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Abstract In this paper, we investigate the existence and
time evolution of the cosmological and event horizons in a
McVittie universe whose expansion is driven by the Redlich–
Kwong, (Modified) Berthelot, Dieterici, and Peng–Robinson
fluids, respectively. The equations of state of these fluids are
rich enough to account for both exotic and regular, as well
as ideal and non-ideal matter contents of the universe. We
show that the cosmological horizon is expanding, while the
event horizon is shrinking along the cosmic time evolution.
The former achieves larger size for regular types of mat-
ter, contrary to the latter. The strength of interactions within
the cosmic fluid are shown to play a more important role
in affecting the evolution of the event horizon, rather than
of the cosmological horizon in the case of a singularity-free
universe. While the cosmological horizon always exists dur-
ing the time evolution, the event horizon can exist only when
a certain relationship between the Hawking–Hayward quasi-
local mass and the Hubble function is fulfilled. In this man-
ner, we can study the role played by the large-scale physics
(cosmic evolution) on the local scale physics (evolution of a
black hole).

1 Introduction

Our Universe is populated by many different objects: stars,
galaxies, clusters of galaxies, black holes, and possibly dark
energy. There is no reason for postulating that all these
astrophysical entities should evolve independently from each
other without experiencing feedback phenomena and energy
exchanges. For example, the molecules constituting the cos-
mic fluid or a nearby star are likely to be attracted gravitation-
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ally by a black hole with the possibility of falling into it and
contributing to its accretion or to its evaporation. Therefore,
the most commonly adopted Schwarzschild or Kerr metrics
for a static or rotating black hole (even their generalizations
that include a cosmological constant), respectively, seem
unsatisfactory for a realistic picture of an astrophysical black
hole for many reasons which essentially follow from the two
mathematical assumptions on which they are based: they do
not allow the black hole to evolve and change in time because
of the hypothesis of stationarity, and they are vacuum solu-
tions of the gravitational field equations of general relativity.

Neglecting the presence of matter in its proximity, the
Kerr solution cannot provide any possible mechanism for
the formation of an accretion disk around the central massive
source [1,2], whose existence instead has been established
from the study of active galactic nuclei [3] and of the jets
emitted by the particles falling into it [4]. Moreover, its time-
independence does not allow us to track the stages of the
formation of the black hole under the gravitational collapse
of a star [5–7], to follow its growth by accretion of interstellar
gas [8–10], and to account for its possible “explosion” at
the final stage of Hawking evaporation and disappearance
thereafter [11].

Most importantly, the Kerr solution does not take into
account that the black hole should live inside a Universe
which, according to the current standard model of cosmol-
ogy (�-Cold Dark Matter model or �CDM in short), expand
in time and it is not empty but dominated by some form of
dark energy which is taken to be a cosmological constant
in the simplest scenario [12]. Along this line of thinking,
one can adopt the Schwarzschild-(anti-)de Sitter metric for
describing a spherically symmetric black hole embedded in a
spacetime whose matter–energy is given by the cosmological
constant [13]. In this latter case the spacetime is no longer
asymptotically flat, and the location of the event horizon is
shifted by the presence of the cosmological constant. How-
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ever, the most recent estimates of the cosmological param-
eters from the Planck mission suggest the possibility that
the equation of state for dark energy is evolving in time,
ruling out the possibility of modeling it as a cosmological
constant within 1σ at the 95% confidence level [14]. Taking
into account this requirement, it is conceivable that modeling
a black hole through the McVittie metric will constitute an
improvement because it allows for a simultaneous time evo-
lution of the mass of the black hole and of the scale factor of
the Universe under a generic matter content [15].

