
g
∂M
∂t

|t=0 = − 11N

96π2 g
3 (6.14)

and the effective coupling constant as a function of the field
has the form

ḡ2(F) = g2

1 + 11g2N
96π2 ln 2g2F

μ4

, (6.15)

where we introduced the Casimir operator C2(G) = N for
the gauge group G = SU (N ).

Let us consider the value of the field strength tensor F0 at
which the vacuum energy density (6.7) vanishes ε(F0) = 0,
as it is shown on Fig. 2:

2g2F0 = μ4 exp

(
− 96π2

11g2N
+ 1

)
= e〈2g2F〉vac. (6.16)

The effective coupling constant (6.15) at this field strength
has the value

ḡ2(F0) = 96π2

11N
. (6.17)

It follows that the effective coupling constant at the intersec-
tion point F0 is small:

ḡ2(F0) = 96π2

11N
� 1 if N � 96π2

11
. (6.18)

The energy density curve ε(F) (6.7) intersects the horizontal
zero energy line at the nonzero angle θ (see Fig. 2):

tan θ = 11g2N

96π2 > 0. (6.19)

This means that i) the true vacuum state is below the perturba-
tive vacuum and that ii) there is a nonzero chromomagnetic
field in the vacuum. Now the question is, how far into the
infrared region one can continue the energy density curve
by using the perturbative result? Let us consider the fields
which are approaching the infrared pole. This can be done,
in particular, by using the following parametrisation:

Fn = e1−n〈F〉vac, (6.20)

where the parameter n is less than one, and we have
Fn → 〈F〉vac when n tends to unity from below. At these
fields values the effective coupling constant (6.15) tends to
zero:

ḡ2(Fn) = 96π2

11N (1 − n)
→ 0 (6.21)

if the product N (1 − n) → ∞ is large and the t’Hooft cou-
pling constant g2N = λ is fixed and small. It follows then
that the effective coupling constant can be made small to jus-
tify the use of the perturbative result and the energy density
curve can be continuously extended infinitesimally close to
the value of the vacuum field 〈F〉vac, as it is shown on Fig.
2. Let us analyse how the field at the intersection point (6.16)
and the effective coupling constant (6.17) are changing when
we include the two-loop approximation. The two-loop6 effec-
tive Lagrangian has the form [12]

L = −F −
(

11

8(4π)2 g
2N + 34

3(4π)4 (g2N )2
)
F

×
(

ln
2g2F
μ4 − 1

)
. (6.22)

The field at the intersection point (6.16) is shifted by an expo-
nentially small correction

2g2F ′
0 = exp

(
−96π2

11λ
· 1

1 + 17
33π2 λ

+ 1

)
. (6.23)

6 The two-loop beta function (6.12) coefficients β̄ = −β1g3 −β2g5 +
· · · are given by β1 = 11N

6(4π)2 and β2 = 34N2

6(4π)4 .
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At this field the effective coupling constant is smaller by the
factor 1/1 + 17

33π2 λ

ḡ2(F ′
0) = 96π2

11N
· 1

1 + 17
33π2 λ

� 1, (6.24)

and the inequality (6.24) is fulfilled at smaller values of N
than in the first approximation (6.18). This demonstrates that
the one-loop results are stable with respect to the two-loop
corrections. The high-loop corrections are analysed below
(6.27) by using renormalisation group results (3.6), (6.12).

It is interesting to know if the energy density curve is
a continuous function of the field strength F in the region
[0, 〈F〉vac] which is outside of the validity of the perturba-
tive calculations and if the energy density curve is a convex
function. A non-perturbative functional method developed
by Zwanziger in [51] is answering to these questions affir-
matively. It seems that further development of his approach
can shed even more light to the behaviour of the effec-
tive Lagrangian in the non-perturbative region. We already
obtained the first derivative of the energy density curve (6.12)
and can calculate its second derivative as well:

∂ε

∂F = − ∂L
∂F = g2

ḡ2 , F ∂2ε

∂F2 = ∂

∂t

g2

ḡ2(t)
= −g2 β̄(ḡ)

ḡ3 .

