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Abstract In this paper we present a detailed calculation
of an Ansatz that allows to obtain spherically symmetric
Einstein–Dirac configurations in d-dimensions. We show

that this is possible by combining 2� d−2
2 � Dirac fields, mak-

ing use of the properties of the angular dependence of the
spinors in a spherical background. By applying this Ansatz,
we investigate some simple analytical solutions. One of them
is a regular wormhole supported by the Dirac fields. Other
solutions include a pathological black hole and a naked sin-
gularity. We analyze the domain of existence and properties
of all these solutions.

1 Introduction

The study of the Einstein equations coupled to different
classes of matter content has received a lot of attention in
the recent years, since solutions of these theoretical models
could be related to exotic astrophysical systems (compos-
ing the dark matter/energy sector) [1]. In higher dimensions
these solutions could be of potential interest in the context of
supergravity and the AdS/CFT correspondence [2].

There is an ongoing intense exploration of self-gra-
vitating stationary soliton-like solutions composed by dif-
ferent classes of massive fundamental fields. The interest of
these settings is because of the contrast with the more stan-
dard Einstein–Maxwell theory (and even with the Einstein–
Maxwell-scalar theory [3]), where the electro-vac black hole
is the only self-gravitating stationary soliton-like solution.
But when fundamental fields are considered to be massive
the situation changes. It is possible to construct particle like
solutions (with regular, stationary space-times, but typically
with a harmonic time dependence on the fields).
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With scalar fields (in particular, massive and complex),
these configurations are well-known to exist and originally
obtained in [4,5]. Typically these configurations are known
as boson stars [6], and they are considered potential candi-
dates as astrophysical objects [7]. With massive vector fields
(known as Proca stars) this was explored in [8] (some results
in five dimensions can be found in [9]). Several astrophysi-
cal properties of these objects have been analyzed in depth
[10–13].

From a more theoretical point of view, a particularly inter-
esting case is to consider self-gravitating soliton-like solu-
tions of the Einstein–Dirac system, where gravity plays the
role of the non-linear interaction that allows for the existence
of Dirac solitons in simpler models [14,15]. However, there
is an additional challenge for this type of fields. Because
of the intrinsic angular momentum of a single spinor field (a
preferred direction in space-time), the resulting space-time is
forced to rotate in order to accommodate stationary solutions.
Such configurations have been very recently constructed in
[16], where they were compared with rotating Boson and
Proca stars.

Nonetheless, a possible route to enforce that the global
solution of the Einstein–Dirac system is actually static and
spherically symmetric, is to relax the single spinor condi-
tion and consider a collection of Dirac fields. In four dimen-
sions, two fields are enough to cancel the intrinsic angular
momentum and realize a global spherically symmetric and
non-rotating space-time [17,18] (provided the fields possess
a certain harmonic time dependence).

The properties of such multi-Dirac soliton-like solutions
have been recently studied in [19], where their properties
were compared with similar configurations made of scalar
and Proca fields for d ≥ 4. It was shown that some generic
features of the solutions actually do not depend qualitatively
on the spin of the field, but they are controlled by the dimen-
sion of the space-time. These ‘Dirac stars’ have also been
studied in the presence of vector fields [20].
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On the other hand, solutions of the Einstein–Dirac sys-
tem with multiple fermions are of interest in condensed mat-
ter [21], where in particular wormhole space-times with two
Dirac fields can be used as effective models describing two
graphene layers connected by a short nanotube. This model
is known as the graphene wormhole [22–31].

The purpose of the present paper is twofold. First, we want
to provide details on how the Ansatz for these multi-Dirac
self-gravitating solitons is calculated for arbitrary space-time
dimension. Second, we will show that, in addition to the
numerical solutions previously obtained in [19], it is possible
to obtain a few simple analytical solutions to the equations.
One of these solutions is a regular wormhole solution sup-
ported by multiple Dirac fields. We will analyze the physical
meaning and properties of these configurations.

The paper is organized as follows: in Sect. 2 we present the
general formalism for the Einstein–Dirac system and make
an overview of how the Ansatz is built. In Sect. 3 we explain
how to combine the angular dependence of the different Dirac
fields in order to get a spherically symmetric stress–energy
tensor. In Sect. 4 we analyze the effective action and the min-
imum set of differential equations of this system. In Sect. 5
we describe several sets of solutions that can be obtained
in various particular cases. In Sect. 5.1 we present a regu-
lar wormhole solution supported by pairs of Dirac fields. In
Sect. 5.2 we present a black hole solution with a pathological
behaviour of the Dirac fields at the horizon. In Sect. 5.3 we
present a light-like singularity. In Sect. 6 we end the paper
with a summary and conclusions.

2 Overview of the general setting

We want to construct spherically symmetric solutions of
the d-dimensional Einstein–Dirac system. There are many
studies on the Dirac equation in higher dimensional, spheri-
cally symmetric space-times [32–41]. An appropriate metric
Ansatz is

ds2 = N (r)σ 2(r) dt2 − 1

N (r)
dr2 − r2 dΩ2

d−2, (1)

where dΩ2
d−2 is the line element of the (d − 2)-sphere. In

order to build minimally coupled Dirac fields to this metric,
we need to specify the vielbein, and for the metric Ansatz (1)
we choose

ωt = √
Nσdt,

ωr = 1√
N
dr,

ω j = r ω
j
d−2, (2)

where j = 1, . . . , d−2 is an index running over the (d−2)-
sphere and ω

j
d−2 is a vielbein for the (d − 2)-sphere. This

allows us to write the Dirac equation,

DΨ =
[

i√
Nσ

γ t∂t + i
√
Nγ r

(
∂r + d

dr
ln

√√
N σrd−2

)

+ i

r
γ tγ rKd−2 − m

]
Ψ = 0. (3)

The operator Kd−2 is the angular operator of the (d − 2)-
sphere, given by

Kd−2 = γ
j
d−2e

d−2
j + 1

2
Γ d−2

|i j | (ed−2
k )γ k

d−2γ
i
d−2γ

j
d−2, (4)

with Γ d−2
i j being the spin connection of the (d − 2)-sphere,

ed−2
j being the dual to the vielbein on the (d −2)-sphere and

γ
j
d−2 = γ tγ rγ j . Because of the spherical symmetry of the

metric, the Dirac operator commutes with the angular opera-
tor, [D,Kd−2] = 0. In addition ∂t is a Killing vector. These
two properties allow us to write a spinor with the following
Ansatz

Ψ = e−iωtφκ(r) ⊗ Θκ, (5)

where Θκ depends on the angular variables only. The angular
part is chosen to fulfill Kd−2Θκ = κΘκ , with κ the angular
momentum eigenvalue.

As we said in the introduction, because of a single spinor
having a non-trivial intrinsic angular momentum, it is not
possible to construct a compatible solution of the Dirac Eq.
(3) with the metric (1).

A way out is to consider a system of multiple Dirac
spinors. If we choose them appropriately, the combination
of all of them will have a total stress–energy tensor compati-
ble with the symmetries of the metric (1). To do so, we need

2� d−2
2 � spinors (note �x� means the integer less than or equal

to x). These spinors need to have the same radial function,
but they differ in their angular parts, with the same (the small-
est possible) angular eigenvalue combined incoherently. This
means that, written as a formal sum, the spinors combine like

e−iωt
⊕

ε

φκ ⊗ Θκ,ε, (6)

where ε is the index of each one of the 2� d−2
2 � spinors.

In terms of the action, the Einstein–Dirac system with
cosmological constant Λ can be written like

S =
∫

dd x
√|g|

[
R + 2αg√|g|Lspinors + Λ

]
, (7)

where αg is the coupling constant between gravity and the
spinor fields, and the Lagrangian for the spinor part is then a
sum of the form

Lspinors =
∑

ε

[
i

2
Ψ εγ

a∇aΨε − i

2
∇aΨ εγ

aΨε − mΨ εΨε

]
. (8)
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We will show that this leads to a spherically symmetric energy
momentum tensor for the spinors,

Tμν =
∑

ε

T (ε)
μν = 2

∑
ε

�(Ψ εγ(μ∇ν)Ψε), (9)

where the T (ε)
μν is the energy momentum tensor of the

e−iωtφκ ⊗ Θκ,ε spinor.
We will now focus on the (d −2)-dimensional sphere and

the construction of this spherically symmetric configuration.