For dealing with a well posed problem in the framework of
general relativity, after fixing the geometrical symmetries of
the configuration it is necessary to specify what is the type of
matter entering the stress-energy tensor appearing in the Ein-
stein’s equations. In the light of the aforementioned cosmo-
logical discussion, after choosing the McVittie manifold, we
propose to picture dark energy following the dynamical mod-
els due to Redlich–Kwong [16], (Modified) Berthelot [17],
Dieterici [18], and Peng–Robinson [19] because their astro-
physical applicability as equations of state for dark fluids has
been already tested in [20]. The purpose of this manuscript
is to quantify how the location, time evolution and size of the
McVittie horizon are affected by these four different model-
ings for the dark energy fluid, and to clarify the differences
with respect to the previously adopted Schwarzschild-(anti-
)de Sitter metric. It will be shown that the cosmological hori-
zon is expanding in time, while the event horizon is shrink-
ing. The role of the matter content exotic vs. regular, and
ideal vs. non-ideal1 is analyzed showing that the cosmolog-
ical horizon is larger for regular types of matter contrary to
the event horizon. It also turns out that the strength of inter-
actions within the fluid plays a more important role in the
evolution of the event horizon rather than for the cosmologi-
cal horizon in a singularity-free universe. On the other hand,
a singularity in the pressure can be realized for certain values
of these interactions in two of the equations of state that we
studied; this divergence strongly affects the evolution of both
the cosmological and event horizons.

Our manuscript is organized as follows: in Sect. 2 we intro-
duce the McVittyie spacetime as a solution of the Einstein’s
equations of general relativity, in particular relating the evo-
lution of the mass of the central object to the expansion of
the whole universe through the Hawking–Hayward quasi-
local mass, and deriving the time-dependent positions of the

1 Following the language of [21,22], we name exotic matter a fluid
supported by a negative pressure, regular matter a fluid supported by a
positive pressure, idealmatter a fluid whose pressure and energy density
are related to each other through a linear functional, and non-ideal
matter a fluid whose pressure and energy density are related through a
non-linear law. For example, the equation of state p = aρb describes
an exotic ideal matter for a < 0 and b = 1, an exotic non-ideal matter
for a < 0 and b �= 1, a regular ideal matter for a > 0 and b = 1, and
finally a regular non-ideal matter for a > 0 and b �= 1.

horizons in terms of an algebraic third-degree equation; the
occurrence of one or more real root according to the interplay
of the Hubble function and of the Hawking–Hayward quasi-
local mass is discussed. Then, in Sect. 3 we introduce the
four models for the cosmic fluid that we shall investigate in
this paper, which can account both for exotic or regular and
for ideal or non-ideal matter contents, for example ranging
from dark energy to massless scalar fields and pressure-less
dark matter. Also, in this section we derive the time evolu-
tion for the Hubble function in a McVittie universe. Section 4
exhibits the numerical analysis of the time evolution of the
cosmological and of the event horizon of the McVittie space-
time in terms of a number of plots whose common properties
and differences are then commented in light of the equations
of state we adopted. Finally we draw out our conclusion in
Sect. 5, commenting on how our work fits in the research
lines trying to connect large-scale and local-scale physics in
our Universe.

2 The McVittie horizon: setup of the problem

In an isotropic coordinate system xμ = (t , r , θ ,φ) and in units
such that c = 1 = 8πG, the McVittie metric reads as [15]:

ds2 = −
(

1 − m(t)
2r

)2

(
1 + m(t)

2r

)2 dt2 + a2(t)

(
1 + m(t)

2r

)4

(dr2

+ r2 dθ2 + r2 sin2 θ dφ2). (1)

It describes a black hole of mass m(t) embedded in a
Friedmann-like universe with scale factor a(t) allowing for
matter–energy exchanges between the central massive source
and the surrounding space. Note that if m(t) = const. and
a(t) ≡ 1, then we recover the standard Schwarzschild metric
in the isotropic coordinates.