(6.25)

The sign of the second derivative depends on the sign of
the ratio of the beta function to the cube of the effective
coupling constant. In QCD, in the perturbative regime this
ratio is negative and the second derivative (6.25) is positive:

F ∂2ε

∂F2 = 11

8(4π)2 g
2N + 34

3(4π)4 (g2N )2 + · · · (6.26)

Thus the energy density curve is convex (see Fig. 2). In QED
the overall sign is negative and the energy density curve is
concave (see Fig. 1).

Any non-perturbative information about the ratio β̄(ḡ)/ḡ3

can be translated into the information about property of the
energy density curve. As far as the beta function β̄(g) has
no zeros, is a negative analytical function of the coupling
constant and
∫ ∞

g

dg

β̄(g)
< ∞ (6.27)

the minimum of the energy density curve is defined by the
extremum, where the derivative (6.12) vanishes. By using
the expression (6.12) one can derive the value of the chro-
momagnetic condensate [15]:

〈2g2F〉vac = μ4 exp

(
2

∫ ∞

g

dg

β̄(g)

)
. (6.28)

To all orders in the perturbation theory the derivative of the
energy momentum tensor trace can be obtained by using the
renormalisation group invariant result (4.13):

∂T

∂F = 4g2 β̄(ḡ(t))

ḡ(t)3 , t = 1

2
ln(2g2F/μ4). (6.29)

Integration over F gives the trace

Tμμ = 4
∫

g2

ḡ2

β̄(ḡ)

ḡ
dF . (6.30)

If one considers the approximation in which the effective
coupling constant (3.6) is field independent ḡ(t) ≡ g then
this formula after integration over F will reduce to the one
given in literature [56–59]:

Tμμ = 4
β̄(g)

g
F . (6.31)

Otherwise the field dependence of the energy momentum
trace is defined through the beta functions and effective cou-
pling constant and has more complicated dependence on field
strength tensor F .

7 Effective cosmological constant

As is follows from (6.11), in the ground state the follow-
ing relation between energy density εvac and pressure Pvac

takes place: εvac = −Pvac. It is a relativistically invariant
characterisation of the vacuum [17–20], and it represents a
field-theoretical contribution into the effective cosmological
constant 
e f f :

εvac = c4

8πG

e f f = − b

192π2 〈2g2F〉vac

= − b

192π2 
4
QCD . (7.1)

The chromomagnetic condensate (6.8) is of order 
4
QCD ,

and the vacuum energy density is negative and is about
εvac ≈ −b 10−8GeV 4. The value of the cosmological con-
stant measured in the observation of the high-z Type Ia
supernovae [24–27] and by the Plank Collaboration [28,29]
ε
 = c4
obser/8πG ≈ 10−47GeV 4 is about 39 decimal
places smaller and positive. It is important to mention that the
energy gap depends on a gauge group and a matter content,
the beta function (the b parameter in one-loop approxima-
tion), as well as of the temperature of the universe [53]. At
high temperatures the curve of the effective potential moves
upward, the value of the chromomagnetic gluon condensate
tends to zero, as well as the 
e f f , and the scaling invariance
get restored. The phase transition is of the second-order [53].

In the article [74] the authors suggested a possible can-
celation mechanism between chromomagnetic and its “mir-
ror chromoelectric” condensates. In this proposal, which
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involves adding to the SM particles a mirror world (dark mat-
ter) [76–81], the entire SM is replicated in a mirror world.
The new Z2 symmetry interchanges SM with the mirror SM,
ensuring identical particles and interactions. It is conjectured
that the quantum vacua of the “Mirror SM” contribute to the
cosmological constant on the same footing as the SM, since
mirror particles are expected to gravitate in the same way
as the usual ones, and that the mirror chromoelectric gluon
condensate contributes to the energy density of the universe
with a positive sign and thus may, in principle, eliminates
the negative QCD vacuum effect by yielding a cosmological
constant small. The alternative mechanism was considered
in [75].

In electroweak theory the Higgs vacuum field also gener-
ates a negative contribution to the effective cosmological con-
stant [21–23]. In both field theories the value of the 
e f f is
of many orders of magnitude larger than the observed value.