3 How to combine the spinors

In the following we will make use of expression (5) for each
one of the spinors. We will assume that:

1. all the spinors share the same radial dependence;
2. all the spinors share the same temporal dependence, and

we will assume it can be written in terms of a phase,
introducing the frequency ω;

3. the spinors only differ in the angular part.

In this section we will discuss in detail the properties of this
angular part, and how it can be chosen in order to make the
stress–energy tensor compatible with spherical symmetry.

3.1 Peeling the n-sphere

Let n denote the dimension of the sphere. Solutions to the
Dirac equation on the n-sphere are well-known and called
spinor monopole harmonics in the literature [42–44]. It is
however not trivial to combine these solutions into a field con-
figuration which possesses a spherically symmetric energy
momentum tensor. An approach to make this combination
more intuitive, is to maximize the commuting Killing vec-
tors on the n-sphere in our coordinate system. For this we
will choose angular coordinates in such a way, that the line
element on the sphere is given recursively by

dΩ2
n = dθ2

n + S2
n dφ2

n + C2
n dΩ2

n−2, (10)

with

dΩ2
n−2 =

⎧⎪⎨
⎪⎩

0, n = 2

dφ2
1 , n = 3

(n − 2) sphere line element, n > 3

(11)

and Sn = sin θn , Cn = cos θn . We thus slice off a two-sphere
from the n-sphere. This is convenient, because it allows us
to define the vielbein on the sphere also in a recursive way,
meaning

ωθn
n = dθn,

ωφn
n = Sn dφn,

ω
j
n = Cn ω

j
n−2, (12)

with j = 1, . . . , n−2 being an index running over the (n−2)-
sphere. The spinor covariant derivative on the n-sphere ∇(n)

a

is thus

∇(n)
θn

= ∂θn ,

∇(n)
φn

= 1

Sn
∂φn − Cn

2Sn
γKn
n ,

∇(n)
j = 1

Cn
∇(n−2)

j − iSn
2Cn

γ φn
n γ

j
n−2, (13)

with γ
Kn
n = −γ

θn
n γ

φn
n and γ

j
n−2 = iγKn

n γ
j
n and j as before.

One can think of γ
j
n−2 as the γ

j
n matrices projected down

onto the (n − 2)-sphere with γ
Kn
n governing this projection.

The reason we choose this factorization of the γ -matrices
will become clear later.

With these choices of line element, vielbein and algebra,
we can write the Dirac operator on the sphere (meaning the
angular part) as

Kn = γ a
n ∇(n)

a

= γ θn
n

(
∂θn + ∂θn ln

√
Sn C

n−2
n

)

+ 1

Sn
γ φn
n ∂φn + i

Cn
γKn
n Kn−2, (14)

where the index a runs over the n-sphere and Kn−2 =
γ k
n−2∇(n−2)

k is the angular operator for the (n − 2)-sphere.
The matrices fulfill{

γ a
n , γ b

n

}
= −2δab, with a, b ∈ {θn, φn, j}, (15){

γ a
n , γ b

n

}
= −2δab, with a, b ∈ {θn, φn,Kn}, (16){

γ
j
n−2, γ

k
n−2

}
= −2δ jk, (17)[

γKn
n , γ

j
n

]
= 0, (18)[

γ a
n , γ

j
n−2

]
= 0, with a ∈ {θn, φn,Kn}, (19)

where in the above j and k denote indices on the (n − 2)-
sphere.

Equation (15) expresses the Clifford algebra on the n-
sphere. Equation (16) is the Clifford algebra on the 2-sphere.
Finally Eq. (17) is the Clifford algebra on the (n−2)-sphere,
showing us that the projection works correctly and we have
sliced off a two sphere from the n-sphere. The next Eq. (18)
tells us that the matrix governing the projection onto the (n−
2)-sphere commutes with the matrices of the (n−2)-sphere.
The last Eq. (19) shows that the projected γ -matrices on the
(n − 2)-sphere commute with the γ -matrices on the sliced
off two-sphere.

This last relation implies that [Kn,Kn−2] = 0. In addi-
tion, since ∂φn is a Killing vector we also have [∂φn ,Kn] = 0.
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Even more, for any n,m ∈ N we have that in the tower of
angular operators [Kn,Km] = 0 and [Kn, ∂φm ] = 0.

3.2 Angular solutions of the spinor field

We have rewritten the angular operator into a tower of angular
operators. We will study now what this is implying to the
angular part of the spinor fields.

Denote by Θκn the eigenspinor KnΘκn = κnΘκn . Due to
the above comutator (19), we can factorize the angular part
of the solution and write

Θκn = eimnφnΘκn ,mn ⊗ Θκn−2 , (20)

with Kn−2Θκn−2 = κn−2Θn−2. This leads to the equation
for Θκn ,mn

[
γ θn
n

(
d

dθn
+ d

dθn

√
Sn C

n−2
n

)
+ imn

Sn
γ φn
n + iκn−2

Cn
γK n
n

]
Θκn ,mn

= κnΘκn ,mn . (21)

Let us study this equation a bit more. It is convenient to define

Θκn ,mn = e− θn
2 γ

φn
n γ

K n
n√

Sn C
n−2
n

Θ̂n . (22)

Substituting this into the differential Eq. (21) and multiplying

with e
θn
2 γ

φn
n γ

K n
n from the left gives the following differential

equation for Θ̂n[
γ θn
n

d

dθn
+ iγ φn

n

(
mn

Cn

Sn
− κn−2

Sn
Cn

)

+iγKn
n (mn + κn−2) − 1

2
γ θn
n γ φn

n γKn
n

]
Θ̂n = κnΘ̂n .

(23)

At this stage, let us choose as a representation

γ θn
n =

[
0 1

−1 0

]
, γ φn

n =
[

0 i
i 0

]
,

γKn
n =

[−i 0
0 i

]
, Θ̂n =

[
Θ1

Θ2

]
. (24)

This leads to the coupled first order differential equation(
d

dθn
+ mn

Cn

Sn
− κn−2

Sn
Cn

)
Θ1 = −K+Θ2,

(
d

dθn
− mn

Cn

Sn
+ κn−2

Sn
Cn

)
Θ2 = +K−Θ1, (25)

with

K± = 1

2
+ κn ± (mn + κn−2) . (26)

Let us also define

pm :=
∣∣∣∣mn + 1

2

∣∣∣∣ , pκ :=
∣∣∣∣κn−2 + 1

2

∣∣∣∣ ,

F j := F

(
j + 1 − nκ , j + nκ + pm + pκ

j + 1 + pκ

;C2
)

,

R j := ( j + 1 − nκ) ( j + nκ + pm + pκ)

j + 1 + pκ

, (27)

where F(a, b; c; z) is the hypergeometric function and nκ ≥
1 is a natural number. For solutions of the differential Eq.
(25) mn is a half integer number, while |κn−2| ≥ (n − 2)/2
is an integer number in the case n is even, or a half integer
number in the case n is odd.

With these definitions, we can write three solutions of Eq.
(25).
(1) The solution in the case K+ 
= 0 is

Θ1 = C p2+1/2
n S p1+1/2

n F0,

Θ2 =
{

2CnSn R0F1

F0
−
(
mn + 1

2
+ p1

)
Cn

Sn
,

+
(

κn−2 + 1

2
+ p2

)
Sn
Cn

}
Θ1

K+
(28)

and the angular eigenvalue in this case is

κn = −1

2
±κ |2nκ − 1 + p1 + p2| (29)

where ±κ is a sign choice.
(2) In the case of K+ = 0 the solution is

Θ1 = 0,

Θ2 = Smn
n Cκn−2

n , (30)

with mn ≥ 1/2 and κn−2 ≥ (n − 2)/2. The angular eigen-
value in this case is

κn = −1

2
− mn − κn−2. (31)

(3) Lastly in the case of K− = 0 the solution is

Θ1 = S−mn
n C−κn−2

n ,

Θ2 = 0, (32)

with m1 ≤ −1/2 and κn−2 ≤ −(n − 2)/2. The angular
eigenvalue in this case is

κ = −1

2
+ mn + κn−2. (33)

With these three solutions at hand, let us analyze what are
the smallest possible eigenvalues |κn| we can reach and what
are the corresponding angular solutions. An inspection of the
solutions allows us to conclude that these are given by the
cases K± = 0 choosing |mn| = 1/2, |κn−2| = (n − 2)/2,
and by K+ 
= 0 choosing nκ = 1, mn = ±1/2, κn−2 =
∓(n − 2)/2. This gives as a result |κn| = n/2.