In what follows we may simply denote m = m(t), and
a = a(t) keeping in mind their time dependence. The McVit-
tie metric can be interpreted as the generalization of the
Schwarzschild-(anti-)de Sitter spacetime because it allows
for a more general time evolution of the scale factor of the uni-
verse which depends on the type of matter driving its expan-
sion beyond the simplest cosmological constant scenario.
This time evolution is accounted for by the Einstein field
equation Gμν = Tμν and the Bianchi identities Tμν ;ν = 0,
in which a semicolon denotes a covariant derivative, Gμν

is the Einstein tensor, Tμν = (ρ + p)uμuν + pgμν is the
stress-energy tensor denoting the matter content of the uni-
verse in terms of its energy density ρ = ρ(t, r), its pres-
sure p = p(t, r), and the four-velocity of the reference free-
falling observer uμ = 1√−gtt

δ
μ
t . McVittie himself imposed a

closure relation between the mass of the black hole and the
scale factor of the universe as:

123



Eur. Phys. J. C (2020) 80 :159 Page 3 of 11 159

ṁ

m
= − ȧ

a
, (2)

where an over dot denotes a derivative with respect to time.
This assumption avoids a nontrivial Gt

r component of the
field equations, and so the previous equation can be inte-
grated into

m(t) = mH

a(t)
, (3)

where the constant of integration mH has been later inter-
preted in the literature as the Hawking–Hayward quasi-local
mass [23–26]. The Hawking–Hayward quasi-local mass
arose in the debate of a possible definition for what grav-
itational energy is in general relativity, which must be well
defined on the horizon of a black hole (because it is a compact
orientable spatial 2-surface), and which must reduce to the
Arnowitt–Deser–Misner (ADM) mass at spatial infinity [27].

So far, the literature has already explained how to find
the 2-surface that gives the horizon of this black hole when
the expansion of the universe is driven by a mixture of non-
interacting pressure-less dark matter and a cosmological con-
stant [28–30]. Moreover, a procedure for locating the McVit-
tie horizon in terms of the zeros of an appropriate curva-
ture invariant has been proposed along the research which
has been trying to develop local techniques for detecting a
black hole horizon [31]. Those algorithms do not rely on the
non-local propagation of light rays and constitute the ground
for the geometric horizon conjecture [32–38]. In this paper
we are interested in understanding how the horizon actu-
ally looks like when specific and different matter contents of
the universe are considered. In particular, we are interested
in extending the case of the Schwarzschild-(anti-)de Sitter
black hole replacing the cosmological constant with a two-
parameter non-ideal equation of state for the dark energy
fluid. Therefore, we postpone the analysis of the effect of
the presence of dark matter, possibly interacting with dark
energy, to a future study.

The horizon of the McVittie black hole can be found by
imposing the condition ||∇r̃ ||2 = 0, where

r̃ = a(t)

(
1 + m(t)

2r

)2

r (4)

is the areal radius [39]. Explicitly we get the following alge-
braic equation:

[(
a(t)r + mH

2

)3
ȧ(t) + ra2(t)

(
a(t)r − mH

2

)] [
ra2(t)

(
a(t)r − mH

2

) − (
a(t)r + mH

2

)3
ȧ(t)

]

(
a(t)r + mH

2

)2
r2a4(t)

= 0. (5)

This condition can be recast into
(
χ + mH

2

)6
H2(t) − χ2

(
χ − mH

2

)2 = 0, (6)

in which we introduced the Friedmann comoving distance
χ = χ(t, r) := a(t)r , and the Hubble function H =
H(t) := ȧ/a [30]. Since χ(t) > 0 ∀t , we can move from a
6th order to a 3rd order algebraic equation

(
χ + mH

2

)3
H(t) = χ

∣∣∣χ − mH

2

∣∣∣ . (7)

For an expanding universe (i.e. supported by a positive Hub-
ble function) the left hand side is positive definite, hence
the absolute value sign. Thus, our procedure is based on the
solution of an algebraic equation and it is computationally
more convenient than solving the differential equation which
accounts for the focusing properties of a congruence of light
rays as considered in [40]. To understand the number of roots
we expect for the locations of the horizons, we rewrite Eq. (7)
in canonical form as

Aχ3 + Bχ2 + Cχ + D = 0, (8)

where the explicit expressions for the coefficients are

A = H(t), B = 3H(t)mH

2
∓ 1,

C = 3H(t)m2
H

4
± mH

2
,

D = H(t)m3
H

8
. (9)