8 Absence of imaginary part in chromomagnet field

A careful inspection of the charged vector bosons spec-
trum in a chromomagnetic field by Nielsen, Olesen [35] and
Skalozub [36] demonstrated that due to the unstable mode
k2

0 = k2|| − g f1(k2|| ≤ g f1) there is an imaginary part in the
effective Lagrangian:

ImL(1) = Im
g f1
4π2

∫ ∞

−∞
dk||

√
k2|| − g f1 − iε = −g2 f 2

1

8π
.

In the subsequent publications [37–41,43–45,51–55,103]
the theoretical groups at the Niels Bohr Institute, New York
University, SLAC and Bari University came to the conclusion
that due to the quartic self-interaction term in the YM action
there is a hidden Higgs mechanism, which stabilises the sys-
tem so that the effective Lagrangian remains a real function
in the background chromomagnetic field [38,40,44,51,52].
This is the reflection of the fact that calculations are per-
formed in the approximation in which only the quadratic
term δAμHμνδAν of the fluctuating fields δAμ in the direc-
tion of the unstable mode � was taken into the consid-
eration in the loop expansion (5.1) and (5.2). The quartic
term VμνλρδAμδAνδAλδAρ of the Yang–Mills Lagrangian
should be taken into consideration in this circumstance and
play a crucial role in stabilising the quantum mechanical
fluctuations, turning the unstable mode into a stable mode
[31,38,40,44,52]. The phenomenon is similar to the one in
the classical Higgs Lagrangian where the zero field configu-
ration is unstable and a field configuration at the bottom of
the potential provides a stable field configuration due to the
quartic term. In the pure YM theory the Higgs-like action
for the unstable mode was derived in [31,38,40,44]. It was
proposed to search the stable solutions of the classical Yang–
Mills field equations in a fixed background chromo-magnetic

field which plays the role of an external order parameter.
Without the presence of the order mass parameter, the gH in
the given case, the conformal invariance of the pure classi-
cal Yang–Mills equations prevents the existence of localised
solutions [30]. This program was successfully realised with
the discovery of the field configurations which are varying in
space due to the development of the unstable mode, the colour
magnetic flux tubes and the spaghetti magnetic tubes forming
the domain-like field configurations [40]. The configurations
are supported by the external chromomagnetic field gH . The
difficulty here is to calculate the quantum-mechanical fluctu-
ations around these classical field configurations and to see
if they remain localised when the external field is switched
off. The important conclusion of the investigation was that
it pointed out to the fact that the stability of the chromo-
magnetic field configurations is a natural consequence of the
quartic self interaction of the Yang–Mills field.7

This result became the initial point for the investigation
initiated by Curt Flory in his article devoted to the resolu-
tion of the Higgs-like mode problem [52]. His breakthrough
idea was to integrate exactly the functional integral over the
Higgs-like mode from the start in order to get the quantum-
mechanical contribution to the effective Lagrangian of that
mode instead of searching the corresponding classical field
configurations. Presenting the amplitude of the Higgs-like
mode and of the corresponding action in terms of dimen-
sionless variables kμ → kμ/

√
gH , xμ → xμ

√
gH one can

get8:

(gH)−1/2 W =
∫

dk2

2π
e− 1

2 (x1+k2)2
�k2(x0, x3), (8.1)

where �k2(x0, x3) is the dimensionless amplitude of the
Higgs-like mode. The action of the Higgs-like mode will
take the following form:

Shiggs mode√
2π

=
∫

dk2

2π
dx0dx3

(
|∂μ�k2 |2 + |�k2 |2 − 1

2
g2

×
∫

dpdq

(2π)2 e
− p2+q2

2 �∗
k2+p�

∗
k2+q�k2�k2+p+q

)
.