Note that the previous values of the angular parameters
depend only on n and some possible sign choices. In the fol-
lowing we will choose only these minimum values. Hence,
since for a given dimension n the only possible choices are
the different signs of the angular parameters, for the sake of
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simplicity we can relabel the angular solution accordingly:
Θκn ,mn ≡ Θ

(n)
sgn(κn),sgn(mn)

. Note that the sign of κn−2 is deter-
mined by these sign choices via

sgn(κn−2) = −sgn(mn) sgn(κn). (34)

Let us write explicitly what these solutions are. There are
four possibilities with |κn| = n/2:

Θ
(n)
++ =

[
sin θn

2

− cos θn
2

]
, Θ

(n)
+− =

[
cos θn

2

sin θn
2

]
,

Θ
(n)
−+ =

[
sin θn

2

cos θn
2

]
, Θ

(n)
−− =

[
cos θn

2

− sin θn
2

]
. (35)

Tracing back our steps we can thus write the angular part
of the spinor for the n-sphere with minimal absolute value of
the eigenvalue |κn| = n/2 as

Θεκ,ε ≡ Θκn =
⎡
⎣ j≡n mod 2∏

0< j≤n

eiε jφ j /2

⎤
⎦ j≡n mod 2⊗

1< j≤n

Θ
( j)
± j ,ε j

, (36)

with εκ being the sign choice for κn , and the ε j being the
sign choices for the m j ( j > 1), which we can summarize
as a binary vector ε (notice that either the even or the odd
components of this vector are immaterial for us depending
on n), and

± j = sgn(κ j ) = −sgn(m j+2)sgn(κ j+2)

=
⎡
⎣k≡n mod 2∏

j<k≤n

−εk

⎤
⎦ εκ . (37)

The sign of m1, so ε1, is fixed by the equation

ε1 = ±1 =
⎡
⎣k≡n mod 2∏

1<k≤n

−εk

⎤
⎦ εκ . (38)

The reason for this is that m1 plays a double role as an eigen-
value to ∂φ1 and as the angular eigenvalue κ1 to the one-sphere
(circle).

3.3 Analyzing the properties of the angular solution on the
components of the total stress–energy tensor

Now that we have this set of solutions (36) for the angular part
of the spinor, we need to study how it enters into the stress–
energy tensor. The stress–energy tensor for a collection of
spinors was given in expression (9). From there we can see
that it is useful to construct explicitly the matrix elements
of the covariant derivative ∇(n)

a multiplied with a matrix Γ ,
since we will need these objects for the calculation of the
total stress–energy tensor.

The first thing to do is to look at the following relations

γ θn
n Θ

(n)
±κ ,±m

= − ±κ ±mΘ
(n)
±κ ,∓m

,

γ φn
n Θ

(n)
±κ ,±m

= − ±κ ±mΘ
(n)
∓κ ,∓m

,

γKn
n Θ

(n)
±κ ,±m

= −iΘ(n)
∓κ ,±m

,

∂θnΘ
(n)
±κ ,±m

= ±mΘ
(n)
±κ ,∓m

/2 = ∓κγ θn
n Θ

(n)
±κ ,±m

/2. (39)

Using this and the inner product table

Θ
(n)
+,+ Θ

(n)
+,− Θ

(n)
−,+ Θ

(n)
−,−

Θ
(n) †
+,+ 1 0 −Cn Sn

Θ
(n) †
+,− 0 1 Sn Cn

Θ
(n) †
−,+ −Cn Sn 1 0

Θ
(n) †
−,− Sn Cn 0 1

(40)

gives the following matrix elements

Θ
(n) †
±κ±m

γ θn
n Θ

(n)
±κ±m

= 0,

Θ
(n) †
±κ±m

γ φn
n Θ

(n)
±κ±m

= − ±κ ±m iSn,

Θ
(n) †
±κ±m

γKn
n Θ

(n)
±κ±m

= ±m iCn,

Θ
(n) †
±κ±m

∂θnΘ
(n)
±κ±m

= 0,

Θ
(n) †
±κ±m

γ φn
n ∂θnΘ

(n)
±κ±m

= − ±κ ±m iCn /2. (41)

On the other hand, the covariant derivatives are explicitly
given by

∇(n)
θk

=
⎡
⎣ j≡n mod 2∏

k< j≤n

1

C j

⎤
⎦ ∂θk

− i

2

j≡n mod 2∑
k< j≤n

⎡
⎣l≡n mod 2∏

j<l≤n

1

Cl

⎤
⎦ S j

C j
γ

φ j
j γ

θk
j−2,

∇(n)
φk

=
⎡
⎣ j≡n mod 2∏

k< j≤n

1

C j

⎤
⎦[ 1

Sk
∂φk − Ck

2Sk
γ
Kk
k

]

− i

2

j≡n mod 2∑
k< j≤n

⎡
⎣l≡n mod 2∏

j<l≤n

1

Cl

⎤
⎦ S j

C j
γ

φ j
j γ

φk
j−2. (42)

In the case of n being odd we have

γ
φ1
1 = iγK3

3 γ
φ1
3 = −iγ θ3

3 γ
φ3
3 γ

φ1
3 ≡ −i,

θ1 ≡ π/2, C1 ≡ 0, S1 ≡ 1. (43)

For the construction of the spherically symmetric stress–
energy-tensor we now need the expectation value of ∇(n)

k

and γ k
n ∇(n)

j with Θεκ,ε . Write these as 〈Γ 〉 = Θ
†
εκ ,εΓ Θεκ,ε ,

for the matrix element of Γ . The following identity proves
to be useful,

γ αk
n =

⎡
⎣ j≡n mod 2∏

k< j≤n

iγ
K j
j

⎤
⎦ γ

αk
k , (44)

with j ≡ k ≡ n mod 2, n ≥ k < j and α ∈ {θ, φ,K },
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After some tedious algebra we find the following expres-
sions

〈∇(n)
θk

〉 = 0 = 〈γ θk
n 〉,

〈∇(n)
φk

〉 =
{

1

π
(n)
1

− Σk,n

}
iεk
2
Sk,

〈γ φk
n 〉 = −iεkεκπ

(n)
k Sk,

〈γ θ j
n ∇(n)

θk
〉 = εκ

2
δ jk,

〈γ φ j
n ∇(n)

θk
〉 = − i

2

δk

π
(n)
k

εκCk δ jk,

〈γ θ j
n ∇(n)

φk
〉 = − i

2
Skπ

j
k S jεκεk, j > k,

〈γ θk
n ∇(n)

φk
〉 = iCk

2
εκεk,

〈γ φ j
n ∇(n)

φk
〉 =

⎧⎨
⎩

1

π
( j)
k

+
l≡n mod 2∑
k<l< j

π l
k
S2
l

Cl
− π

j
k

1

C j

⎫⎬
⎭

×εκεkε j

2
S j Sk, j > k,

〈γ φk
n ∇(n)

φk
〉 = εκ

2
,

〈γ φ j
n ∇(n)

φk
〉 = 0 = 〈γ θ j

n ∇(n)
φk

〉, j < k,

〈γKk
n 〉 = −iδkπ

(n)
k Ck, (45)

where we have defined

Σk,m =
j≡n mod 2∑
k< j≤m

π
j
k

S2
j

C j

1

π
(m)
j

,

δk =
⎡
⎣l≡n mod 2∏

k≤l≤n

−εl

⎤
⎦ ,

π
j
k =

l≡n mod 2∏
k<l< j

Cl ,

π
( j)
k =

l≡n mod 2∏
k<l≤ j

Cl . (46)

It is important to note that

∑
ε

〈∇(n)
θk

〉 =
∑

ε

〈∇(n)
φk

〉 =
∑

ε

〈γ φ j
n ∇(n)

θk
〉 =

∑
ε

〈γ θl
n ∇(n)

θk
〉

=
∑

ε

〈γ θ j
n ∇(n)

φk
〉 =

∑
ε

〈γ φl
n ∇(n)

φk
〉 =

∑
ε

〈γ θk
n 〉

=
∑

ε

〈γ φk
n 〉 =

∑
ε

〈γKk
n 〉 = 0, (47)

for l 
= k and the sum is over all possible sign vectors ε.
Hence the non-diagonal terms sum to zero.