Then, the discriminant of this cubic equation is

� = 18ABCD − 4B3D + B2C2 − 4AC3 − 27A2D2

= m2
H

4
(1 − 27m2

H H2), (10)

in which the same result holds regardless the double signs
appearing in the numerical coefficients Eq. (9). For

� > 0 ⇒ mH <
1

3
√

3H(t)
(11)

there are three real distinct roots. For

� = 0 ⇒ mH = 1

3
√

3H(t)
(12)

all the roots are still real with one of them being repeated.
For

� < 0 ⇒ mH >
1

3
√

3H(t)
(13)
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there is one real and two complex conjugate roots [41]. For
computing the solutions of a cubic equation, it is convenient
to introduce the following notation:

B̄ := B

A
, C̄ := C

A
, D̄ := D

A
(14)

Q := C̄

3
− B̄2

9
, R := B̄C̄ − 3D̄

6
− B̄3

27
,

S1,2 := [R ±
√
Q3 + R2]1/3 (15)

in terms of which the Cardano’s formula provides the three
roots of Eq. (8) as [41]:

χ1 = S1 + S2 − B̄

3
, χ2,3 = − S1 + S2

2
− B̄

3
± i

√
3

2
(S1 − S2),

(16)

in which i2 = −1. Moreover [41]:

χ1 · χ2 · χ3 = −D

A
= −m3

H

8
< 0. (17)

Therefore we can find three real negative roots (none of which
with physical interpretation), or one negative and two positive
roots. The latter will be interpreted as the black hole event
horizon (the smaller root), and as the cosmological horizon
(the larger root).

Reference [30] explored the possibilities of having one or
multiple McVittie horizons for a mixture of dust and a cosmo-
logical constant, while in this manuscript we are interested
in investigating these possibilities for a pure dark energy uni-
verse whose equation of state involves two free parameters
(connected to the adiabatic speed of sound and the strength
of interactions between the molecules constituting the fluid)
as an extension of the case of the Schwarzschild-(anti-)de
Sitter black hole studied in [34].

For setting up a meaningful system of equations we must
write down the evolution equation for the scale factor a(t) of
the universe (or equivalently for its Hubble function) entering
Eq. (7). The equations we need can be reduced to the Fried-
mann equation (mixed-rank time-time component of the field
equations), the acceleration equation (rr , θθ and φφ compo-
nents), and the equations accounting for the energy conser-
vation (Bianchi identity):

H2 =
(
ȧ

a

)2

= ρ

3
(18)

2χ̈ (2χ + mH ) + χ [2χ(H2 + p)

−mH (5H2 + p)] = 0 (19)

ρ̇ = −3H(2χ − mH )

2χ + mH
(ρ + p) (20)

p′ = 4amH (ρ + p)

m2
H − 4χ2

, (21)

in which an appropriate relation p = p(ρ) will be introduced
in the next section. (19) is equivalent to

2Ḣ(2χ + mH ) + (2χ − mH )(3H2 + p) = 0, (22)

or to

Ḣ = − 2χ − mH

2(2χ + mH )
(ρ + p), (23)

where we have used Eq. (18). We stress that Eq. (19) correctly
reduces to the Friedmann acceleration equation

ä

a
= −ρ + 3p

6
(24)

in the limit mH → 0. In this limit Eq. (21) provides as well
p(t, r) = p(t) as expected for a homogeneous and isotropic
universe.