(8.2)

What is essential in this representation is that the depen-
dence on the chromomagnetic field does not show up in the
Lagrangian (8.2) and appears only in front of the Higgs-like
field amplitude (gH)1/2 in (8.1). The factor coming from the
integration of the action (8.2) over the field �k2 is background
field independent and does not show up in the renormalised

7 A non-perturbative prove of the reality and concavity of the effective
action is due to Zwanziger [51].
8 In the SU(2) case Wμ = 1√

2
(A1

μ + A2
μ), Aμ = A3

μ and W = W1 =
−iW2, as it is defined in [31,38,40,44].
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effective Lagrangian. Thus the contribution of the Higgs-like
mode to the effective Lagrangian is only through the integra-
tion measure and its degeneracy:

eLhiggs mode ≈ (CgH)−
1
2 (

gH
2π

)2

= exp

(
−g2H2

8π2 (log gH + logC )

)
,

where C is the gH independent value of the functional inte-
gral over �k2(x0, x3). This contribution is a real function of
chromomagnetic field [52,53]. After taking into account the
contributions from all other modes the effective Lagrangian
takes the form which identically coincides with (6.3). This
confirms the expression (6.3) being without imaginary part
(5.19).

One can consider the above approach of calculating the
effective action as an alternative to a standard loop expan-
sion in the following sense: The expansion is organised by
rearranging the perturbative expansion (5.1) in a background
field A so that the quartic self-interactions of eigenmodes are
included into the propagator of the gauge fieldG(x, y; A) and
the loop expansion is performed in terms of the remaining
cubic and cross-mode quartic vertices of the YM action.

9 Conclusion

The short overview of the publications devoted to the chro-
momagnetic gluon condensation and QCD vacuum are given
below. The confinement problem from the point of view of
the QCD vacuum and chromomagnetic gluon condensate was
considered in the articles of Mandelshatam [92–94], Nambu
[95], Adler and Piran [96] and Nielsen and Olesen [42]. The
thermodynamics of the Yang–Mills gas by Linde [23]. The
publication on generation of galactic magnetic field due to
the condensation of vector field was considered in [88]. The
induced gravity was considered by Adler [61]. The mag-
netostatics was considered in [89]. The phenomenology of
hadrons and the properties of the QCD vacuum by Shuryak
[105]. The mechanism of dynamical supersymmetry break-
ing and string compactification to four dimension due to the
properties of the non-Abelian effective action was suggested
by Veneziano and Taylor [104]. The dynamical mass genera-
tion in QCD and glueballs spectrum by Cornwall [98,99].
The string-like solution of pure YM equations stabilised
in the presence of the chromomagnetic condensate by Fad-
deev and Niemi [100,101] and the monopole condensation
by Cho [102]. A complementary to Zwanziger [51] a non-
perturbative approach for the construction of effective actions
at different scales, the Wilsonian effective actions, was devel-
oped by Reuter and Wetterich in series of articles [109–112].

Alternative approach for the investigation of the con-
densates in Yang–Mills theory is provided by the Monte

Carlo lattice simulations [117–121]. The lattice formulation
is offering a non-perturbative regularisation of the YM the-
ory and in principle allows to measure the QCD condensates.
One of the aims of these calculations is to extract a non-
perturbative value of the vacuum expectation value (VEV)
of the composite operator G2

μν :

〈0|αs

π
GμνGμν |0〉. (9.1)

In perturbation theory this VEV is diverging as the fourth
power of the cutoff and after renormalisation is set to zero.
In our investigation we were studying a different observable,
the effective action �[A] (1.1), which depends on the VEV
of the gauge field operator 〈0|Aa

μ(x)|0〉 ≡ Aa
μ(x). As it was

stressed in references [117–121], the main difficulty in mea-
suring the condensates of the type (9.1) lies in the necessity
to subtract from the Monte Carlo data the dominant perturba-
tive contribution and then to extract the exponentially falling
non-perturbative term of the form (6.99), which is the only
one of interest from the point of view of the continuum the-
ory. The evaluation of the VEV requires the calculation of
the following expression:

lim
a→0

C

a4 〈0|(1 − P)|0〉meas − 〈0|(1 − P)|0〉pert
=

〈
0

∣∣∣αs

π
GμνGμν

∣∣∣ 0
〉
+ · · · , (9.2)

where P is a the plaquette operator and dots denote the oper-
ators of higher dimension. The perturbative VEV is repre-
sented by a diverging series [113–116]:

〈0|(1 − P)|0〉pert =
∞∑
n=0

cnα
n
s . (9.3)

As it is stressed in [117–121], this makes any determination
of the QCD condensates in terms of composite operator (9.1)
ambiguous.