The non-vanishing sums are in the diagonal parts, which
result in∑

ε

〈γ θk
n ∇(n)

θk
〉 =

∑
ε

〈γ φk
n ∇(n)

φk
〉 = 2� n

2 � εκ

2
. (48)

3.4 Combining the spinors

We will use the above expressions to construct a field con-
figuration with a spherically symmetric energy momentum
tensor.

Fix a sign εκ for a lowest angular eigenvalue κ = εκ
d−2

2

of the (d − 2)-sphere. Define 2� d−2
2 � spinor fields as in Eq.

(5),

Ψε = e−iωtφκ ⊗ Θκ,ε (49)

but labeling explicitly all the allowed sign combinations of ε.
We then combine these spinors in an incoherent superposition
so that

Ψconf. :=
⊕

ε

Ψε =
⊕

ε

e−iωtφκ ⊗ Θκ,ε

= e−iωtφκ ⊗
⊕

ε

Θκ,ε (50)

written here as a formal sum ranging over all possible values
for ε. Note in the last step of Eq. (50) we have made use
of the fact that the radial and temporal dependence of each
individual spinor is the same for all of them.

In the spacetime of the metric given by Eq. (1) the covari-
ant derivatives are explicitly given by

∇t = 1√
N σ

∂t + √
N

d ln
√√

N σ

dr
γ tγ r ,

∇r = √
N∂r ,

∇ j = 1

r
∇(d−2)

j +
√
N

2r
γ tγ

j
d−2, (51)

with j being an index on the (d − 2)-sphere and

∇(d−2)
j = ed−2

j + 1

2
Γ d−2

|kl| (ed−2
j )γ k

d−2γ
l
d−2 (52)

being the covariant derivative on the (d − 2)-sphere and
γ

j
d−2 := γ tγ rγ j being the γ -matrices of the (d−2)-sphere.

Using for the sphere the same vielbein as in the previous
sections, and after some algebraic manipulations in which
one needs to make use of the expressions we have derived
in Sect. 3.3, one arrives at the following energy momentum
tensor (note that it is written in vielbein components)

Ttt = −2

⌊
d−2

2

⌋
+1 �(ω)√

N σ
φ†

κφκ,

Ttr = 2

⌊
d−2

2

⌋
+1

√
N σ

�(ω)φ†
κγ tγ rφκ,
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Trr = −2

⌊
d−2

2

⌋
+1√

N �(φ†
κγ tγ r∂rφκ)

Tt j = 0 = Tr j ,

Tjk = −εκ

r
2

⌊
d−2

2

⌋
�(φ†

κγ rφκ)δ jk, (53)

where we have used the radial equation for φκ to simplify
some expressions,[

ω√
Nσ

γ t + i
√
Nγ r

(
d

dr
+ d

dr
ln

√√
N σrd−2

)

+ i

r
γ tγ rκ − m

]
φκ = 0. (54)

One can easily see that this tensor is diagonal on the spatial
components and thus spherically symmetric.

Note however that the tensor has in general a non-trivial
t − r component. This means the configuration in general
has a radial flux, and will force the configuration to be time
dependent. If we want to obtain solutions compatible with
the static metric (1), we have to require the radial current to
vanish everywhere, meaning φ†

κγ tγ rφκ = 0 (no-flux).
The only thing left is to choose a particular representation

of the remaining γ -matrices and spinor components,

γ t =
[

0 1
1 0

]
, γ r =

[
0 −1
1 0

]
, φκ =

[
φ1

φ2

]
. (55)

The no-flux condition reads

|φ1|2 = |φ2|2. (56)

The following parametrization incorporates the no-flux con-
dition

φ1 = 2
− 1

2

⌊
d−2

2

⌋
φ̂, φ2 = 2

− 1
2

⌊
d−2

2

⌋
eiνφ̂, (57)

with φ̂ a complex function and ν a real valued function.
Using this Ansatz and representation in the Eq. (54) and

after some algebra we get the following non-linear first order
system of differential equations for φ̂ and ν

d ln |φ̂|
dr

= 1√
N

�
{(

m + iκ

r

)
eiν
}

− d ln
√√

N σ rd−2

dr
,

dν

dr
= 2√

N
�
{(

m + iκ

r

)
eiν
}

− 2ω

Nσ
. (58)

The equation for ν forces the frequency ω to be real. Note
that the phase of φ̂ does not vary with r and is not a dynamical
quantity.

The stress–energy tensor in the vielbein components sim-
plifies into

Ttt = − 4ω√
N σ

|φ̂|2,

Trr = 4

{
m cos ν − κ sin ν

r
− ω√

N σ

}
|φ̂|2

= 2
√
N

dν

dr
|φ̂|2,

Tt j = 0 = Tr j = Ttr ,

Tjk = 2εκ sin ν

r
|φ̂|2δ jk . (59)

An important quantity we can calculate is the time com-
ponent of the net current in the vielbein, the Dirac density:

j0
net =

∑
ε

φ†
κφκ = 2|φ̂|2. (60)

We can see that all the components of the stress–energy tensor
are proportional to the Dirac density j0

net.

3.5 A comment on the time-dependent case

Although we are mainly interested in static metrics, the pre-
vious Ansatz can be easily generalized to accommodate the
time-dependent case.

In this case the metric functions σ and N also have to
depend on time. But it is also necessary to change the Ansatz
for the Ψε to

Ψε = φκ(t, r) ⊗ Θκ,ε, (61)

meaning there is no harmonic time dependence in the fields.
With these changes, the stress–energy tensor becomes

Ttt = 2

⌊
d−2

2

⌋
+1

√
N σ

�(φ†
κ∂tφκ),

Ttr = −2

⌊
d−2

2

⌋
+1

√
N σ

�(φ†
κγ tγ r∂tφκ),

Trr = −2

⌊
d−2

2

⌋
+1√

N �(φ†
κγ tγ r∂rφκ),

Tt j = 0 = Tr j ,

Tjk = −εκ

r
2

⌊
d−2

2

⌋
�(φ†

κγ rφκ)δ jk . (62)

The equation fulfilled by φκ is now a partial differential equa-
tion,

{
i√
N σ

γ t
[
∂t − ∂t ln N 1/4

]
+ i

√
Nγ r

[
∂r + ∂r ln

√√
Nσrd−2

]

+ iκ

r
γ tγ r − m

}
φκ = 0. (63)

In the following we will consider only a static space-
time, and assume the Dirac fields possess a harmonic time-
dependence.

4 Effective action

With the construction we have developed in the previous
section, it is possible to simplify the part of the action (7)
containing the collection of Dirac fields,
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S =
∫

dx4
√|g|

(
R + 2αg√|g|Lspinor + Λ

)

= Ad−2

∫
dt
∫

drσrd−2

×
{[

N ′′ + 3N ′σ ′

σ
+ 2N

σ
σ ′′ + 2(d − 2)N ′

r

+2(d − 2)N

σr
σ ′ + (d − 2)(d − 3)(N − 1)

r2

]
+ Λ

+2αg

[√
N

2

dν

dr
− �

{(
m + iκ

r

)
eiν
}

+ ω√
N σ

]
|φ̂|2

}

≡ Ad−2

∫
dt
∫

drLeff, (64)

where we have defined the effective Lagrangian Leff. With
this the equations of motion read, using j0

net = 2|φ̂|2,

N ′ = −d − 3

r
(N − 1)

− αgr

d − 2

[√
N

2
ν′ − �

{(
m + iκ

r

)
eiν
}]

j0
net

−Λr,

σ ′ = αg

2(d − 2)

r√
N

[σ
2

ν′ − ω

N

]
j0
net,

ν′ = 2√
N

�
{(

m + iκ

r

)
eiν
}

− 2ω

Nσ
,

(ln j0
net)