3 Introducing the dark energy

Well-posed evolution equations for the McVittie manifold
requires us to fix, a priori, a thermodynamic relation between
the pressure and the energy density permeating the space-
time. We start by noticing that Eq. (18) implies that the energy
density is spatially homogeneous, i.e. ρ(t, r) = ρ(t). Then,
to fulfill Eq. (21) we follow [42,43] and write the pressure
as

p(t, r) = ρ(t)

[
(1 + ω(t))

2χ + mH

2χ − mH
F(t) − 1

]
, (25)

with F(t) and w(t) being two arbitrary functions. Choosing
F(t) = 1 we can interpret ω(t) = p∞(t)/ρ(t) as the effec-
tive equation of state parameter at spatial infinityχ/mH � 1.
Therefore Eq. (23) can be recast as

Ḣ(t) = −ρ(1 + ω(t))

2
= −ρ(t) + p∞(t)

2

= −3H2(t) + p∞(t)

2
, (26)

from which the spatial homogeneity of the Hubble function
appears more transparently. Similarly, Eq. (20) can be recast
as

ρ̇ = −3Hρ(1 + ω(t)), (27)

showing that far away from the central massive object the
energy conservation equation can be reduced to the same
one which characterizes the Friedmann model [12].

We connect the pressure to the energy density in the
dynamical equations of the previous section assuming that
the expansion of the universe is driven by a dark energy fluid
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modeled according to the equations of state which are known
under the names of Redlich–Kwong [16], (Modified) Berth-
elot [17], Dieterici [18], and Peng–Robinson [19]. They read
respectively as follow:

p∞(t) = 1 − (
√

2 − 1)αρ

1 − (1 − √
2)αρ

βρ, (28)

p∞(t) = βρ

1 + αρ
, (29)

p∞(t) = βρe2(1−αρ)

2 − αρ
, (30)

p∞(t) = βρ

1 − αρ

[
1 − (ca/cb)αρ

(1 + αρ)/(1 − αρ) + αρ

]

ca 
 1.487, cb 
 0.253. (31)

Reference [20] discusses the applicability of such equa-
tions of state for the modeling of the dark energy in cos-
mology, and in particular its appendix reviews their micro-
scopic foundations and their main thermodynamical prop-
erties focusing the attention on the possibilities of having a
phase transition in these nonideal fluids. We remark that the
positive parameterα quantifies the deviations from a nonideal
fluid behavior accounting for the internal interactions within
the fluid molecules, because all the above cases reduce to a
one-parameter ideal equation of state p ∼ ρ when α → 0.
Moreover, the parameter β is connected to the adiabatic speed
of sound c2

s = ∂p∞/∂ρ (as easily read off from the limit at
smallα). The limiting cases ofα = 0 andβ = ±1 correspond
to a stiff fluid (which is equivalent to a massless scalar field
[44,45]), and a cosmological constant, respectively. These
types of matter are relevant in the early and late-time cos-
mology respectively [46]. The case β = 0 corresponds to
dust (for example pressure-less dark matter).

Using the Friedmann equation, Eq. (18), we understand
that the equations of state p∞ = p∞(ρ) can be rewritten in
the more convenient form p∞ = p∞(H) as:

p∞(t) = 3H2 1 − 3(
√

2 − 1)αH2

1 − 3(1 − √
2)αH2

β, (32)

p∞(t) = 3βH2

1 + 3αH2 , (33)

p∞(t) = 3βH2e2(1−3αH2)

2 − 3αH2 , (34)

p∞(t) = 3βH2

1 − 3αH2

×
[

1 − 3(ca/cb)αH2

(1 + 3αH2)/(1 − 3αH2) + 3αH2

]
,

(35)

for Eqs. (28)–(31) respectively.

3.1 Deceleration parameter

The McVittie Universe (1) is shear-free and vorticity-free,
with vanishing curvature parameter, but it admits nontrivial
Hubble function, matter parameter, and acceleration vector
as follows:

H =
√

ρ

3
(36)

�m = 1 (37)

u̇α = 64r4mHa3(t)

(2a(t)r + mH )5(2a(t)r − mH )
δα
r . (38)

Thus, the deceleration parameter is2:

q = 1

2

[
1 + 3

p(t, r)

ρ(t)

]
. (39)

We stress that this result should not be interpreted in a
Friedmann-like perspective because the McVittie universe is
inhomogeneous and therefore the effective equation of state
parameter p(t, r)/ρ(t) is indeed space-dependent. There-
fore, the following three important aspects must be com-
mented on. First of all, the direction of the energy flow from
or to the cosmic background does not influence the sign of the
deceleration parameter. Then, a negative deceleration param-
eter necessarily requires an exotic fluid (i.e. with a negative
pressure p(t, r)); this is a qualitatively different case than the
inhomogeneous Stephani universe in which the acceleration
vector can fully account for a realistic deceleration parameter
without the need of any dark-energy-like fluid [47]. Finally,
it appears that a large value of the Hawking–Hayward quasi-
local mass can lead to a negative pressure (and therefore a
negative deceleration parameter) via Eq. (25) even in the case
of positive β.