The phenomena of chromomagnetic gluon condensation
[15] initiated series of publications by the ITEP group where
they used the gluon condensate to improve their perturba-
tive sum rule equations [71,72].9 Modern determination of
the gluon condensate numerical value from hadronic τ decay
data and from the charmonium sum rules can be found in the
review article of Ioffe [108]. The best values of condensates,
extracted from QCD sum rules from experimental data, are
given in Table 1 in [108]. These data do not allow to exclude

9 In 1977 the author gave a theoretical seminar on the chromomag-
netic gluon condensation [15] in ITEP. At end of the seminar one of
the participants, Victor Novikov, on our way back to the metro station
by tram, remarked to the author that the theoretical prediction of the
chromomagnetic condensate presented at the seminar [15] can be cru-
cial in improving the naive sum rule equations published earlier in [71]
by introducing the chromomagnetic condensate in the form of power
corrections. A year later, the proposal was realised in [72].
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the zero value for the gluon condensate [106–108]. The sepa-
ration of perturbative and non-perturbative contributions has
some arbitrariness [72], as it was pointed out by Ioffe in [108].

Here I reexamined the phenomena of the YM conden-
sation [15]. It is of the chromomagnetic type and it has a
numerical value 
4

QCD which is of the order of few hundred

MeV 4

〈2g2F〉vac =
〈
g2

2
G2

μν

〉
vac

= 〈g2( �H2
a − �E2

a )〉vac

= μ4 exp

(
− 96π2

b g2(μ)

)
= 
4

QCD > 0 (9.4)

or in terms of the strong coupling constant

〈αs

π
G2

μν

〉
vac

=
〈
g2

4π2 G
2
μν

〉
vac

= 
4
QCD

2π2 . (9.5)
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10 Appendix

The integrals appearing in the effective Lagrangian (2.13)
have the following form:∫ ∞

0

ds

s1−k sinh2(as)
= 4

(2a)k
�(k)ζ(k − 1),

∫ ∞

0

cosh(bs)ds

s1−k sinh(as)

= �(k)

(2a)k

[
ζ(k,

1

2

(
1− b

a

)
+ζ(k,

1

2

(
1+ b

a

)]
, b �=a,

(10.1)

where k can be considered as a dimensional regularisation
parameter and the integrals should be calculated in the limit
k → −1 [12]. As far as b �= a, the second integral does not
completely coincide with the one appearing in the effective
Lagrangian (2.13) and we have to consider its extension. In
order to calculate the integral we shall take b = a − ε and
consider the limit ε → 0:

∫ ∞

0

sk−1 cosh((a − ε)s)ds

sinh(as)

= �(k)

(2a)k

[
ζ(k,

ε

2a
) + ζ(k,

(
1 − ε

2a

)]
.

By the definition the Riemann zeta function ζ(k, q) is [73]

ζ(k, q) =
∞∑
n=0

1

(n + q)k
=

∞∑
n=1

1

(n + q)k
+ 1

qk

and in the limit q = ε/2a → 0 we shall get

lim
ε→0

ζ
(
k,

ε

2a

)
= ζ(k) +

(
2a

ε

)k

,

lim
ε→0

ζ(k,
(

1 − ε

2a

)
= ζ(k).

Thus the second integral in (10.1) takes the following form:
∫ ∞

0

sk−1 cosh((a − ε)s)ds

sinh(as)
= �(k)

(2a)k

[
2ζ(k) +

(
2a

ε

)k
]

= 2�(k)ζ(k)

(2a)k
+ �(k)

εk
,

where the last term is field independent and can be subtracted
from the effective Lagrangian.

The integrals appearing in Yang–Mills effective Lagran-
gian (6.1) have the form [12]
∫ ∞

0

ds

s1−k sinh(as)
= 2k − 1

2k−1ak
�(k)ζ(k),

∫ ∞

0

cosh(as)ds

s1−k sinh2(as)
= 2k−1 − 1

2k−2ak
�(k)ζ(k − 1)

∫ ∞

0

sin(as)ds

s1−k
= �(k)

ak
sin

kπ

2
,

∫ ∞

0

cos(as)ds

s1−k
= �(k)

ak
cos

kπ

2
.

The Lagrangian should be calculated in the limit k → −1.
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