′ = 2√
N

�
{(

m + iκ

r

)
eiν
}

− (ln[√Nσrd−2])′.
(65)

or after using the equation for ν′ in the equation for N ′ and
defining

eλ(r) = √
Nσrd−2 j0

net,

ξ(r) = 2√
N

(
m + iκ

r

)
eiν, (66)

we have

N ′ = d − 3

r
(1 − N ) + αgω

d − 2

1

Nσ 2rd−3 eλ − Λr,

σ ′ = αg

2(d − 2)

1

Nrd−3

[
1

2
�(ξ) − 2ω

Nσ

]
eλ,

ν′ = �(ξ) − 2ω

Nσ
,

λ′ = �(ξ). (67)

Another useful way to write this is using

φ̂eiν/2 = g − i f. (68)

This means that

j0
net = 2|φ̂|2 = 2( f 2 + g2), eiν = g − i f

g + i f
,

cos ν = g2 − f 2

f 2 + g2 , sin ν = − 2 f g

f 2 + g2 . (69)

With this the effective Lagrangian for the spinor part is espe-
cially simple

Lspinor = rd−2σ
√
N

(
f

dg

dr
− g

d f

dr

)

−rd−2σ

(
m[g2 − f 2] + 2κ

r
f g

)

+rd−2ω√
N

( f 2 + g2). (70)

The equations of motion are

N ′ = −d − 3

r
(N − 1) + αgr

d − 2

2ω√
Nσ

( f 2 + g2) − Λr,

σ ′ = αg

d − 2

r

N

{
mσ(g2 − f 2) + 2κσ

r
f g − 2ω√

N
( f 2 + g2)

}

f ′ = −
{

κ√
Nr

+ d ln
√
rd−2σ

√
N

dr

}
f −

{
m√
N

− ω

Nσ

}
g ,

g′ =
{

κ√
Nr

− d ln
√
rd−2σ

√
N

dr

}
g −

{
m√
N

+ ω

Nσ

}
f.

(71)

This form is useful for numerical calculations [19].
Finally, if we assume that σ > 0, which we can always

do without loss of generality, there is a convenient way to
redefine the spinor functions by setting

f =
√

d − 2

αgrd−2σ
√
N

f̂ ,

g =
√

d − 2

αgrd−2σ
√
N
ĝ. (72)

This is convenient, because it makes the form of the field
equations a bit more compact,

N ′ = −d − 3

r
(N − 1) + 2ω

Nσ 2rd−3 ( f̂ 2 + ĝ2) − Λr,

σ ′ = 1

N 3/2rd−3

{
m(ĝ2 − f̂ 2) + 2κ

r
f̂ ĝ − 2ω

σ
√
N

( f̂ 2 + ĝ2)

}

f̂ ′ = − κ√
Nr

f̂ −
{

m√
N

− ω

Nσ

}
ĝ,

ĝ′ = κ√
Nr

ĝ −
{

m√
N

+ ω

Nσ

}
f̂ . (73)

This will be helpful in the next sections. Let us note here that
with these definitions the Dirac density is

j0
net = 2(d − 2)

αgrd−2σ
√
N

[
f̂ 2 + ĝ2

]
. (74)
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5 Analytical solutions

Of course a fundamental question that immediately arises is
if, for some set of parameters, the previous system of equa-
tions possesses physically meaningful configurations, and
what is their interpretation. In the following, we will focus
on cases without cosmological constant (Λ = 0).

Soliton-like solutions of this system in several dimensions
have been presented in [19]. These solutions, to our knowl-
edge, can only be constructed numerically. The solutions
(sometimes called Dirac stars, although they are not expected
to have any connection with realistic astrophysical objects)
are regular everywhere, and share many features with similar
self-gravitating soliton-like configurations found with mas-
sive bosonic fields.

In this section we want to present several analytical solu-
tions that the previous system possesses. We will analyze in
detail the physical and geometrical properties of these solu-
tions.

5.1 Multi-Dirac wormhole with unbounded spinors

5.1.1 The solution

Let us specialize to a massless (m = 0) field which does not
vary in time (ω = 0). The differential Eq. (73) simplify in
this case to

N ′ = −d − 3

r
(N − 1),

σ ′ = 1

N 3/2rd−3

2κ

r
f̂ ĝ,

f̂ ′ = − κ√
Nr

f̂ ,

ĝ′ = κ√
Nr

ĝ. (75)

The differential equation for N means that N = 1−(μ/r)d−3

with μ being a constant. Without loss of generality we can fix
positive angular momentum of the fields, εκ = 1, κ = d−2

2 .
The solutions for f and g are

f̂ = − exp

(
(c0 + cΔ)/2 − 2κ

d − 3
artanh

√
N

)
,

ĝ = exp

(
(c0 − cΔ)/2 + 2κ

d − 3
artanh

√
N

)
, (76)

with c0, cΔ ∈ R. Notice that f̂ ĝ = −ec0 ∈ R≤0. This sim-
plifies the differential equation for σ , which now reads

σ ′ = −2κec0
1

N 3/2rd−2 = 4κec0

μd−3(d − 3)

d

dr

1√
N

. (77)

This is easily integrated to be

σ(r) = cσ + 4κec0

μd−3(d − 3)

1√
N

, (78)

with cσ ∈ R. In total, the solution is parameterized by three
real constants cσ , c0 and cΔ, in addition to μ, the coupling
constant αg and the dimension d. However the parameters
satisfy several relations.

5.1.2 Constraints on the solution

Our first requirement is for σ to be a positive function in all
of the domain r ∈ [μ,∞). An analysis of Eq. (78) reveals
that this is only possible if cσ > − 2ec0

μd−3
d−2
d−3

The second requirement is to reach the standard Minkowski
metric at infinity. This means that

gtt = Nσ 2 → 1, for r → ∞. (79)

Taking into account the previous condition for σ > 0, this
implies the following relation for c0

ec0 = (1 − cσ )
μd−3(d − 3)

4κ
. (80)

Hence we can write

σ(r) = cσ + 1 − cσ√
N

, (81)

and it is easy to see that the gtt component behaves asymp-
totically like

gtt = 1 −
(μ

r

)d−3
cσ + O(1/rd−2). (82)

Hence we can clearly see that the parameter cσ is related with
the mass of the solution.

5.1.3 Massless wormhole

Let us explore the physical meaning of this metric. To sim-
plify the discussion, let us first look at the particular case with
cσ = 0. Thus σ(r) = 1/

√
N . The metric is very simple,

ds2 = dt2 − N−1(r)dr2 − r2dΩ2
d−2, (83)

with N = 1 − (μ/r)d−3. This looks like the metric of a
traversable wormhole [45]. Let us make the following coor-
dinate transformation in this metric, ρ = √

N . This leads
to

ds2 = dt2 − 4

μ2(d−3)(d − 3)2

[
μd−3

1 − ρ2

] 2(d−2)
d−3

dρ2

−
[

μd−3

1 − ρ2

] 2
d−3

dΩ2
d−2. (84)

For r ∈ [μ,∞) we have ρ ∈ [0, 1) mapped such that
r = ∞ �→ 1 = ρ. In this coordinate system, it is possi-
ble to extend the above metric (84) to ρ ∈ (−1, 1). Thus
the above metric corresponds to a wormhole connecting two
asymptotic regions at ρ = ±1. The sphere with minimal
surface has radius r = μ, which corresponds to the throat
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of the wormhole as we will explicitly see later. Note that
the Ricci scalar of this metric vanishes, but the Krestchmann
scalar is finite. For d = 4, K = 6(1 − ρ2)6/μ4; for d = 5,
K = 24(1 − ρ2)4/μ4, etc...

An interesting property of the above geometry is that the
temporal part of the metric is essentially not curved and thus
a test mass can rest at a fixed radius ρ without moving.

We can compute the mass using the standard Komar inte-
gral

M = − 1

16π

d − 2

d − 3

∫
r→∞

∗dξt = 0, (85)

with ξt being the one form dual to the Killing vector Kt = ∂t
and the integral being over a (d − 2)-sphere at infinity. For
the metric (84) this is trivially zero. Hence the mass of this
wormhole vanishes, as it was expected from the form of the
asymptotical relation (82).