3.2 Cosmographic analysis in the far field limit

In the far field limit the Einstein equations of the McVittie
spacetime are reduced to the usual Friedmann equations

H2 = ρ/3, ρ̇ = −3H(ρ + p). (40)

In this regime we can adopt the cosmographic expansions for
the luminosity distance and for the Hubble function in terms
of the redshift z [48–52]:

dL (z) 
 z

H0

[
1 + (1 − q0)z

2
+ (−1 + q0 + 3q2

0 + j0)z2

6

+ (2 − 2q0 − 15q2
0 − 15q3

0 + 5 j0 + 10q0 j0 + s0)z3

24

]

(41)

2 We refer the reader to Eq. (59) in [21] for details on how the deceler-
ation parameter must be computed for a non-Friedmann universe.
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H(z) 
 H0

[
1 + (1 + q0)z + ( j0 − q2

0 )z2

2

+ (3q2
0 + 3q3

0 − j0(3 + 4q0) − s0)z3

6

]
, (42)

in which we have introduced the deceleration, jerk, and snap
parameters which can be evaluated using the Friedmann
Eq. (40):

q := −1 − Ḣ

H2 (43)

j := Ḧ

H3 − 3q − 2 (44)

s :=
...
H
H4 + 4 j + 3q(q + 4) + 6, (45)

and a subscript 0 indicates that the quantity is evaluated at the
present time. The luminosity distance (41) can be measured
through observations of type Ia supernovae [53,54], while the
evolution of the Hubble function (42) can be reconstructed
using the distance to passively evolving galaxies [55]. A
direct computation delivers:

q = 1 + 3ω∞
2

(46)

j = 1 + 9c2
s (1 + ω∞)

2
(47)

s = 1 + 27(1 + ω∞)2

2

(
1 − c2

s

2
− ∂2 p∞

∂ρ2

)

+9(1 + ω∞)

(
2c2

s − 3(1 + c2
s )

2

2

)
, (48)

where

cs =
√

∂p∞
∂ρ

(49)

is the adiabatic speed of sound of the cosmic fluid at spa-
tial infinity. References [56–58] investigated the possibility
of realizing cosmic acceleration adopting a single fluid two-
parameter model in the framework of the Generalized Chap-
lygin Gas and of the Anton–Schmidt fluid. These two latter
equations of state read as

p = β

ρα
(50)

p = β

(
ρ∗
ρ

)α

ln
ρ

ρ∗
, (51)

respectively. Figure (1) compares and contrasts the redshift
evolution of the Hubble function and of the luminosity dis-
tance for the following fluid models: Redlich-Kwong in pan-
els (a) and (e), (Modified) Berthelot in panels (b) and (f), Gen-
eralized Chaplygin in panels (c) and (g), and Anton-Schmidt
in panels (d) and (h). We have adopted units such that H0 = 1

(which implies ρ0 = 3 through the Friedmann equation),
and we have fixed β = −0.75, and ρ∗ = 1. The non-trivial
behavior as function of the free parameter α can be used for
discriminating between these cosmological models.

4 Numerical analysis

The locations for the McVittie horizons are constructed from
Eq. (16) with the following substitutions:

B̄ = 3mH

2
− 1

H
,

S1,2 = 2
1
3

6H

[
4 + mH H [27(mH H − 1)

±3
√

3
√

27H2m2
H − 1]

]1/3
, (52)

B̄ = 3mH

2
+ 1

H
,

S1,2 = − 2
1
3

6H

[
4 + mH H [27(mH H + 1)

∓3
√

3
√

27H2m2
H − 1]

]1/3
, (53)

for the cases χ > mH/2 and χ < mH/2, respectively.
In these solutions the time evolution of the Hubble func-
tion H = H(t) is computed by integrating (26), and then
replacing the pressure at spatial infinity with formulas (32)–
(35). Figure 2 displays the snapshots when t = 1.0 and
t = 100.0 of the time evolution of the event horizon χ3

in panels (c)-(d)-(g)-(h) and of the cosmological horizon
χ1 in panels (a)-(b)-(e)-(f) (χ2 being negative, it does not
carry any physical interpretation [30]) for the (Modi-
fied) Berthelot and for theDietericimodeling for the dark
energy. The dynamics of both the cosmological and black
hole horizons for the Redlich–Kwong and Peng–Robinson
fluids are qualitatively the same, and therefore are not explic-
itly shown. Since our purpose is to investigate the effects that
different types of dark energy or regular fluids have on the
evolution of the McVittie horizons, we fix throughout our
analysis as reference values the Hawking–Hayward mass3

mH = 0.03 and the initial condition H(t0 = 1.0) = 1.0 for
the numerical integration of (26) for graphical convenience.
Figure 3 displays the snapshots at time t = 0.5 (integrating
the evolution of the system backwards) of the cosmological
horizons χ3 for the (modified) Berthelot, and for the Dieterici
equations of state, respectively in panels (a) and (b).

3 In this paper we have adopted units such that c = 1 = 8πG. The
multiplication factor for converting units to SI units can be found in
Appendix F of [59], and they are the following: for mass one multiplies
8πGc−2 
 0.186 · 10−25 m/kg, and for time one multiplies c 
 3 · 108

m/s. For the Hubble function, its dimension is the inverse of time, and
for the quantity χ , its dimension is that of mass, as can be seen from
Eq. (7).
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Fig. 1 The figure depicts the redshift evolution of the Hubble function
and of the luminosity distance for the following fluid models: Redlich–
Kwong in a and e, (modified) Berthelot in b and f, generalized Chap-

lygin in c and g, and Anton–Schmidt in d and h. We have adopted
units such that H0 = 1 (which implies ρ0 = 3 through the Friedmann
equation), and we have fixed β = −0.75, and ρ∗ = 1

Fig. 2 The figure depicts the snapshots at time t = 1.0 and t = 100.0
for the evolution of the event horizon χ3 and of the cosmological hori-
zon χ1 in a, b, e, f and c, d, g, h respectively of the McVittie spacetime.

The evolution of this universe is driven by the (modified) Berthelot fluid
in the former case and by the Dieterici fluid in the latter

4.1 Discussion

A number of regularity properties appear from the numer-
ical analysis presented in Figs. 1, 2 and 3. Along the time
evolution we considered, we have χ1 > χ3 for all the four
configurations. Therefore, the former is interpreted as the
cosmological horizon, while the latter is the black hole event

horizon. The cosmological horizon exists for all the values
of the parameters α ∈ [0, 1], and β ∈ [−1, 1] all along the
time evolution, while the event horizon can exist only for cer-
tain appropriate pairs (α, β) that are compatible with having
a real solution to the cubic equation locating the McVittie
horizons via Eq. (7). This behavior is not surprising because
as a general property of a third degree algebraic equation, we
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Fig. 3 The figure depicts the snapshots at time t = 0.5 of the McVittie event horizon for the (modified) Berthelot and Dieterici equations of state
respectively in a, b

discussed that one real solution is always guaranteed. A sec-
ond real non-complex solution may or may not arise accord-
ing to a time dependent relationship between the Hawking–
Hayward quasi-local mass and the Hubble function, imply-
ing that it can disappear in time. Moreover, the cosmological
horizon χ1 is expanding in time, while the event horizon χ3