5.1.4 Massive wormhole

Now let us explore the more general case with cσ 
= 0. It is
convenient to change again the radial coordinate to ρ = √

N ,
similar to what we have seen for cσ = 0, because we can
extend its range from ρ ∈ [0, 1) to ρ ∈ (−1, 1). We have a
metric slightly different than the one in the previous case,

ds2 = [1 − cσ (1 − ρ)]2 dt2

− 4

μ2(d−3)(d − 3)2

[
μd−3

1 − ρ2

] 2(d−2)
d−3

dρ2

−
[

μd−3

1 − ρ2

] 2
d−3

dΩ2
d−2. (86)

Note that with cσ 
= 0, the gtt component depends on ρ. The
asymptotical behaviour at ρ = 1 (i.e., r → ∞) is given by
Eq. (82), since

ρ =
√

1 −
(μ

r

)d−3 = 1 − 1

2

(μ

r

)d−3 + O
(

1/r2(d−3)
)

,

(87)

We can interpret this geometry also as a wormhole con-
necting two asymptotic regions at ρ = ±1. The differ-
ence now is that we have some non-trivial red-shift between
universes. In fact note that gtt → 1 when ρ → 1, but
gtt → (1 − 2cσ )2 when ρ → −1. This is similar to what
happens in the Ellis wormhole [46–50]. Note that solution
(86) includes the solution (84) in the limit cσ = 0.

Again the Ricci scalar of this solution is zero, but the
Kretschmann scalar has a more complicated expression. In
four dimensions we have

K = 6(1 − ρ2)6
[
1 − 2cσ (1 − ρ) + c2

σ (2ρ2 − 2ρ + 1)
]

μ4[1 − (1 − ρ)cσ ]2 . (88)

The Kretschmann scalar becomes singular at some radial
point if |1 − 1/cσ | < 1. This is actually the case for higher
dimensions too. We can prevent the geometry from becom-
ing sick if we choose cσ < 1/2. Note that, if this expres-
sion holds, then ρσ > 0 everywhere. We have also assumed
that κ > 0, but different sign choices result in equivalent
solutions, with some differences in the global signs of the
parameters.

Let us calculate the mass of the wormhole using the Komar
integral. We need a time-like Killing vector normalized to
one at infinity. For ρ → 1 we can use the Killing K+

t = ∂t ,
because

lim
ρ→+1

g(∂t , ∂t ) = lim
ρ→+1

(ρ2σ 2) = 1 (89)

due to our normalization. The mass calculated using the dual
form ξ+

t of the Killing K+
t , using the expression

dξ+
t = −2cσ [1 − cσ (1 − ρ)]dt ∧ dρ

= −cσ μd−3(d − 3)

[
1 − ρ2

μd−3

] d−2
d−3

ωt ∧ ωr , (90)

is

M+ = − 1

16π

d − 2

d − 3

∫
ρ→+1

∗dξ+
t = cσ

μd−3(d − 2)Ad−2

16π
.

(91)

For the other side we cannot use ∂t , because

lim
ρ→−1

g(∂t , ∂t ) = (1 − 2cσ )2, (92)

which is generally not equal to one. Instead, let us define the
Killing vector

K−
t = 1

|1 − 2cσ |∂t . (93)

Hence we have limρ→−1 g(K
−
t , K−

t ) = 1. We also have
to be careful with regard to the vielbein we use. Because
er points towards spatial infinity on the ρ > 0 side, but
it points towards the wormhole on the ρ < 0 side. So we
have to reorient the vielbein for the mass calculation as well,
changing from ωr to −ωr . This introduces a minus sign in
the star operator, and the expression of the Komar integral is

M− = − 1

16π

d − 2

d − 3

∫
ρ→−1

(−∗)dξ−
t = − M+

|1 − 2cσ | , (94)

with ξ−
t the dual form of K−

t . This relation indicates that
each side measures values for the mass of the wormhole with
contrary signs, but also with different absolute values. Note
that the mass is finite in both sides, as long as cσ < 1/2 is
satisfied.

If we insist in having a positive value for M+, then 0 ≤
cσ < 1/2. In this case the value of M− is always negative.
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Note also that for the singular solution with cσ = 1/2, the
M− mass diverges but the M+ mass reaches its maximum
possible value.

Note that we can find solutions with the opposite behaviour
of the ρ < 0 and ρ > 0 sides if we choose a different sign
of κ . In that case the M+ mass could diverge while the M−
mass would always remain finite.

Before discussing in more detail the properties of the Dirac
fields that support this wormhole geometry, let us explicitly
calculate the position of the throat. For this we look at a
slice of constant time and keep all angles constant except
one. Then we embed this into a two-dimensional metric in a
three-dimensional space using a function z(r)

ds2
embed = dz2 + dr2 + r2dφ2

=
([

dz

dr

]2

+ 1

)
dr2 + r2dφ2 = 1

N
dr2 + r2dφ2,

(95)

meaning

dz

dr
= ±

√
1

N
− 1. (96)

The position of the throat can be calculated from dr/dz|rthroat

= 0, so from

N

N − 1

∣∣∣∣
rthroat

= 0 (97)

implying rthroat = μ.

5.1.5 Properties of the unbounded spinors

The spinor functions that support the wormhole geometry are

f =
√
d − 3

2μαg
ecΔ/2 −1√

1 + cσ
1−cσ

ρ
(1 − ρ)

d−2
d−3 ,

g =
√
d − 3

2μαg
e−cΔ/2 1√

1 + cσ
1−cσ

ρ
(1 + ρ)

d−2
d−3 , (98)

To analyze the behavior of the matter content we look at the
density j0

net, which in this case looks like

j0
net = d − 3

αgμ

ecΔ

1 + cσ
1−cσ

ρ

[
(1 − ρ)

2(d−2)
d−3 + (1 + ρ)

2(d−2)
d−3 e−2cΔ

]
.

(99)

with the relations (80), (81), and κ = (d − 2)/2.
The density j0

net is in general not zero in any of the asymp-
totic regions ρ = ±1:

j0
net(ρ = 1) = d − 3

αgμ
2

2(d−2)
d−3 (1 − cσ )e−cΔ
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Fig. 1 Dirac density j0
net as a function of the coordinate ρ for d = 4

wormholes. We choose μ = 1, αg = 1, cΔ = 0, and several values of
the cσ parameter

j0
net(ρ = −1) = d − 3

αgμ
2

2(d−2)
d−3

1 − cσ

1 − 2cσ

ecΔ, (100)

meaning that the Dirac spinors are not bounded: the integral
over all of the wormhole space-time of the Dirac density
diverges, and hence the Dirac fields cannot be normalized.

From these expressions we can also see that the field den-
sity is regular and positive everywhere as long as cσ < 1/2,
but like the Kretschmann scalar, it diverges on the left side
when cσ = 1/2.

We show a few examples for the function j0
net in Fig. 1.

The minimum of the density in general does not coincide
with the throat of the wormhole (ρ = 0).

Keeping with κ positive, notice that for cσ < 1/2

j0
net(ρ = +1)

j0
net(ρ = −1)

= |M+|
|M−|e−2cΔ, (101)

so cΔ determines how much the ratio of the field amplitude
in the asymptotic region differs from the ratio of the absolute
values of the masses measured in these regions.

To discuss the role of cΔ further, let us look at the phase
ν(ρ). From Eq. (69) we have

eiν = (1 + ρ)
d−2
d−3 + i(1 − ρ)

d−2
d−3 ecΔ

(1 + ρ)
d−2
d−3 − i(1 − ρ)

d−2
d−3 ecΔ

. (102)

In Fig. 2 we show a plot of the phase function ν in d = 4
for various values of cΔ. As we can see it changes from
the boundary value ν(ρ = −1) = π to the boundary value
ν(ρ = +1) = 0 at a position determined by cΔ. For cΔ = 0
this phase jump happens at ρ = 0, for cΔ < 0 in the region
ρ < 0 and for cΔ > 0 in the region ρ > 0.

This change of phase suggests a relation between the
spinors as defined by an asymptotically flat observer on the
right side or on the left side. Following [29] let us discuss
the spinor field on both asymptotic flat regions. For this let
us introduce the observers Alice and Bob. Alice will be the
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Fig. 2 Phase ν as a function of the coordinate ρ for d = 4 wormholes.
We choose several values of the cΔ parameter

observer living in the asymptotically flat region ρ → 1.
Quantities like M+ and κ have been defined in the frame
and with the vielbein of Alice. The observer Bob lives in
ρ → −1. Bob differs from Alice by his choice of time nor-
malization (the temporal Killing vector Bob has to use is
given by Eq. (93)) and by his choice of vielbein. Hence, if by
(A) we indicate Alice definitions and by (B) Bob definitions,
we can write

t (B) = (1 − 2cσ )t (A),

ωr (B) = −ωr (A). (103)

We have already discussed how this changes the mass of
the wormhole defined by Alice (M (A) = M+) and by Bob
(M (B) = M−). But the change in the vielbein also affects
the Dirac spinor. This change can be expressed as a unitary
transformation changing γ r to −γ r . To see the effect of this,
let us write the radial part of the Dirac equation from the
point of view of Alice

iγ re(A)
r φ(A) + iγ r (e(A)

r F)φ(A) + i

r
γ tγ rκ(A)φ(A) = 0,

(104)

with

F =
{

ln
√√

N (r)σ (r)rd−2, for ρ ≥ 0

ln
√√

N (r ′)σ (r ′)r ′ d−2, for ρ ≤ 0
, (105)

and the radial coordinate r ′ defined on the part ρ < 0 by the
equation −ρ = √

N (r ′).
Changing to Bobs frame we have the Dirac equation

iγ r e(B)
r φ(B) + iγ r (e(B)

r F)φ(B) + i

r
γ tγ r (−κ(A))φ(B) = 0, (106)

where we used e(B)
r = −e(A)

r . This shows us that

κ(B) = −κ(A), (107)

so the chirality of the field in Bob frame is the opposite to
the chirality in Alice frame.

Thus we can write any of the spinors in the incoherent
superposition of fields given by the sign choices ε in the
asymptotic regions as

Ψ (A,B)
κ,ε (|ρ|) = Ψ (A)

κ,ε (r) ⊗ Ψ
(B)
−κ,ε(r

′) (108)

where we should keep in mind that the first part of that prod-
uct is written in the frame of Alice and the second in the frame
of Bob. So one could think of the spinors in the asymptotic
regions as anticorrelated entangled pairs completely similiar
to the discussion in [29]. The change of chirality is a result
of the different orientation of observers at each side of the
wormhole, and it has nothing to do with the particular solu-
tion we have obtained, so this should be a general feature of
Dirac fields in the geometry of wormholes. The only differ-
ence with other models is that this wormhole solution is a
full back-reacting solution of the Einstein–Dirac equations,
so the wormhole geometry is supported by the Dirac spinors.

Let us comment now on the energy conditions of this
wormhole. The stress–energy tensor for this particular solu-
tion is

Ttt = 0,

Trr = − 2κec0

σρrd−1 ,

Tt j = 0 = Tr j = Ttr ,

Tjk = ec0

σρrd−1 δ jk . (109)

So there are directions for which the energy conditions (null
and weak) are violated. One could also easily see that from
the fact that, due to a massless field T a

a = 0 but also Ttt = 0,
so there must be directions for which Tabξaξb < 0 for time-
like ξa . This is a generic feature of wormholes supported by
exotic matter. In addition, in this case we have seen that the
density of the Dirac fields does not decay at infinity, meaning
the spinors are not bounded and it is also more difficult to
interpret the Dirac fields of these solutions.

For instance, these wormholes we have obtained are
described in practice by three parameters: μ, cσ and cΔ

(apart from the coupling constant αg). Essentially, these
three parameters are related respectively with the radius of
the throat, the mass of the wormhole, and the amplitude of
the Dirac fields. In principle, the amplitude can be fixed by
imposing an extra normalization condition on the field. Since
the Dirac fields are not bounded, it is not possible to fix the
integral over the density to be equal to one, and hence we
cannot make a quantum (probabilistic) interpretation of the
field. One could fix this parameter following other criteria,
for example, by fixing the value of the density (100) at one of
the asymptotical regions, or by choosing a particular relation
between the mass and density ratios (101).

123



Eur. Phys. J. C (2020) 80 :174 Page 13 of 17 174

Let us note that the properties of Dirac fields in the back-
ground of wormhole geometries have been studied before in
the literature [29–31]. Solutions with pairs of Dirac fields
in the background of a wormhole can be used as effective
models describing a short nanotube bridging two different
graphene layers. These models are known as graphene worm-
holes [22–28]. Such models are constructed in lower dimen-
sions (d = 2 + 1), in the presence of a gauge field and
without back-reaction. In particular in [22] it was shown that,
although there are test field configurations that cannot be nor-
malized, under some conditions (vanishing angular momen-
tum) bounded states of massles fermions localized around
the wormhole can be constructed.

For the analytical and back-reacting solution we have pre-
sented in this section, we have shown that the Dirac fields are
not bounded, since the spinor functions are given by a combi-
nation of a part that goes to zero at infinity and a part that goes
to a constant. A difference with the results from [22] is that
our solution, spherical symmetry fixes the angular momen-
tum to be |κ| = (d−2)/2. There doesn’t seem to be a simple
generalization of our solution that results in bounded spinors,
with a Dirac density decaying fast enough to zero at any of
the asymptotical regions.

A natural question is to ask if these solutions can be
generalized to include massive Dirac fields m 
= 0 and/or
frequency ω, and if this could help obtain wormhole solu-
tions with localized Dirac fields. Again, a simple analytical
solution doesn’t seem to be available, and this suggests that
numerical methods may be necessary for the construction
and analysis of these configurations.

However we can argue that a generalization of the previous
m = ω = 0 wormhole solution are likely to result also in
unbounded configurations. Consider the case with m 
= 0,
ω 
= 0. If we assume an asymptotically flat space-time, the
asymptotical behaviour of the massive (test) spinors is given
by a combination of the form

f = C+
r

e
√
m2−ω2r + C−

r
e−√

m2−ω2r ,

g = −C+
r

m + ω

m − ω
e
√
m2−ω2r + C−

r

m + ω

m − ω
e−√

m2−ω2r ,

(110)

provided |ω| < m. Note that this asymptotical solution is
given by a combination of a diverging term (with amplitude
C+) and a convergent term (with amplitude C−). Hence it is
reasonable to expect that the generalization of the previous
wormhole solution to the case of massive spinors would be
given asimptotically by a combination of such two contri-
butions. This would result, in principle, in a configuration
with unbounded spinors, with one of the functions decaying
exponentially at infinity, while the other function explodes
exponentially. Nonetheless, a full numerical construction of
these solutions should allow for a regular and traversable

throat, with a non-trivial matching of the spinor functions.
Such a numerical analysis is beyond the scope of this paper,
and it will be presented elsewhere.

In this regard, in the case of black holes it has been proven
that no fermionic bound states with |ω| < m exist [51–54].
Nonetheless, a difference with respect the wormholes is that,
in the case of black holes, the problem arises at the behaviour
of the spinor functions at the horizon, where they diverge. For
the wormhole solution we have discussed in this section, as
well as for other test field examples we have already men-
tioned [39], the problem appears only asymptotically far from
the throat. In the next section we are going to discuss another
solution that exemplifies this point: a black hole for which
the unbounded massless spinors diverges at the horizon.

5.2 Schwarzschild black hole with a divergent Dirac flux

Let us now continue with the special case in which the spinors
are massless with no frequency (m = ω = 0.). Consider the
special solution for which either f ≡ 0 or g ≡ 0. In this
case, from Eq. (75) we can see that the function σ is just
a constant, which we choose to be one. The metric is thus
simply the d-dimensional Schwarzschild-Tangherlini metric.
We will nevertheless have a non-vanishing spinor field in
this background. The background is a vacuum black hole,
because for the above spinor field configuration the stress–
energy tensor vanishes. To have a well-behaved solution at
infinity we choose f = 0 in the case of κ < 0 and g = 0 in
the case of κ > 0 (recall κ is fixed by the Ansatz construction
to κ = εκ

d−2
2 ). Define for this

h = c1 exp

[−2|κ|
d − 3

artanh
√
N

]
=
{

− f, for κ > 0

g, for κ < 0
,

(111)

with c1 ∈ R≥0 being a constant. This solution can actually
be reached in the previous solution (76), when taking in the
expressions cΔ = −εκc0 + 2εκ ln c1 and the limit cσ = 1
(c0 → −∞).