is shrinking. This behavior is compatible with the general
property that the product and the sum of the three roots of
a cubic equation must remain fixed [41]. The cosmological
horizon is attaining larger sizes for regular types of matter
characterized by β > 0, rather than for exotic matter with
β < 0 regardless the strength of non-linearities within the
fluid quantified by the parameter α. On the other hand, this
is not the case for the event horizon which exhibits larger
sizes for exotic matter and for ideal fluids with α → 0. We
remark that all these properties hold regardless the model-
ing for the fluid we adopted in terms of the Redlich–Kwong,
(Modified) Berthelot, Dieterici, or Peng–Robinson equations
of state. However, the latter two exhibits a singularity for the
pressure for finite values of the energy density at ρ = 2/α

and at ρ = 1/α respectively. This divergence influences the
evolution of the Hubble function via (26) and brings to a
steepening of the evolution of both the cosmological and
event horizons of the McVittie spacetime.

5 Concluding remarks

The physics accounting for the existence of black holes and
the one explaining the global evolution of the Universe may
seem unrelated at first sight because the former involves
physics at relatively small scale, while the latter focuses on
large scale effects. Just to mention one example, some cur-
rent research on black holes is trying to picture the formation
of an accretion disk on scales of 0.20 pc as in the galaxy

NGC 3783 [60], while cosmological literature is trying to
clarify the role of spatial inhomogeneities on sizes of 150
Mpc [61]. The spatial scales of these two phenomena differ
from each other by 9 order of magnitude. For addressing the
open issue of providing a direct astrophysical evidence of
the existence of a black hole horizon which does not rely on
the detection of the energy emitted by the particles falling
into it [62], the Event Horizon Telescope provided the first
physical image of an object of the size of the event horizon
of a black hole located at the center of the Milky way [63]
(technically speaking the black hole shadow is larger than
the horizon size, but it is of the same order of magnitude).
Therefore, the analysis presented in this manuscript intends
to complement the ongoing research in which interactions
between a black hole and an evolving background cosmic
fluid are accounted for [64–67]. The key improvement is that
in our model the Einstein equations automatically accounts
for the evolution of the mass of the black hole (thanks to
the adoption of the McVittie spacetime metric) without the
need of imposing by hand any ad-hoc dynamical equation
for the mass which is absorbing or emitting energy from or
towards the background region assumed to be a Friedmann
universe. The ratio of growth of galaxies and supermassive
black holes have remained constant during the past 11 Gyr
suggesting a close interplay between the evolution of the two
[68–71]. The interpretation is that phenomena connecting the
cosmic evolution of host galaxies and of their central black
hole still occur at the present age of the Universe and dom-
inate over the merging of black holes or stellar collapse as
a mechanism for the formation of the central supermassive
black hole. In particular, tracing the radio and X-rays signals
emitted by the material infalling into the black hole horizon
in a sample of 35 Active Galactic Nuclei it was possible to
observationally reconstruct the time evolution of the mass of
the central supermassive black hole as a function of the tem-
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perature (energy) of the accreting matter [72–74]. In light of
these measurements, a set of magneto-hydrodynamic simu-
lations have been carried out [75,76], that our paper intends
to complement from an analytical perspective through the
adoption of the McVittie metric. Following this latter line of
thinking, in this manuscript we have investigated the effects
that the dark energy modeling beyond a cosmological con-
stant and that regular fluids carry on the evolution of the loca-
tion of the horizon of a black hole. In particular, we showed
that a regular vs. an exotic or an ideal vs. a non-ideal matter
content influences in different ways the evolution of the cos-
mological and of the event horizon in a McVittie spacetime.
Therefore, the consequences of adopting different modelings
for the large-scale physical phenomena cannot be ignored in
the study of local small-scale physics [77]. Our study com-
plements the ones which instead focus on the opposite way
of thinking, i.e. in clarifying the roles that small-scale effects
have on the global expansion of the universe [78]. Last but
not least, our analysis about the location of the event hori-
zon can play a role in numerical relativity simulations about
gravitational waves in which the excision method is adopted,
and information about the location of the event horizon (i.e.
about the region to excise) are necessary [32].
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