The Dirac density of this solution is given by

j0
net = c2

1

rd−2
√
N

e
− 4|κ|

d−3 artanh
[√

N
]
. (112)

In Fig. 3 we show the Dirac density j0
net as a function of r

for several values of the dimension, where we can see that it
decays to zero at infinity but diverges at the horizon. Let us
analyze this behaviour in more detail.

The asymptotic part for determining the behaviour of the
field at spatial infinity is

artanh
√
y ≈ −1

2
ln(1 − y) + O(y0), (113)
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Fig. 3 Dirac density j0
net as a function of the compactified radial coor-

dinate 1 − (μ/r)d−3 for the black hole solution. Although the density
decays fast enough at infinity, it diverges at the horizon. In the figure
we choose 2c2

1(d − 2)μ2−d = √
d − 3αg

for y ≤ 1 and y ≈ 1. So for r → ∞ we have

artanh

[√
1 −

(μ

r

)d−3
]

≈ d − 3

2
ln r + O(r0) (114)

and thus

j0
net ≈ c2

1
r−2|κ|

rd−2 = c2
1

r2(d−2)
→ 0. (115)

Close to the horizon j0
net diverges like

j0
net ≈ c2

1
2(d − 2)μ2−d

√
d − 3αg

1√
r/μ − 1

+ O(1). (116)

From this we can conclude that the integral over the density
is not finite: the quantity

Σ =
∫

〈j, e0〉dΣ0 = Ad−2

∫ ∞

rH

j0
netr

d−2

√
N

dr (117)

explodes logarithmically at the horizon. Hence this solution
is actually sick at the level of the matter field content, and is
not physically reasonable. This is of course expected, since
we have already mentioned that some general results for-
bid regular black holes with Dirac fields to exist [51–54].
Nonetheless, it is interesting to see that the combination
of Dirac fields conspires in such a way so that the effec-
tive stress–energy tensor vanishes completely, and hence the
geometry (the metric) is not affected at all by the matter con-
figuration. Also it is interesting to see that the problem of
the solution can be explicitly tracked to the behaviour of the
Dirac fields at the horizon of the black hole.

5.3 Light-like singularity

Another solution can be obtained when m = 0 but ω 
= 0.
Specializing to solutions with dν

dr = 0, we find that σ has to
be

σ= − ω

κ sin ν

r√
N

. (118)

The Eq. (67) for σ implies that N has to be a constant too,
being

N = d − 3

d − 1
. (119)

With this we can integrate the Eq. (67) for λ, implying a
simple expression for this function,

λ = 2κ cos ν√
N

ln r/L , (120)

with L ∈ R a length scale defined from the integration con-
stant.

Lastly the Eq. (67) implies two algebraic relations:

0 = 2
d − 3

d − 1
+ αg(d − 2) sin2 ν

4ω
L−(d−2), (121)

−1 = −(d − 1) + εκ(d − 2)

√
d − 1

d − 3
cos ν, (122)

with κ = εκ(d − 2)/2. Equation (122) fixes ν

cos ν = εκ

√
d − 3

d − 1
. (123)

This can always be solved for d ≥ 3. With this

sin2 ν = 1 − cos2 ν = 2

d − 1
(124)

and thus Eq. (121) implies the frequency has to be fine-tuned

ω = −αgL−(d−2)

4

d − 2

d − 3
. (125)

Gathering all the relations, the solution is

N = d − 3

d − 1
,

σ = ενεκ

αgL−(d−2)

2
√

2

d − 1

d − 3

√
1

d − 3
r,

ν = arcsin

√
2

d − 1
,

λ = (d − 2) ln r/L , (126)

with εν =
√
d−1
2 sin ν = ±1. This means that

j0
net = 2εκεν

αg

d − 3√
d − 1

1

r
. (127)

This fixes εκεν = +1. The density of the field goes to
zero at infinity, although it is divergent for r → 0. We
can simplify the expressions a bit by choosing the length

L−(d−2) = 2
√

2
αg

d−3√
d−1

. The metric has a very simple form:

ds2 = r2dt2 − d − 1

d − 3
dr2 − r2dΩ2

d−2, (128)
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Fig. 4 Penrose diagram for the metric (132). Blue dotted lines show
surfaces of constant time t . Green dashed lines show surfaces of constant
radius r

The Kretschmann scalar for this solution in four dimensions
d = 4 is

Rabcd Rabcd = 8

3r4 (129)

while the curvature scalar vanishes, R = 0. The above sin-
gularity is light-like. To see this explicitly, we can calculate
the Penrose diagram. The in- and out-going null geodesics
obey the equation

t = ±
√
d − 1

d − 3
ln r + const. (130)

So making the following coordinate transformations

π t ′ = arctan

(
t +

√
d−1
d−3 ln r

)
+ arctan

(
t −

√
d−1
d−3 ln r

)

πr ′ = arctan

(
t −

√
d−1
d−3 ln r

)
− arctan

(
t +

√
d−1
d−3 ln r

)
, (131)

with r ′, t ′ ∈ (−1, 1) brings the line element to

ds2 =
√
d − 3

d − 1
r2(1 + v2)(1 + w2)(dt ′2 − dr ′2) − r2dΩ2

d−2, (132)

where v = t +
√

d−1
d−3 ln r and w = t −

√
d−1
d−3 ln r . The

singularity is at r → 0, meaning it is at t ′ + r ′ = −1 and
t ′ − r ′ = 1. This set defines a light-like surface. In Fig. 4
we show the Penrose diagram of metric (132) in the t ′, r ′
coordinates and showing a few curves with constant t and r .
All the radial geodesics of a massive particle begin and end
at the singularity r = 0.

6 Conclusions

In this paper we have studied the properties of configurations
with a collection of Dirac fields, chosen in such a way that the

total stress–energy tensor of the matter content is compatible
with the spherical symmetry of the metric.

In Sects. 2 and 3 we have given a detailed explanation

on how the collection of 2� d−2
2 � Dirac fields can be chosen

in order to achieve this symmetry. In order to do this, one
proposes the standard separable Ansatz for each indivitual
spinor. The radial and temporal dependence of the spinor is
assumed to be equal for all fields. We make use of the known
solutions for the angular part of the spinor, in particular when
the (d − 2)-sphere is factorized as a tower of lower dimen-
sional spheres. Then it is possible to show that, for certain
values of the angular momentum of the field, |κ| = (d−2)/2,
the angular dependence of each field combines with the rest
in a way so that the total stress–energy tensor is compatible
with the spherical symmetry of the background. In order to
have static metrics, we have to impose the vanishing of the
radial current.

Making use of this Ansatz, we simplified the action and
field equations in Sect. 4. With this simplified system we con-
structed several simple analytical solutions. In Sect. 5.1 we
obtained a family of wormholes supported by the Dirac fields.
These wormholes connect two asymptotically flat regions,
they can have positive, zero or negative mass, and their geom-
etry and matter content are regular everywhere. However the
density, although regular everywhere, does not decay to zero
at any of the asymptotically flat regions. We analyzed the
relation between several quantities at each asymptotically
flat region, in particular, the mass, which changes sign and
value at each side, and the chirality of the Dirac fields, which
also changes sign.

In Sect. 5.2 we found that the Schwarzschild metric can
in fact satisfy the Einstein–Dirac field equations with a non-
trivial solution for the fermionic fields. The catch is that the
matter content becomes sick at the horizon of the black hole
(the density diverges), and the fields cannot be normalized in
the standard way.

In Sect. 5.3 we have also obtained a light-like naked sin-
gularity, where matter fields and geometry become simulta-
neously sick.

For a study of more general solutions, it is likely that
numerical methods are required in order to construct the
solutions. For instance, the Ansatz we have presented here in
detail was used to obtain numerically regular self-gravitating
solitons [19].

A possible continuation of this work is to investigate
numerically if it is possible to obtain similar wormhole solu-
tions with finite values of the Dirac mass and/or frequency,
or with additional matter fields (like a gauge field, similar
to what is used in the graphene wormholes). It would be
interesting to explore if in these cases regular solutions still
exist, and more importantly, if bounded states can be con-
structed, with the Dirac density asymptotically zero. On the
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other hand, these non-trivial asymptotics of the Dirac fields
in the case of the wormhole, suggest that maybe allowing the
metric to have other asymptotical behaviour (i.e., allowing
for a negative cosmological constant to have an asymptoti-
cally AdS space-time) could help regularize the integral of
the Dirac density.
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